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Possible Solutions

1. Find counting arguments to prove the following identities (i.e. �nd something
you can count in two di�erent ways so that one way is the LHS and the other
is the RHS)

(a)
(
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s

)
= n

s

(
n−1
s−1

)
From a choice of n people we will pick s with one of them special. This
can be done by picking all s people (in

(
n
s

)
ways) and then picking the

special person from these (in s ways). Or by first picking the special
person (in n ways) and then picking the rest (in

(
n−1
s−1

)
ways).

(b)
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r
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r
k

)
=
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k

)(
n−k
r−k

)
This is just a generalisation of the previous one: From a choice of n people
we will pick r with k of them special.

(c)
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)
=
∑n

i=0

(
n
i

)2

Imagine picking n people from a choice of n men and n women. We can
either pick i men and n − i women (and sum) which gives the LHS. Or
we can pick i men and then pick i women who won’t be in the group
which gives the RHS. In total we are picking n people from a choice of
2n which is the middle term.

(d)
(
n
s

)
= n

n−s

(
n−1
s

)
We choose a group of s people from a choice of n and then a special
person from the unselected people. We do this by choosing the s people
(in
(
n
s

)
ways) and then the extra person (in n − s ways). Or by picking

the extra person first (in n ways) and then the group (in
(
n−1
s

)
) ways.

(e)
(
n
0

)
+
(
n
2

)
+ · · · =

(
n
1

)
+
(
n
3

)
+ · · ·

The LHS is the number of even subsets of n elements and the RHS is the
number of odd subsets of n elements. A bijection between them can be
given as follows. If an even subset contains the element 1 then remove it,
if not add it.

(f)
(
n
0

)
+
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n+1

1

)
+
(
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2

)
+ · · ·+

(
n+r
r

)
=
(
n+r+1

r

)
The RHS is the number of ways to choose r objects from n+r+1 objects.
The LHS is the number of ways to do this if we assume 1 is not in the
choice, 1 is in but 2 isn’t, 1, 2 are in but 3 isn’t, ...

2. The following game is played on the integer points (x, y) in the plane with
x,y ≥ 0. Initially, pieces are placed at (0, 0), (1, 0) and (0, 1). The following
move is allowed: if the square above and to the right of a piece are empty they
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can be �lled with pieces and the original piece removed. Is it possible for the
initially occupied squares to all be simultaneously unoccupied?

To the point (a, b) assign the weight 2−a−b. Initially the weighted sum of the
occupied squares is 2. It is easy to see that the allowed move does not change
the sum. If the initial squares are unoccupied then, in order to get the sum to
be 2 we need to occupy all the other squares. This is clearly impossible in a
finite number of moves.

3. Show that there are either in�nitely many composite numbers in the sequence
22n + 1 or in�nitely many composite numbers in 62n + 1 (or both).

Suppose that there are infinitely many primes in the 22n + 1 sequence. We
need to show that there are lots of composites in the other sequence. Let
p = 22n + 1 be a prime. The order of an element m modulo p is the smallest
power to which m can be raised to get 1 modulo p. In other words

mord(m) ≡ 1 mod p

By Fermat’s little theorem we can see that the order of an element must divide
p − 1. In our case this means that the order of 6 modulo p must be a power
of 2, say 2m. Thus

62m ≡ 1 mod p but 62m−1 6≡ 1 mod p

Thus, 62m−1 ≡ −1 mod p and so 62m−1
+ 1 is divisible by p (and clearly not

equal to p) and hence is not a prime. For larger and larger n this gives an
infinite number of composites in the 62m + 1 sequence.

Quadratic Reciprocity. There is a slightly easier way to do this question
which uses a very beautiful theorem of number theory. As it is both very
pretty and very useful I’ll explain the basics here.

The Legendre symbol
(
a
p

)
for p a prime and (a, p) = 1 is defined to be

1 if x2 ≡ a mod p has a solution and −1 if it doesn’t. In other words, the
Legendre symbol answers the questions “does a have a square root?”. There
are two very basic properties the symbol has:(

ab

p

)
=

(
a

p

)(
b

p

)
and

(
a+ p

p

)
=

(
a

p

)
Less obvious are the following two properties(

a

p

)
≡ a(p−1)/2 mod p (for odd p),

(
2

p

)
=

{
1 if p ≡ ±1 mod 8

−1 if p ≡ ±3 mod 8

And finally, the law of quadratic reciprocity (for 203 different proofs go to
http://www.rzuser.uni-heidelberg.de/~hb3/fchrono.html)(

p

q

)(
q

p

)
=

{
1 if p ≡ 1 mod 4 or q ≡ 1 mod 4

−1 if p ≡ q ≡ 3 mod 4
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This law is remarkably useful because it allows you to see if something has a
square root quite easily (repeatedly use quadratic reciprocity and the multi-
plicative property). For example, can you use it to show that if p = 22n + 1
then 6 does not have a square root (for n ≥ 1)? If you can then we know

6(p−1)/2 ≡ −1 mod p

And so we can finish as in the first method. Notice that this way we know the
exact value of m whereas we didn’t with the first method.

4. Find a simple formula for the sum
∑n

k=1

(
n
k

)
k2.

This represents picking a committee from n people with 2 special posts (which
can be filled by the same person). So, we should try to count this in a different
way (which doesn’t involve summing). If the two posts are filled by the same
person we could choose this person (in n ways) and then pick the rest of the
committee (in 2n−1 ways — a person is either in or out). If the two posts are
filled by different people we could choose them (in n(n − 1) ways) and then
pick the rest of the committee (in 2n−2 ways). Adding these gives the answer
n(n+ 1)2n−2.

5. Let f(n) be a function de�ned on the set of positive integers which takes values
in the positive integers. Prove that if

f(n+ 1) > f(f(n))

for each positive integer n then f(n) = n.

f has a unique minimum at n = 1 because, if n > 1 then we have f(n) >
f(f(n−1)). Once we know this, the same equation then shows that the second
smallest value is f(2). By induction we get

f(1) < f(2) < f(3) < · · ·

As f takes values in the positive integers we already have f(n) ≥ n. Suppose
we have a k such that f(k) ≥ k+1. Then f(f(k)) ≥ f(k+1) which contradicts
the assumed inequality for f . So f(n) = n for all n.

6. Show that n7 − 77 is never a Fibonacci number.

We want to look at this modulo p for some well chosen p. Because of the
exponent being 7 a good idea would be to have φ(p) divisible by 7, so p = 29
is perhaps a good choice. We also want the Fibonacci sequence to not take on
too many values modulo p. This also happens for p = 29:

0, 1, 1, 2, 3, 5, 8, 13,−8, 5,−3, 2,−1, 1, 0, . . .

Modulo 29 the seventh powers are just 0,±1,±12. So the values that n7 − 77
takes are −7,−2, 9, 10, 11. None of these are in the Fibonacci sequence so we
are done.
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