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1 Group Actions

Let G be a group and Ω be a non-empty set. An action of G on Ω is a map
Ω × G → Ω usually denoted by an infix symbol ·, or simply by juxtaposition if
this is unambiguous, which satisfies two axioms.

(i) ω · 1G = ω ∀ω ∈ Ω.

(ii) ω · (gh) = (ω · g) · h ∀ω ∈ Ω, ∀g, h ∈ G.

Where there is a group operation under discussion, we reserve juxtaposition
for that, and use the dot to denote the group action.

Example 1.1

(a) G = Ω, and we define

ω · g = ωg ∀ω ∈ Ω, ∀g ∈ G.

(b) G = Ω, and we define

ω · g = g−1ω ∀ω ∈ Ω, ∀g ∈ G.

(c) G = Ω, and we define

ω · g = g−1ωg ∀ω ∈ Ω, ∀g ∈ G.

(d) H ≤ G, Ω = H\G = {Hx | x ∈ G}. We define

Hy · g = H(yg) ∀x, y ∈ G.

(e) G = Sym(Ω) where Ω is a non-empty set. Here G consists of all the bijections
from Ω to Ω, and for the purposes of this course, if f, g ∈ Sym(Ω), then fg ∈
Sym(Ω) is defined by fg : ω 7→ ((ω)f)g. Thus maps are written on the right.
Now G acts on Ω via

ω · f = (ω)f ∀f ∈ Sym(Ω), ∀ω ∈ Ω.

(f) Let k be a field, and suppose that n ∈ N. Let G = GL(n, k) denote the set
of invertible n by n matrices with entries in k. This G is a group under matrix
multiplication. Let V = kn be the set of row vectors of length n with entries in
k. Now G acts on V via matrix multiplication.
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Definition 1.2 If G acts on Ω and ω ∈ Ω, then we define two important con-
cepts.

(i) ωG = {ω · g | g ∈ G} is called the G-orbit of ω, or just the orbit of ω
where there no confusion.

(ii) Gω = {g | g ∈ G, ω · g = ω}. It is easy to verify that Gω is a subgroup of
G. This group is called the isotropy group of ω or the stabilizer of ω.

Lemma 1.3 Let G act on Ω. Write ω1 ∼ ω2 if and only if there is g ∈ G with
ω1 ·g = ω2. It follows that ∼ is an equivalence relation on Ω and the equivalence
classes are the orbits.

Proof For every ω ∈ Ω we have ω · 1 = ω by the first group action axiom, so
∼ is reflexive. Now suppose that ω1, ω2 ∈ Ω and ω1 ∼ ω2. Thus there is g ∈ G
such that ω1 · g = ω2. Thus (ω1 · g) · g−1 = ω2 · g−1 and so ω1 · (gg−1) = ω2 · g−1

by the second group action axiom. Thus ω1 · 1G = ω1 = ω2 · g−1 by the first
group action axiom. Thus ∼ is symmetric. Now for transitivity: suppose that
ω1 ∼ ω2 and ω2 ∼ ω3. There are x, y ∈ G with ω1 · x = ω2 and ω2 · y = ω3. Now

ω1 · (xy) = (ω1 · x) · y = ω2 · y = ω3.

Thus ∼ is transitive and so is an equivalence relation.
The equivalence class of ω ∈ Ω is {ωg | g ∈ G} and this is just the orbit ωG.
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Lemma 1.4 There is a natural bijection β : Gω\G → ωG defined by β : Gωx 7→
ωx for all x ∈ G.

Proof The notation Gω\G denotes {Gωx | x ∈ G}, the set of right cosets of
Gω in G. We must first check that the map is well defined, so we assume we
have rival descriptions of the same coset: Gωx1 = Gωx2 for x1, x2 ∈ G. Thus
x1x

−1
2 ∈ Gω so ω · (x1x

−1
2 ) = ω. Act via x2 to deduce that ω · x1 = ω · x2, and

β is well defined.
Define γ : ωG → Gω\G via ω · x 7→ Gωx. Again there is the issue as to

whether or not γ is well defined. Suppose that ω · x1 = ω · x2 for x1, x2 ∈ G.
Now x1x

−1
2 ∈ Gω so Gωx1 = Gωx2, and γ is well defined. Now note that β and

γ are mutually inverse, and are therefore both bijections. Thus β is a bijection.
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The cardinality of Gω\G is denoted |G : Gω|. If G happens to be finite this
quantity is |G|/|Gω|.

Corollary 1.5 The cardinality of the orbit ωG is |G : Gω|. If G is finite and
θ ∈ ωG, then |G : Gω| = |G : Gθ|, so |Gω| = |Gθ|.
However, it is not just a matter of size, as the next proposition shows.

