
February 2002 Exam 1 Solutions

A four hour examination. Iranian Olympaid 2001.

1. Consider n×n matrices. A set of matrix positions containing exactly one
position from each row and column of such a matrix is called a generalized
diagonal. Let A be an n × n matrix all entries of which are either 0 or
1. Suppose that A has exactly one generalized diagonal with the property
that all its entries are 1. Prove that by permuting rows and permuting
columns one can obtain an upper triangular matrix from A (i.e. all entries
below the leading diagonal are 0).
Solution Permuting either row or column entries allows us to assume that
the leading diagonal consists of 1’s, i.e. aii = 1 for all i where 1 ≤ i ≤ n.
Now construct a digraph (directed graph) Γ with n vertices v1, v2, . . . , vn
in Vert(Γ) and join vi to vj by a directed edge iff aij = 1. We claim that
this graph does not have any directed cycle, for if it did then

ai1i2 = ai2i3 = · · · = aimi1 = 1

and we obtain a second generalized diagonal (in addition to the leading
diagonal) by using the positions of these entries together with diagonal
positions other than (it, it) as t ranges between 1 and m. Since V has
no directed cycle there is a map ϕ : Vert(Γ) → {1, 2, . . . , n} such that if
aiaj is an edge of Γ, then ϕ(i) < ϕ(j) (draw the digraph and squash it
flat so that the vertices are in a straight line with the ordering in the line
consistent with the digraph ordering). Define π a permutation of 1, 2, . . . , n
by π(i) = ϕ(vi). Apply π to both rows and columns of the matrix.

2. Suppose that ∆ABC has circumcentre O, and that N is the centre of its
nine-point circle. Choose a point N ′ so that

∠N ′BA = ∠NBC, ∠N ′AB = ∠NAC.

Suppose that the perpendicular bisector of OA meets BC in A′. Define
B′, C ′ in a similar fashion. Prove that A′, B′, C ′ are on a line l which is
perpendicular to ON ′.
Solution My commentary multiplies the length of the model answer by a
factor of about 4. I will copy out the answer (and correct it where I can,
editorializing in an intrusive and offensive manner as usual, and no doubt
introducing further errors). Consider inversion with respect to the circle
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with centre at A and radius
√
AB ·AC/2 (well the model answer doesn’t

mention the square root; you need it for two reasons, first because what
follows is rubbish otherwise, and second because the dimension police will
have you banged to rights if you don’t have it there), and denote it by I.
Let R denote reflection in the angle bisector of ∠BAC. Let T = R ◦ I,
and they don’t say which way round the composition is meant, but happily
these operations commute so we can press on. Let M denote the midpoint
of AC and K the midpoint of AB. Thanks to a similar triangles argument
T (B) = M and you needn’t repeat the argument, we also get T (C) = K.
Of course T is an involution (that is posh for “if you do it twice, you
get the identity”) so T (M) = B and T (K) = C. Let AD be the altitude
of triangle ABC. Then T (O) = D and T (D) = O, it says here. Well,
this isn’t too hard. A certain pair of similar right-angled triangles do
the trick (showing you that the angles are right and the distances from
A are right). It follows that T sends the circumcircle of MKD to the
circumcircle of OBC (inversions and reflections send circles and lines to
circles and lines). Let P be the circumcentre of ∆OBC. Note that the
nine-point circle of ∆ABC is the circumcircle of ∆MKP . Thus AN
and AP are symmetric with respect to the angle bisector of ∠A (that is
clear because the ray AN produced is mapped to the ray AP produced
and vice versa by our map T which does indeed involve reflection in the
angle bisector of ∠A). Thus N ′ (hitherto ignored, but see the question)
lies on AP . Similarly if Q,R denote the circumcentres of ∆OAC and
∆OBC then N ′ lies on BQ and CR so we learn that AP,BQ and CR are
concurrent at N ′ which is very interesting. This actually explains why N ′

is an interesting and important point. The loopy definition of N ′ given in
the question rather disguises the symmetry.

Let A′′, B′′ and C ′′ denote the midpoints of OA,OB and OC1. Since
PR,RQ and QP are tangent to the circle of radius r = OA′′ = OB′′ =
OC ′′ centred at O centred at O (it says glibly), it follows that B′′C ′′ is
the polar of P (this is jargon to say that B′′C ′′ is the chord of this circle
joining the points of contact of the tangent lines from P ). Why does it
follow? Well, OB is a chord of the circumcircle of ∆BOC centred at P ,
and the line segment PB′′ joins the centre of a circle to the midpoint of a
chord, so hits at right-angles. Now A′′ is the midpoint of OA, so the polar
of A is the line segment perpendicular to OA and through the midpoint of
OA′′ (a little exercise in similar triangles).

Let the polars of A and P meet at P ′ so that the polar of P ′ will be the
line AP . This is clearly the application of a standard theorem of which
I was hitherto shamefully unaware.2 Now we apply a homothety centred
at O with scale factor 2. The polar of P is sent to BC, and the polar
of A is sent to the perpendicular bisector of OA. Now Q′, R′ (which I
assume stand in relation to Q and R as P ′ stands to P , but the model

1Well actually the model answer defines A′′ to be the midpoint of O but that is too zen
2It is easy. Just invert in the relevant circle and the result falls out. How pretty.
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answer maintains a dignified silence) are the midpoints of OB′ and OC ′.
Now since AP,BQ,CR are concurrent, then P ′, Q′, R′ are colinear so
A′, B′, C ′ are colinear and on the line l′. We have l ‖ l′′ (remember l? –
look at the question). Since N ′ lies on the polars of P ′, Q′ and R′, so the
polar of N ′ passes through these points which shows that l′ is the polar of
N ′. Since ON ′ is perpendicular to l′, we have l ⊥ ON ′ and we are done.
I don’t really follow the final paragraph, but it is late on Sunday night
17/3/2002. Watch out for later editions when I have the time. Perhaps
one our specialist geometers would care to help?

3. Let A be the set of sequences (x1, x2, . . .) with integer entries. Let φ :
A→ Z be a function such that

(i) φ(s+ t) = φ(s) + φ(t) for all s, t ∈ A and

(ii) φ(0, 0, . . . , 1, 0, . . .) = 1 (i.e. φ assumes the value 1 at all sequences
which have one entry 1, and all other entries 0.)

(a) Prove that φ(1, 2, 4, 8, 16, . . .) = 0.

(b) Prove that φ ≡ 0 (i.e. φ is the function on A which always assumes
the value 0).

Solution

(a) Let p be a prime number and a1, a2, . . . ∈ Z. Let

n = φ(a1p, a2p
2, a3p

3, . . .).

Then for every every integer k ≥ 1 we have

n = φ(a1p1, . . . , akp
k, 0, 0, . . .) + pk+1φ(0, 0, . . . , o, ak+1, ak+2p, . . .)

using condition (i). Now conditions (i) and (ii) ensure that the first
term on the right-hand side of this equation vanishes, and so n is
divisible by pk+1 for all k so n = 0. In particular using p = 2 and
ai = 1 for every i we obtain the required result.

(b) Given and sequence (xi) choose ai, bi ∈ Z such that ai2i + bi3i =
xi, using Euclid’s algorithm. Now using the result of part (a) and
condition (i) to deduce that φ(x1, x2, . . .) = 0.
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