February 2002 Exam 2 Solutions

A four hour examination. Iranian Olympiad 2001.

1. Let $n=2^{m}+1$ and suppose that f_{1}, \ldots, f_{n} are increasing functions defined on $[0,1]$ with values in $[0,1]$ which satisfy:

$$
\left|f_{i}(x)-f_{i}(y)\right| \leq|x-y| \forall x, y \in[0,1], 1 \leq i \leq n
$$

and $f_{i}(0)=0$ for $1 \leq i \leq n$. Prove that there exist $i \neq j$ such that for all $x \in[0,1]$ we have $\left|f_{i}(x)-f_{j}(x)\right| \leq 1 / m$.
Solution We call a function $\phi:[0, \infty) \rightarrow[0, \infty)]$ simple if for any integer $n \geq 1$ we have $\phi(n)-\phi(n-1) \in\{0,1\}$ and for any $n \geq 0$, the retriction of ϕ to $[n, n+1]$ is a linear function.
LEMMA Suppose that $g:[0, \infty) \rightarrow \mathbb{R}$ is an increasing function such that $|g(0)| \leq 1 / 2$ and for every $x, y, \geq 0$ we have $|g(x)-g(y)| \leq|x-y|$, then there exists a simple function ϕ such that for every $x \geq 0$ we have $|\phi(x)-g(x)| \leq 1 / 2$.
PROOF We will show that either Case 1 For every $x \in[0,1]$ we have $\mid g(x) \leq 1 / 2$ or Case 2 for every $x \in[0,1]$ we have $|g(x)-x| \leq 1 / 2$.
If we are not in Case 1, then there exists $x_{0} \in[0,1]$ such that $\left|g\left(x_{r} 0\right)\right|>$ $1 / 2$. Since g is an increasing function. $g\left(x_{0}\right)>1 / 2$. If Case 2 failed to hold, there would be $x_{1} \in[0,1]$ such that $\left|g\left(x_{1}\right)-x_{1}\right|>1 / 2$. We know that $g\left(x_{1}\right)-g(0) \leq x_{1}$ so $g\left(x_{1}\right)-x_{1} \leq 1 / 2$ which implies that $x_{1}-g\left(x_{1}\right)>1 / 2$. These two inequalties yield that

$$
g\left(x_{0}\right)+x_{1}-g\left(x_{1}\right)>1
$$

or

$$
g\left(x_{0}\right)-g\left(x_{1}\right)>1-x_{1} \geq 0 .
$$

Since g is an increasing function, $x_{0} \geq x_{1}$ and it follows from $g\left(x_{0}\right)-$ $g\left(x_{1}\right) \leq x_{0}-x_{1}$ that $x_{0}>1$ which is absurd and the Lemma is proved.
Now from this lemma it follows that there is a simple function ϕ_{0} such that $\left|g(x)-\phi_{0}(x)\right| \leq 1 / 2$. It is easy to see that ϕ_{0} can be extended to the whole positive half-line. Now define

$$
g_{i}(x)=\left\{\begin{aligned}
m f_{i}(x / m) & 0 \leq x \leq m \\
m f_{i}(1) & x \geq m
\end{aligned}\right.
$$

If we apply the Lemma to the functions g_{i}, then we see that there exists a simple function ϕ_{i} such that $g_{i}(x)-\phi_{i}(x) \leq 1 / 2$. However, there are precisely 2^{m} simple functions when restricted to the integral intervals $[0, m]$ so there exist $i \neq j$ such that $\phi_{i}(x)=\phi_{j}(x)$ for all $x \in[0, m]$ which shows that $f_{i}(x)-f_{j}(x) \mid \leq 1 / m$ for all $x \in[0,1]$.
2. In $\triangle A B C$ let I and I_{a} denote the incentre and the excentre corresponding to the side $B C$. Suppose that $I I_{a}$ meets $B C$ and the circumcircle of $\triangle A B C$ at A^{\prime} and M respectively. Let N be the midpoint ${ }^{1}$ of the arc $M B A$. Let S, T be the respective intersection points of $N I, N I_{a}$ with the circumcircle of $\triangle A B C$. Prove that S, T, A^{\prime} are colinear.
Solution We first prove a Lemma.
LEMMA. Suppose that the circles Γ_{1}, Γ_{2} are tangent at T. Let I be a point of Γ_{1} suppose that the tangent at I meets Γ_{2} at A and M. If TI meets Γ_{2} at K, then K is the midpoint of arc $A K M$.
PROOF Let Δ be a line parallel to AM passing through I. Since there is a homothety centred at T which maps Γ_{1} to Γ_{2} it follows that Δ is tangent to Γ_{1} at K. So K is indeed the midpoint of arc $A K M$ and the lemma is proved.

Now let Γ denote the circumcircle of triangle $A B C$ and C_{1} be a circle which is tangent to $A I$ and Γ. By the lemma, T is the tangency point of C_{1} and Γ. Let C_{2} be a circle which is tangent to Γ and passes through I_{a}. Apply the lemma to deduce that C_{1}, C_{2} intersect at S. What! S? Yes, it was in the question but has been quiet lately. Now invert centred at N sending I to I_{a}. This inversion swaps C_{1}, C_{2} and we deduce that S, T^{\prime}, A are colinear.
3. We define an n-variable formula to mean a function of n variables x_{1}, \ldots, x_{n} which can be expressed as a composition of the functions $\max \{a, b, c, \ldots\}$ and $\min \{a, b, c, \ldots\}$. (For example, $\max \left\{x_{2}, x_{3}, \min \left\{x_{1}, x_{2}, \max \left\{x_{4}, x_{5}\right\}\right\}\right\}$). Suppose that $P\left(x_{1}, \ldots, x_{n}\right)$ and $Q\left(x_{1}, \ldots, x_{n}\right)$ are two n-variable formulas, and assume that if $x_{i} \in\{0,1\}$ for every i, then

$$
P\left(x_{1}, \ldots, x_{n}\right)=Q\left(x_{1}, \ldots, x_{n}\right)
$$

Prove that $P \equiv Q$ (i.e. P and Q agree at all real arguments $x_{1}, x_{2}, \ldots, x_{n}$). Solution Suppose (for contradiction) that the result is not true. Thus there are real numbers $x_{1}<\cdots<x_{n}$ such that $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)<$ $Q\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. By perturbing and relabelling we may assume that $x_{1}<$ $x_{2}<\cdots<x_{n}$ since min and max are continuous functions. Thus there exist $p \neq q$ such that $x_{p}=P\left(x_{1}, \ldots, x_{n}\right)<Q\left(x_{1}, \ldots, x_{n}\right)=x_{q}$. Now if we replace x_{1}, \ldots, x_{p} by 0 and x_{p+1}, \ldots, x_{n} by 1 , and induction shows that $P\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)=0$ and $Q\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)=1$ which contradicts our assumption.

[^0]
[^0]: ${ }^{1}$ The original says mindpoint, but I feel uneasy about this.