Proposition 1.6 Suppose that G acts on the non-empty set Ω, that ω1, ω2 ∈ Ω.
If h ∈ G, and ω1 · h = ω2, then Gω2 = h−1Gω1h.
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Proof We suppose that ω1 · h = ω2. Choose x ∈ h−1Gω1h, then x = h−1yh for
some y ∈ Gω1 . Now

ω2 · x = (ω1 · h) · (h−1yh) = ω1 · (yh) = (ω1 · y) · h = omega1 · h = ω1.

Thus x ∈ Gω2 . Next suppose that p ∈ Gω2 , so ω2 · p = ω2 and therefore
(ω1 · h) · p = ω1 · h. Thus ω1 · (hph−1) = ω1 and so hph−1 ∈ Gω1 . Premultiply
by h−1 and postmultiply by h to obtain p ∈ h−1Gω1h. 2

Theorem 1.7 (not Burnside) Let G be a finite group acting on a non-empty
finite set Ω. The number of orbits of G on Ω is

1
|G|

∑
g∈G

|Fix(g)| .

Proof Let Γ = {(ω, g) | ω ∈ Ω, g ∈ G, ω · g = ω} ⊆ Ω × G. We count Γ in two
ways, and equate the answers.

(i) |Γ| =
∑

g∈G |Fix(g)|.
(ii) |Γ| =

∑
ω∈Ω |Gω|. Now let the distinct G-orbits be ω1G, ω2G, . . . , ωtG.

Observe that for all α ∈ ωjG we have |Gα| = |Gωj |. Thus

Γ =
t∑

i=1

( ∑
α∈ωiG

|Gα|
)

=
t∑

i=1

( ∑
α∈ωiG

|Gωi|
)

=
t∑

i=1

|ωiG||Gωi| =
t∑

i=1

|G : Gωi ||Gωi| =
t∑

i=1

|G| = t|G|.

Equate these answers, solve for t and we are done. 2

Example 1.8 G = Sym(n) acts on Ω = {1, 2, . . . , n} in natural fashion via
i · f = (i)f where f : Ω → Ω is a bijection. Notice that there 1 ·G = Ω so there
is a single orbit. Applying our theorem we have

1 =
1
n!

∑
|Fix(g)|,

so an average permutation of n letters fixes 1 of them!

Example 1.9 Next the action of G on Ω induces an action of G on Ω2 = Ω×Ω
via (ω1, ω2) · g = (ω1 · g, ω2 · g). There are two orbits of G on Ω2: the diagonal
{(ω, ω) | ω ∈ Ω} and the rest. Thus we have

2 =
1
n!

|Fix(g)|2

where Fix(g) still denotes the fixed point set of G acting on Ω. Thus the average
value of the square of the size of the fixed point set of a permutation n letters
is 2.
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We verify this for G = Sym(3). The six permutations are

id, (12), (13), (23), (123), (132)

and our example predicts that

32 + 12 + 12 + 12 + 02 + 02

6
= 2,

which (happily) is true.
Similarly there are 5 orbits of G = Sym(3) on Ω3 (representatives (1, 1, 1),

(1, 2, 2), (1, 1, 2), (1, 2, 1), and (1, 2, 3). This squares with

33 + 13 + 13 + 13 + 03 + 03

6
= 5.

Example 1.10 Now we discuss how many essentially different ways there are
to colour the faces of a cube using c colours. Two colourings are deemed to be
not essentially different if the cube may be rotated from on etc the other. Here
it is understood that each face must be painted monochromatically. Let Ω be
the set of all painted cubes. Thus |Ω| = c6. Let G be the group of rotational
motions of the cube. Thus |G| = 24. We classify the elements of G geometrically.

(a) There is the identity, which does nothing.

(b) There are motions which are a rotation through 2π/3 about a long diag-
onal. There are 8 of these.

(c) There are motions which are a rotation through π/2 about a straight line
joining the centres of two opposite edges. There are 6 of these.

(d) There are motions which are a rotation through ±π/4 about a straight
line joining the centres of two opposite faces. There are 6 of these.

(e) There are motions which are a rotation through ±π/2 about a straight
line joining the centres of two opposite faces. There are 3 of these.

Element type number of this type size of Fix total size of fix
a 1 c6 c6

b 8 c2 8c2

c 6 c3 6c3

d 6 c3 6c3

e 3 c4 3c4

The number of colourings is therefore

c6 + 3c4 + 12c3 + 8c2

24
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When c = 1 this is 24/24 = 1. When c = 2 this is 64+48+72+32
24 = 216/24 = 9

which is easy enough to verify in your head. When c = 2 this is

729 + 243 + 12 ∗ 27 + 72
24

= 57.

Thus there are 57 essentially different face colourings of a cube using three
different colours.


