December Exam 2

This is a 4 hour paper.

Various questions from Ukraine

1. Does there exist a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $x, y \in \mathbb{R}$ the following equality holds:

$$
f(x y)=\max \{f(x), y\}+\min \{f(y), x\} ?
$$

Solution Put $x=y=1$ to obtain that

$$
f(1)=\max \{f(1), 1\}+\min \{f(1), 1\}=f(1)+1
$$

which is absurd.
2. Positive integers a and n are such that n divides $a^{2}+1$. Prove that there is a positive integer b such that $n\left(n^{2}+1\right)$ divides $b^{2}+1$.
Solution We have $a^{2} \equiv-1 \bmod n$ and $n^{2} \equiv-1 \bmod n^{2}+1$. Now $n, n^{2}+$ 1 are coprime (a common divisor would divide 1) so we may apply the Chinese Remainder Theorem to find an integer b such that $b \equiv a \bmod n$ and $b \equiv n \bmod n^{2}+1$ so $b^{2} \equiv a^{2} \equiv-1 \bmod n$ and $b^{2} \equiv n^{2} \equiv-1 \bmod n^{2}+$ 1. Thus $b^{2} \equiv-1$ mod $n\left(n^{2}+1\right)$ and therefore $n\left(n^{2}+1\right) \mid b^{2}+1$. Of course, if you are Tom Coker or Paul Jefferys, then you are at liberty to sidestep the Chinese Remainder Theorem and simply hurl a bolt of lightning by letting $b=a n^{2}+a+n$ which visibly has the appropriate divisibility properties!
3. An acute angled triangle $A B C$ is such that $A C$ and $B C$ are of different lengths, and is inscribed in a circle ω. Let N be the midpoint of the arc $A C$ (and B does not lie on this arc). Let M be the midpoint of the $\operatorname{arc} B C$ (and A does not lie on this arc). Let D be the point on the $\operatorname{arc} M N$ such that $D C \| N M$. Let K be an arbitrary point on the arc $A B$ (and C does not lie on this arc). Let O, O_{1} and O_{2} be the incentres of the triangles $A B C, A C K, C B K$ respectively. Suppose that L is the intersection of the line $D O$ and the circle ω such that $L \neq D$. Prove that the points K, O_{1}, O_{2}, L are concyclic.

So far no solution has ben offered.

4. Let a, b, c and α, β, γ be positive real numbers such that $\alpha+\beta+\gamma=1$. Prove the inequality

$$
\alpha a+\beta b+\gamma c+2 \sqrt{(\alpha \beta+\beta \gamma+\gamma \alpha)(a b+b c+c a)} \leq a+b+c
$$

Solution (Thanks to Tim Austin and Paul Jefferys) Replacing a by a/(a+ $b+c)$, b by $b /(a+b+c)$ and c by $c /(a+b+c)$ we see that it suffices to assume that $a+b+c=1$ and to show that

$$
\alpha a+\beta b+\gamma c+2 \sqrt{(\alpha \beta+\beta \gamma+\gamma \alpha)(a b+b c+c a)} \leq 1
$$

Now by the Cauchy-Schwarz inequality,

$$
\alpha a+\beta b+\gamma c \leq \sqrt{\alpha^{2}+\beta^{2}+\gamma^{2}} \sqrt{a^{2}+b^{2}+c^{2}}
$$

Let $p=\alpha \beta+\beta \gamma+\gamma \alpha$ and $q=a b+b c+c a$. Now $\alpha^{2}+\beta^{2}+\gamma^{2}=1-2 p$ and $a^{2}+b^{2}+c^{2}=1-2 q$. Now (\dagger) implies that

$$
\begin{gathered}
\alpha a+\beta b+\gamma c+2 \sqrt{p q} \leq \sqrt{1-2 p} \sqrt{1-2 q}+2 \sqrt{p q} \\
\leq(1-2 p+1-2 q) / 2+p+q=1
\end{gathered}
$$

using the GM-AM inequality.

