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1. The graphs of xy = 1 and xy = −1 are given in the same co-ordinate
system. We have a circle around the origin with radius R. The common
points of the circle and the two hyperbolas are the vertices of a regular
n-gon. Show that the area of the n-gon is R4.

Solution The union of the graphs of the hyperbolas has equation x2y2 =
1. Solving this against x2 + y2 = R2 we obtain x2 = (R2 ±

√
R4 − 2)/2.

Thus there are either 0, 4 or 8 points of intersection of the circle with the
union of the hyperbolas. We investigate for which values of R these points
form the vertices of a square or a regular octagon.

The square is obtained when R =
√

2, and then x2 = 1. The area of the
square is 4x2 = 4 = r4.

Let z = tanπ/8 so

1 = tanπ/4 =
2z

1− z2

so z =
√

2 − 1. The condition that the vertices form a regular octagon
amounts to the condition that the circle, the hyperbola xy = 1 and the
ray y = zx (x > 0) should have a point of intersection. Solving y = zx

and the hyperbola yields x2 =
√

2+1 so x =
√√

2 + 1 and y =
√√

2− 1.
Now R2 = x2 + y2 = 2

√
2 so R4 = 8 but using “half height times base”,

the area of the octagon is

16 · x · y = 16 · 1
2
·
√√

2 + 1
√√

2− 1 = 8 = R4.

2. Find x, y, z, t ∈ R \ {0,−1} for which both (a) and (b) hold:

(a) x+ y + z = 3/2

(b)
√

4x− 1 +
√

4y − 1 +
√

4z − 1 ≥ 2 + 3
√
t−2.

Solution Notice that x, y, z must all be at least 1/4 so that the left-hand
side will make sense. Apply the Cauchy-Schwarz inequality:

(1, 1, 1) · (
√

4x− 1,
√

4y − 1,
√

4z − 1) ≤
√

3 ·
√

4(x+ y + z)− 3 = 3.
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Thus the given condition holds if and only if t = 2, and the vectors in the
dot product are parallel, so x = y = z = 1/2. Comment: This method
is obvious. I was amazed to see other (more complicated) meth-
ods in Hungary (Jensen indeed!).

3. f(x) is defined on R\{0,−1} and takes real values. Determine f(x) if for
every x ( 6= 0,−1)

f(x) = kx2f

(
1
x

)
=

x

x+ 1
.

(here k is a constant, 0 < k2 6= 1). Find those values of x for which
f(x) = 0.
Solution Replace x by 1/x and solve the linear equations. In the ‘un-
knowns’ f(x) and f(1/x) and deduce that

f(x) =
x(1− kx)

(x+ 1)(1− k2)
.

Notice how the side conditions keep the denominator under control. To
obtain full credit, you must substitute back into the original equation to
verify that this is indeed a solution. Now f(x) = 0 exactly when x = 1/k
(a sucker will allow x = 0 but this violates a side condition).

4. In triangle ABC the bisector of ∠BAC meets the incircle first at OA.
(OA is closer to A than the other common point of the bisector and the
incircle.) Let kA be the circle with centre OA which nis tangent to AB
and AC. We get kB and kC similarly. The external common tangent of
kB , kC which is not a side of ∆ABC is tA. We get tB , tC similarly. Prove
that tA, tB , tC are concurrent.
Solution (outline) Recall the following important fact about the ortho-
centre and circumcircle of a triangle: the reflection of the orthocentre in
any side of a triangle is on the circumcircle. A short proof is available by
joining the orthocentre to one of the vertices on the reflecting side, and
chasing angles. Now to the question. The point of concurrency turns out
to be the orthocentre H of ∆OAOBOC . In order to verify this fact, it suf-
fices to do the following: drop the perpendicular IFA to BC. Draw OAH
and HFA. It suffices to show that OBOC ⊥ HFA by the important fact
which we recalled earlier, since then H will sit on one (and by symmetry
all) of the internal common tangents mentioned in the question. Thus
we have reduced the question to a single perpendicularity problem. Now
draw another diagram which is less littered (omit the smaller circles and
the internal common tangents). Let the angles of ∆ABC be 2α, 2β, 2γ re-
spectively, then chase angles (nailing down the angles around I is helpful),
and soon you will be done.

5. In a folk dance the dancers are standing in two rows, 9 boys facing 9 girls.
Each dancer gives his/her left hand to the person opposite, to his/her left
neighbour, or to the person opposite his/her left neighbour. The analogous
rule applies to right hands. Nobody gives both hands to the same person.
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(a) Find the number of possible configurations.
(b) Is 2002 a divisor of the number of configurations if there are 2002

people (rather than 18).

Solution

(a) Replace 9 by n and induct on it (inducting on 9 itself may confuse
the casual reader). Let the number of configurations with n couples
be un so u1 = 0 and u2 = 2 (the square or the infinity symbol). An
induction argument for n ≥ 3 goes as follows: either couple n − 1
hold hands or they don’t. The first possibility gives rise to 2un−2

configurations (letting couples n− 1 and n do their own thing in two
ways) and the second to 2un−1 configurations (by slicing off the arms
linking couples n − 1 and n, and then jamming the blokes and the
blokesses together to avoid unsightly embarrassment and to create
a replacement couple n − 1). Thus un = 2un−1 + 2un−2 for every
n ≥ 3. Thus the sequence goes

0, 2, 4, 12, 32, 88, 240, 656, 1792

and the number of configurations with 9 couples is 1792 (which has
a certain je ne sais quoi). Note that if you are honest enough
to allow n = 0 then there is a unique empty configuration
for them, u0 = 1 and the induction formula still works; such
is the power of careful reasoning.

(b) Note that 2002 = 2×7×11×13 A fact which should be inscribed
upon your soul. Consider the sequence un (beginning n = 1) mod-
ulo each of the primes involved in the factorization of 2002. Of course
all terms un are even so there is no problem there. You discover that
the sequence is

0, 2, 4, 5, 4, 4, 2, 5, 0, 3, . . . mod 7

and since 2× 5 = 3 mod 7 we can write this as

0, 2, 4, 5, 4, 4, 2, 5, 5× (0, 2, 4, 5, 4, 4, 2, 5, . . .)

which is an ostentatious way of showing that un ≡ 0 mod 7 if and
only if n ∼= 1 mod 8, so 7 divides u1001. Now for 11. The series is

0, 2, 4, 1, 10, 0, 9, 7, 10, 1, 0, 2, . . .

and this time we haven’t the cheek to repeat the trick since the series
repeats so quickly. Now un ≡ 0 mod 11 if and only if n ≡ 1 mod 5
so 11 divides u1001. Next work modulo 13. The series is

0, 2, 4, 12, 6, 10, 6, 6, 11, 8, 12, 1, 0, 2 . . .

and the series repeats. Thus un ≡ 0 mod 13 if and only if n ≡ 1 mod
12. But 12 is not a divisor of 1000, so u1001 is not divisible by 13 and
therefore not divisible by 2002.
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