MA10209 Algebra 1A

Sheet 3 Problems: GCS

15-x-18

Hand in work to your tutor at the time specified by your tutor. The latest possible hand in time will be 17:15, Monday Oct 22 because after that I will put up model solutions at the website. I do not use Moodle. For materials associated with this course, please see http://people.bath.ac.uk/masgcs/, in particular the diary for MA10209 at the top of this page.

- 1. (a) Prove that a subset of a countable set is countable.
 - (b) Suppose that A is a countable set. Let $B = \{X \mid X \subseteq A, |X| < \infty\}$ so $B \subseteq P(A)$. Determine whether or not B is countable.
- 2. Recall that if X is a set, then P(X) is the power set of X, so the elements of P(X) are the subsets of X.
 - (a) Determine the size of the set $P(P(P(P(\emptyset))))$.
 - (b) Determine the number of maps from $P(P(\emptyset))$ to $P(P(P(\emptyset)))$.
 - (c) When X is a set, we let S_X denote the set of bijections from X to X. Suppose that $|X| = n \in \mathbb{N}$. Give a formula for $|S_{S_X}|$. In this spirit, what is the next term of the sequence $1, 2, 720, \ldots$?
- 3. Let $I_n = \{1, 2, 3, \dots, n\}$.
 - (a) For n = 1, 2, 3, 4 and 5, determine the number of partitions of $I_n = \{1, 2, 3, \ldots, n\}$.
 - (b) How many ways are there to partition I_n into two subsets?
- 4. Discuss whether the following relations are reflexive, symmetric or transitive.
 - (a) The relation | (pronounced 'divides') on the set \mathbb{N} . (Here $m \mid n$ if, and only if, there is $l \in \mathbb{N}$ such that lm = n.)
 - (b) The (usual) relation \leq on \mathbb{R} .
 - (c) The (usual) relation = on \mathbb{Z} .
 - (d) Let S_X be the set of bijections from the set X to the set X. The relation \sim is defined on S_X as follows: when $f, g \in S_X$ we write $f \sim g$ if, and only if, $f \circ g = g \circ f$.

- 5. Fix a Euclidean plane. Consider the set L of all lines in this plane (a line is of infinite extent in both directions). Which of the following relations on L is an equivalence relation? In the case of equivalence relations, select a natural (i.e. sensible) transversal for the associated partition of L into equivalence classes.
 - (a) || (is parallel or equal to).
 - (b) \perp (is perpendicular to).
- 6. Define a relation \sim on \mathbb{C} as follows: for $\alpha, \beta \in \mathbb{C}$, write $\alpha \sim \beta$ if, and only if, there is a real number θ such that $\alpha = \beta e^{i\theta}$.
 - (a) Show that \sim is an equivalence relation on \mathbb{C} .
 - (b) Describe the equivalence classes of this equivalence relation geometrically, in terms of the Argand diagram.
 - (c) Give an elegant transversal for this partition of \mathbb{C} .
- 7. Let $\mathbb{R}^{\circ} = \mathbb{R} \setminus \{0\}$. Define a relation \sim on \mathbb{R}° by $r \sim s$ if, and only if, $r/s \in \mathbb{Q}$. Is \sim an equivalence relation on \mathbb{R}° ?
- 8. Define a relation \sim on $P(\mathbb{N})$ by writing $A \sim B$ if, and only if, there are finite subsets U, V of \mathbb{N} such that $A \cup U = B \cup V$. Prove that \sim is an equivalence relation on $P(\mathbb{N})$.
- 9. Suppose that n is a positive integer. Define a relation \sim_n on \mathbb{Z} by $x \sim_n y$ if, and only if, n divides x y.
 - (a) Prove that \sim_n is an equivalence relation on \mathbb{Z} .
 - (b) Describe the equivalence classes of \sim_n .
 - (c) We write the set of equivalence classes as \mathbb{Z}/\sim_n . Determine $|\mathbb{Z}/\sim_n|$.
- 10. (Challenge!) Is there a collection of uncountably many subsets of \mathbb{N} with the property that the intersection of any two different subsets in the collection is finite?