
MA10209 Algebra 1A

Sheet 6 Solutions : GCS

5-xi-2018

Hand in work to your tutor at the time specified by your tutor. The latest possible
hand in time will be 17:15, Monday Nov 12th.

1. How many integers in the range 0 ≤ i ≤ 2014 are coprime to 2015?
Solution Note that 2015 = 5∗403 = 5∗13∗31 and these factors are (co)prime.
ϕ(2015) = ϕ(5)ϕ(13)ϕ(31) = 4 · 12 · 30 = 1440 since ϕ is multiplicative with
respect to coprime arguments.

2. Suppose that m is an odd natural number. Prove that there is a natural
number n such that m divides 2n − 1.
Solution Let n = ϕ(m) and the Euler-Fermat theorem applies.

3. Find all integers x such that x ≡ 3 mod 7 and x ≡ 4 mod 9.
Solution You can spot a simultaneous solution, but we will work one out by
unwrapping Euclid’s algorithm. 9 = 1 · 7 + 2; 7 = 3 · 2 + 1 and 2 = 2 · 1 + 0.
Therefore 1 = 7− 3 · 2 = 7− 3 · (9− 7) = 4 · 7− 3 · 9. Therefore 28 = 1 + 3 · 9 =
4 · 7 so 28 ≡ 1 mod 9 and 28 ≡ 0 mod 7. Also −27 = −3 · 9 ≡ 0 mod 9
and −27 ≡ 1 mod 7. Therefore 3(−27) + 4(28) = 31 satisfies 31 ≡ 3 mod 7
and 31 ≡ 4 mod 9. The set of all integers satisfying the two congruences
simultaneously is {31 + 63k | k ∈ Z}.

4. Find all integers y such that 9 divides 2y + 1 and 11 divides 3y + 6.
Solution The condition 2y ≡ −1 mod 9 is equivalent to y ≡ 4 mod 9 (the
second congruence follows from the first by multiplying through by 5; the first
follows from the second by multiplying through by 2). Also the condition
3y ≡ −6 mod 11 is equivalent to y ≡ 9 mod 11 (for similar reasons; we can
deduce each congruence from the other). We could simply spot a solution (say
31), but here is a way to calculate one: 11 = 1 ·9+2; 9 = 4 ·2+1; 2 = 2 ·1+0.
Therefore 1 = 9 − 4 · 2 = 9 − 4 · (11 − 9) = 5 · 9 − 4 · 11. Now 45 ≡ 1 mod 11
and 45 ≡ 0 mod 9. Also −44 ≡ 0 mod 11 and −44 ≡ 1 mod 9. Therefore
4 · (−44) + 9 · 45 = 229 solves all congruences and the original divisibility
conditions. The set of all solutions is {229 + 99k|k ∈ Z} = {31 + 99k|k ∈ Z}.

5. Find the smallest positive integer z such that z ≡ 10 mod 11, z ≡ 12 mod 13,
z ≡ 17 mod 18. Hint: this is much easier than it looks.



Solution The integer −1 is a similtaneous solution to all three congruences.
By the Chinese Remainder Theorem, the set of all possible solutions is {−1 +
2574k | k ∈ Z} so the smallest positive solution is 2573.

6. Suppose that p > 3 is a prime number. Prove that 2p−2 + 3p−2 + 6p−2− 1 is a
multiple of p.
Solution Let n = 2p−2 + 3p−2 + 6p−2 so, using Fermat’s Little Theorem,
6n ≡ 3 + 2 + 1 ≡ 6 mod p. Note that we have chosen p > 3 so FLT applies.
Now 6 and p are coprime so 6 has a multiplicative inverse in Zp, so there
is an integer x (in fact there are lots) such that 6x ≡ 1 mod p. Multiply
by x so 6xn ≡ 6x mod p and therefore n ≡ 1 mod p. Note that 2p−2 is
the multiplicative inverse of 2 modulo p, by Fermat’s Little Theorem. Similar
observations apply to 3p−2 and 6p−2, so if we are brave enough to allow fraction
notation, we are being asked to show that 1

2 + 1
3 + 1

6 ≡ 1 mod p, which is hardly
a surprise.

7. Show that there are 1000 consecutive positive integers, each of which is divis-
ible by at least 1000 different prime numbers.
Solution There are infinitely many prime numbers (thank you Euclid). There-
fore we can form 1000 pairwise disjoint sets Ai (1 ≤ i ≤ 1000), each of which
consists of 1000 different prime numbers. Let ni be the product of the elements
of Ai, so the 1000 natural numbers ni are pairwise coprime. Now consider 1000
congruences x ≡ −i mod ni for i = 1, . . . , 1000. The conditions for CRT apply
so there is an integer m (a value for x) which simultaneously satisfies all these
congruences. From CRT we can shoose m to be positive. Now for each i, ni
divides m+ i, which therefore has at least 1000 different prime divisors. The
numbers m+ i for i = 1, 2, . . . , 1000 are the required consecutive positive inte-
gers. There are a host of related results one can prove in similar fashion. For
example, that there are a million consecutive positive integers, each of which
has a square divisor larger than 1.

