
February 2002 Exam 2 Solutions

A four hour examination. Iranian Olympiad 2001.

1. Let n = 2m+1 and suppose that f1, . . . , fn are increasing functions defined
on [0, 1] with values in [0, 1] which satisfy:

|fi(x)− fi(y)| ≤ |x− y| ∀x, y ∈ [0, 1], 1 ≤ i ≤ n

and fi(0) = 0 for 1 ≤ i ≤ n. Prove that there exist i 6= j such that for all
x ∈ [0, 1] we have |fi(x)− fj(x)| ≤ 1/m.
Solution We call a function φ : [0,∞)→ [0,∞)] simple if for any integer
n ≥ 1 we have φ(n)− φ(n− 1) ∈ {0, 1} and for any n ≥ 0, the retriction
of φ to [n, n+ 1] is a linear function.

LEMMA Suppose that g : [0,∞) → R is an increasing function such that
|g(0)| ≤ 1/2 and for every x, y,≥ 0 we have |g(x) − g(y)| ≤ |x − y|,
then there exists a simple function φ such that for every x ≥ 0 we have
|φ(x)− g(x)| ≤ 1/2.

PROOF We will show that either Case 1 For every x ∈ [0, 1] we have
|g(x) ≤ 1/2 or Case 2 for every x ∈ [0, 1] we have |g(x)− x| ≤ 1/2.

If we are not in Case 1, then there exists x0 ∈ [0, 1] such that |g(xr0)| >
1/2. Since g is an increasing function. g(x0) > 1/2. If Case 2 failed to
hold, there would be x1 ∈ [0, 1] such that |g(x1)−x1| > 1/2. We know that
g(x1)−g(0) ≤ x1 so g(x1)−x1 ≤ 1/2 which implies that x1−g(x1) > 1/2.
These two inequalties yield that

g(x0) + x1 − g(x1) > 1

or
g(x0)− g(x1) > 1− x1 ≥ 0.

Since g is an increasing function, x0 ≥ x1 and it follows from g(x0) −
g(x1) ≤ x0 − x1 that x0 > 1 which is absurd and the Lemma is proved.

Now from this lemma it follows that there is a simple function φ0 such
that |g(x)− φ0(x)| ≤ 1/2. It is easy to see that φ0 can be extended to the
whole positive half-line. Now define

gi(x) =
{
mfi(x/m) 0 ≤ x ≤ m

mfi(1) x ≥ m.
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If we apply the Lemma to the functions gi, then we see that there exists
a simple function φi such that gi(x) − φi(x) ≤ 1/2. However, there are
precisely 2m simple functions when restricted to the integral intervals [0,m]
so there exist i 6= j such that φi(x) = φj(x) for all x ∈ [0,m] which shows
that fi(x)− fj(x)| ≤ 1/m for all x ∈ [0, 1].

2. In ∆ABC let I and Ia denote the incentre and the excentre corresponding
to the side BC. Suppose that IIa meets BC and the circumcircle of
∆ABC at A′ and M respectively. Let N be the midpoint1 of the arc
MBA. Let S, T be the respective intersection points of NI,NIa with the
circumcircle of ∆ABC. Prove that S, T,A′ are colinear.
Solution We first prove a Lemma.
LEMMA. Suppose that the circles Γ1,Γ2 are tangent at T . Let I be a point
of Γ1 suppose that the tangent at I meets Γ2 at A and M . If TI meets Γ2

at K, then K is the midpoint of arc AKM .
PROOF Let ∆ be a line parallel to AM passing through I. Since there is
a homothety centred at T which maps Γ1 to Γ2 it follows that ∆ is tangent
to Γ1 at K. So K is indeed the midpoint of arc AKM and the lemma is
proved.

Now let Γ denote the circumcircle of triangle ABC and C1 be a circle
which is tangent to AI and Γ. By the lemma, T is the tangency point of
C1 and Γ. Let C2 be a circle which is tangent to Γ and passes through
Ia. Apply the lemma to deduce that C1, C2 intersect at S. What! S? Yes,
it was in the question but has been quiet lately. Now invert centred at N
sending I to Ia. This inversion swaps C1, C2 and we deduce that S, T ′, A
are colinear.

3. We define an n-variable formula to mean a function of n variables x1, . . . , xn
which can be expressed as a composition of the functions max{a, b, c, . . .}
and min{a, b, c, . . .}. (For example, max{x2, x3,min{x1, x2,max{x4, x5}}}).
Suppose that P (x1, . . . , xn) and Q(x1, . . . , xn) are two n-variable formulas,
and assume that if xi ∈ {0, 1} for every i, then

P (x1, . . . , xn) = Q(x1, . . . , xn).

Prove that P ≡ Q (i.e. P and Q agree at all real arguments x1, x2, . . . , xn).
Solution Suppose (for contradiction) that the result is not true. Thus
there are real numbers x1 < · · · < xn such that P (x1, x2, . . . , xn) <
Q(x1, x2, . . . , xn). By perturbing and relabelling we may assume that x1 <
x2 < · · · < xn since min and max are continuous functions. Thus there
exist p 6= q such that xp = P (x1, . . . , xn) < Q(x1, . . . , xn) = xq. Now if we
replace x1, . . . , xp by 0 and xp+1, . . . , xn by 1, and induction shows that
P (x′1, . . . , x

′
n) = 0 and Q(x′1, . . . , x

′
n) = 1 which contradicts our assump-

tion.

1The original says mindpoint, but I feel uneasy about this.
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