Three Centroids created by a Cyclic Quadrilateral Christopher Bradley

Abstract: The centroid of the quadrilateral considered to be an area of constant density is G, the centroid of the quadrilateral considered as having unit masses at its vertices is N , the centroid of the quadrilateral considered as having unit masses at its vertices and mass of two units at E (the intersection of its diagonals) is F . It is shown that $\mathrm{E}, \mathrm{F}, \mathrm{N}, \mathrm{G}$ are collinear.

Fig. 1
Centroids in a Cyclic Quadrilateral

1. Introduction

In the diagram above ABCD is a cyclic quadrilateral in which the diagonals meet at the point E . Points $G_{a}, G_{b}, G_{c}, G_{d}$ are the centroids of triangles BCD, ACD, ABD, ABC respectively. $G_{a} G_{c}$ meets $\mathrm{G}_{\mathrm{b}} \mathrm{G}_{\mathrm{d}}$ at the point G. Points J, K, L, M are the midpoints of AB, BC, CD, DA respectively.

JL meets KM at the point N. Points $G_{12}, G_{23}, G_{34}, G_{41}$ are the centroids of triangles ABE, BCE, CDE, DAE respectively. $G_{12} G_{34}$ meets $G_{23} G_{41}$ at F. The centroid of the quadrilateral considered to be an area of constant density is G , the centroid of the quadrilateral considered as having unit masses at its vertices is N , the centroid of the quadrilateral considered as having unit masses at its vertices and a mass of two units at E (the intersection of its diagonals) is F . It is shown that E , $\mathrm{F}, \mathrm{N}, \mathrm{G}$ are collinear. We use oblique axes with x -axis in the direction EA and with y -axis in direction EB. Thus E has co-ordinates (0.0) and A, B, C, D may be chosen to have co-ordinates $(f g, 0),(0, h f),(-h k, 0),(0,-\mathrm{gk})$, where $\mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{k}$ are any constants and the co-ordinates reflect the relation $\mathrm{AE} \times \mathrm{EC}=\mathrm{BE} \times \mathrm{ED}$ implying, by the intersecting chord theorem, that ABCD is cyclic.

2. The centroid G of $A B C D$, considered to be an area of uniform density

The centroid G_{d} of triangle ABC has co-ordinates $(1 / 3)(\mathrm{fg}-\mathrm{hk}$, fh).
The centroid G_{b} of triangle ACD has co-ordinates $(1 / 3)(\mathrm{fg}-\mathrm{hk},-\mathrm{gk})$.
The centroid G_{c} of triangle $A B D$ has co-ordinates $(1 / 3)(\mathrm{fg}, \mathrm{fh}-\mathrm{gk})$.
The centroid G_{a} of triangle BCD has co-ordinates $(1 / 3)(-\mathrm{hk}, \mathrm{fh}-\mathrm{gk})$.

Since $A B C$ and $A C D$ combine to give $A B C D$ it follows that the centroid of $A B C D$ lies on $G_{d} G_{b}$. Similarly it lies on $G_{c} G_{a}$. It follows immediately, by inspection, that $G=G_{d} G_{b} \wedge G_{c} G_{a}$ has coordinates ($1 / 3$)(fg $-\mathrm{hk}, \mathrm{fh}-\mathrm{gk}$). The line EG has equation

$$
\begin{equation*}
(f h-g k) x=(f g-h k) y . \tag{2.1}
\end{equation*}
$$

3. The centroid F when there is a mass 1 at each of A, B, C, D and a mass 2 at E

These masses are arranged so that we may suppose there are equal masses at the vertices of each of the triangles $\mathrm{ABE}, \mathrm{BCE}, \mathrm{CDE}, \mathrm{DAE}$. This means that if the centroids of these triangles are $G_{12}, G_{23}, G_{34}, G_{41}$ respectively then F will be the intersection of the lines $G_{23} G_{41}$ and $G_{12} G_{34}$.

The centroid G_{12} of ABE has co-ordinates $(1 / 3)(\mathrm{fg}, \mathrm{fh})$.
The centroid G_{23} of BCE has co-ordinates $(1 / 3)(-\mathrm{hk}$, fh).
The centroid G_{34} of CDE has co-ordinates $(1 / 3)(-\mathrm{hk},-\mathrm{gk})$.
The centroid G_{41} of DAE has co-ordinates (1/3)(fg, -gk).

The line $\mathrm{G}_{23} \mathrm{G}_{41}$ has equation

$$
\begin{equation*}
3(f h+g k) x+3(f g+h k) y=g h\left(f^{2}-k^{2}\right) \tag{3.1}
\end{equation*}
$$

The line $\mathrm{G}_{12} \mathrm{G}_{34}$ has equation

$$
\begin{equation*}
3(f h+g k) x-3(f g+h k) y=f k\left(g^{2}-h^{2}\right) . \tag{3.2}
\end{equation*}
$$

The co-ordinates of $\mathrm{F}=\mathrm{G}_{23} \mathrm{G}_{41}{ }^{\wedge} \mathrm{G}_{12} \mathrm{G}_{34}$ are (1/6)(fg -hk , fh -gk). It is immediately obvious that F lies on $E G$ and $E G=2 E F$.

4. The centroid \mathbf{N} when there are equal masses at each of $\mathbf{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$

N has co-ordinates a quarter of the sum of those of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and are therefore (1/4)(fg - hk, fh -gk). If J, K, L, M are the midpoints of $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DA}$ respectively then N is also the intersection of JL and KM. Evidently N lies on EG and is such that EN $=1.5 \times \mathrm{EF}$.

Flat 4,
Terrill Court,
12-14, Apsley Road,
BRISTOL BS8 2SP