8. Suppose that m,n ∈ N. Consider the map πmn : Zmn −→ Zm × Zn defined
by [x]mn 7→ ([x]m, [x]n) for each x ∈ Z, where [x]k denotes the equivalence
class of x under the relation ∼k. Determine |Im πmn|. Note that if m and n
are coprime, then the Chinese Remainder Theorem applies and the map π is
surjective. In that case, the size of the image is mn. This question involves
an investigation of how the CRT fails when m and n are not coprime.
Solution Experiments with small m and n should indicate that πmn is a
“gcd (m,n) to 1” function. That is, to say, given any α ∈ Zmn, the set
{β | β ∈ Zmn, πmn(α) = πmn(β)} always has exactly g = gcd(m,n) elements.
If this is true, |Im πmn| = mn/g = lcm(m,n).

So, to establish this attractive result, for each β ∈ Zmn we seek to count the
set Sβ = {α | α ∈ Zmn, πmn(α) = πmn(β)}. Note that it is easy to count S[0],
because this is the number of common multiples t of m and n in the range



0 ≤ t < mn. This is the number multiples of l = lcm(m,n) in this range. Now
lg = mn, so the number multiples of l in the range is g, as required.

Now to count Sβ where β is arbitrary. When γ ∈ Zmn we have γ ∈ Sβ iff
γ − β ∈ S[0], so each Sβ has the same size as S[0] and the proof is complete.

Note that if m and n are not coprime, this shows that for some integers a and
b, there will not be an integer x such that x ≡ a mod m and x ≡ b mod n.
However, if there is a simultaneous solution, there is an integer c such that
the solution set is the set of integers x such that x ≡ c mod lcm(m,n).

9. Let d be a positive integer. A d-arithmetic set is defined to be a set of the form
{a+md | m = 0, 1, 2, . . .} for some positive integer a. Suppose that N > 1 is a
positive integer and that we have a p-arithmetic set Sp for each prime number
p ≤ N . Show that there are 2N + 1 consecutive positive integers, all except
two of which are in the union S of our sets Sp. Hint: CRT & Eratosthenes

Solution If each set has a = 0, then we are looking at the sieve of Eratos-
thenes: every integer in the range 0 to N (inclusive) except 1 is divisible by a
prime number which is at most N . If you were to run the sieve of Eratosthenes
in both directions, you would obtain 2N + 1 consecutive integers, all except
−1 and 1 having a prime divisor which is at most N .

Now we have to mimic this situation in the set up we have been given. Let ap
denote the smallest element of Sp. In fact any element would do. Now by the
Chinese Remainder Theorem we can find an integer a such that a ≡ ap mod p
for each p. Moreover we can choose such a to be as large as we wish. We
choose a to be so large that it bigger than ap+N for each of our prime numbers
p ≤ N . Now viewing a as the analogue of 0 in the sieve of Eratosthenes (run
both positively and negatively), we are done.

10. (Challenge!) A mathematical tree (i.e. a vertical unit interval) grows at each
point of an infinite plane with integral co-ordinates except for the origin (0, 0)
where an observer, of height 1, stands. Many trees are visible, including those
at (1, 0), (7, 8) and (45,−7). Other trees are invisible, because the view of
them from the origin is obstructed by other trees. For example, the view of
the tree at (−14, 91) is obstructed by the tree at (−2, 13).

Show that it is possible for a Tunguska Event of diameter 1010 to happen, yet
be unknown to the observer. In other words, show that there is a circle in the
plane of diameter 1010 which has only invisible trees in its interior.

Solution We use the result of Problem 7 of Sheet 4. For any positive integer
n, there are n pairwise coprime natural numbers ai, and n pairwise coprime
natural numbers bi, with no ai coprime with any bj . We solve the simultaneous
congruences x ≡ −i mod ai using the CRT. Note that we may choose the
integer x to be positive. Similarly we find a positive integer y such that
y ≡ −i mod bi for every i in the range 1 to n.



For 1 ≤ i, j ≤ n, the trees planted at (x + i, y + j) are all invisible from the
origin, because x + i and y + j are both divisible by gcd(ai, bj). Moreover,
each of these invisible trees is actually obstructed by a tree outside the square
region of trees that we have chosen, since if the view of a tree is obstructed by
other trees in the square, the view of the obstructing tree nearest the origin
must be obstructed by a tree outside the square, and that will obstruct all the
trees on that line of sight.

Choosing n sufficiently large, the footprint of a Tunguska air burst of arbitrary
diameter can sit inside a square of invisible trees, the flattening of which will
not be perceived by an observer at the origin.


