February 2002 Exam 2 Solutions

A four hour examination. Iranian Olympiad 2001.

1. Let $n = 2^m + 1$ and suppose that f_1, \ldots, f_n are increasing functions defined on [0, 1] with values in [0, 1] which satisfy:

$$|f_i(x) - f_i(y)| \le |x - y| \ \forall x, y \in [0, 1], \ 1 \le i \le n$$

and $f_i(0) = 0$ for $1 \le i \le n$. Prove that there exist $i \ne j$ such that for all $x \in [0,1]$ we have $|f_i(x) - f_j(x)| \le 1/m$.

Solution We call a function $\phi : [0, \infty) \to [0, \infty)$] simple if for any integer $n \ge 1$ we have $\phi(n) - \phi(n-1) \in \{0,1\}$ and for any $n \ge 0$, the retriction of ϕ to [n, n+1] is a linear function.

LEMMA Suppose that $g: [0, \infty) \to \mathbb{R}$ is an increasing function such that $|g(0)| \leq 1/2$ and for every $x, y, \geq 0$ we have $|g(x) - g(y)| \leq |x - y|$, then there exists a simple function ϕ such that for every $x \geq 0$ we have $|\phi(x) - g(x)| \leq 1/2$.

PROOF We will show that either Case 1 For every $x \in [0,1]$ we have $|g(x) \leq 1/2$ or Case 2 for every $x \in [0,1]$ we have $|g(x) - x| \leq 1/2$.

If we are not in Case 1, then there exists $x_0 \in [0,1]$ such that $|g(x_r0)| > 1/2$. Since g is an increasing function. $g(x_0) > 1/2$. If Case 2 failed to hold, there would be $x_1 \in [0,1]$ such that $|g(x_1) - x_1| > 1/2$. We know that $g(x_1) - g(0) \le x_1$ so $g(x_1) - x_1 \le 1/2$ which implies that $x_1 - g(x_1) > 1/2$. These two inequalties yield that

$$g(x_0) + x_1 - g(x_1) > 1$$

or

$$g(x_0) - g(x_1) > 1 - x_1 \ge 0.$$

Since g is an increasing function, $x_0 \ge x_1$ and it follows from $g(x_0) - g(x_1) \le x_0 - x_1$ that $x_0 > 1$ which is absurd and the Lemma is proved.

Now from this lemma it follows that there is a simple function ϕ_0 such that $|g(x) - \phi_0(x)| \leq 1/2$. It is easy to see that ϕ_0 can be extended to the whole positive half-line. Now define

$$g_i(x) = \begin{cases} mf_i(x/m) & 0 \le x \le m \\ mf_i(1) & x \ge m. \end{cases}$$

If we apply the Lemma to the functions g_i , then we see that there exists a simple function ϕ_i such that $g_i(x) - \phi_i(x) \leq 1/2$. However, there are precisely 2^m simple functions when restricted to the integral intervals [0,m]so there exist $i \neq j$ such that $\phi_i(x) = \phi_j(x)$ for all $x \in [0,m]$ which shows that $f_i(x) - f_j(x)| \leq 1/m$ for all $x \in [0,1]$.

2. In $\triangle ABC$ let I and I_a denote the incentre and the excentre corresponding to the side BC. Suppose that II_a meets BC and the circumcircle of $\triangle ABC$ at A' and M respectively. Let N be the midpoint¹ of the arc MBA. Let S, T be the respective intersection points of NI, NI_a with the circumcircle of $\triangle ABC$. Prove that S, T, A' are colinear.

Solution We first prove a Lemma.

LEMMA. Suppose that the circles Γ_1, Γ_2 are tangent at T. Let I be a point of Γ_1 suppose that the tangent at I meets Γ_2 at A and M. If TI meets Γ_2 at K, then K is the midpoint of arc AKM.

PROOF Let Δ be a line parallel to AM passing through I. Since there is a homothety centred at T which maps Γ_1 to Γ_2 it follows that Δ is tangent to Γ_1 at K. So K is indeed the midpoint of arc AKM and the lemma is proved.

Now let Γ denote the circumcircle of triangle ABC and C_1 be a circle which is tangent to AI and Γ . By the lemma, T is the tangency point of C_1 and Γ . Let C_2 be a circle which is tangent to Γ and passes through I_a . Apply the lemma to deduce that C_1, C_2 intersect at S. What! S? Yes, it was in the question but has been quiet lately. Now invert centred at N sending I to I_a . This inversion swaps C_1, C_2 and we deduce that S, T', Aare colinear.

3. We define an *n*-variable formula to mean a function of *n* variables x_1, \ldots, x_n which can be expressed as a composition of the functions $\max\{a, b, c, \ldots\}$ and $\min\{a, b, c, \ldots\}$. (For example, $\max\{x_2, x_3, \min\{x_1, x_2, \max\{x_4, x_5\}\}\}$). Suppose that $P(x_1, \ldots, x_n)$ and $Q(x_1, \ldots, x_n)$ are two *n*-variable formulas, and assume that if $x_i \in \{0, 1\}$ for every *i*, then

$$P(x_1,\ldots,x_n) = Q(x_1,\ldots,x_n).$$

Prove that $P \equiv Q$ (i.e. P and Q agree at all real arguments x_1, x_2, \ldots, x_n). **Solution** Suppose (for contradiction) that the result is not true. Thus there are real numbers $x_1 < \cdots < x_n$ such that $P(x_1, x_2, \ldots, x_n) < Q(x_1, x_2, \ldots, x_n)$. By perturbing and relabelling we may assume that $x_1 < x_2 < \cdots < x_n$ since min and max are continuous functions. Thus there exist $p \neq q$ such that $x_p = P(x_1, \ldots, x_n) < Q(x_1, \ldots, x_n) = x_q$. Now if we replace x_1, \ldots, x_p by 0 and x_{p+1}, \ldots, x_n by 1, and induction shows that $P(x'_1, \ldots, x'_n) = 0$ and $Q(x'_1, \ldots, x'_n) = 1$ which contradicts our assumption.

¹The original says mindpoint, but I feel uneasy about this.