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Bogdanov–Takens Bifurcation Points andS̆il’nikov
Homoclinicity in a Simple Power-System

Model of Voltage Collapse
C. J. Budd and J. P. Wilson

Abstract—The bifurcation structure of a simple power-system
model is investigated, with respect to changes to both the real and
reative loads. Numerical methods for this bifurcation analysis
are presented and discussed. The model is shown to have a
Bogdanov–Takens bifurcation point and hence homoclinic orbits;
these orbits can be of̆Sil’nikov type with many coexisting periodic
solutions. We may use the bifurcation calculations to divide the
two-parameter plane into a number of regions, for which there
are qualitatively different dynamics. We classify and further
investigate the dynamical behavior in each of these regions, using
a Monte Carlo method to investigate basins of attraction of various
stable states. We then show how this classification can be used to
denote each regions as either safe or unsafe with respect to the
likelihood of voltage collapse.

Index Terms—Basinofattraction, bifurcation, Bogdanov–
Takens, continuation, dynamical system, homoclinic orbit, Monte
Carlo, power system, shilnikov, Takens–Bogdanov, voltage col-
lapse.

I. INTRODUCTION

E LECTRICAL generation and distribution networks form
some of the largest and most complex manmade systems.

While many aspects of power systems and their individual com-
ponents are well understood and have been researched in great
depth, other phenomena evident in these systems remain rel-
atively unexplained. Economic and other pressures mean that
power systems are now being run ever closer to their operating
limits. This has lead to an increasing number of “voltage col-
lapse” incidents [1]–[3], resulting in system breakdown on a
large scale. In such behavior we see the voltage dropping to zero
in a very short time.

Greater awareness of modern mathematical methods, more
robust computational algorithms and increased computer power,
have all led to power systems researchers using techniques not
previously considered practical given the size of “real-life” sys-
tems. Over the last few years, a number of researchers have
discussed the application of dynamical systems and bifurcation
theory to power networks. In particular voltage collapse has
been related to the destabilization of fixed operating points at
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saddle-node and Hopf bifurcation points and to the erosion of
the basins of attraction of stable fixed points.

In this paper, we consider a reduced power-system model,
previously investigated by a number of researchers and argue
that the dynamical behavior of this model can be best understood
in terms of a Bogdanov–Takens (BT) bifurcation point and an
associated (global)̆Sil’nikov bifurcation. This model comprises
three buses modeling two generators supplying power to a load.
Whilst highly simplified from a stand-point of electrical engi-
neering, this model is still very rich dynamically and exhibits
many of the features of voltage-collapse that we are interested
in.

We show some unobserved behavior in this system and in
particular demonstrate that the parameter regimes which might
be considered stable may be overly optimistic. In particular we
identify the existence of a BT bifurcation point with nearby
S̆il’nikov-type homoclinic orbits. The BT-point acts as a orga-
nizing centre in the bifurcation structure of the model and plays
a significant role in helping to understand the overall mechanism
of voltage collapse through the destabilization of fixed points
and the erosion of basin boundaries. BT-points will arise natu-
rally in much larger systems as operating parameters change and
hence we consider the observed dynamics of the 3-bus model to
be a fairly general explanation for much of the dynamics asso-
ciated with voltage collapse. Because of the importance of the
BT-point we consider in detail techniques for calculating it both
for the reduced system and also for more complex systems.

The layout of the remainder of this paper is as follows. In Sec-
tion II we introduce the model used and briefly discuss some of
the dynamics associated with voltage collapse. In Section III we
introduce some of the basic mathematics we will use, in partic-
ular, bifurcation theory and the BT bifurcation. We describe the
method of numerical path following used and discuss basins of
attraction and their numerical approximation. In Section IV we
demonstrate the existence of saddle-node and Hopf bifurcations,
and show how these lead to a BT-point and a closely related
S̆il’nikov bifurcation. In Section V we relate the existence of
the various bifurcation points to the overall dynamics observed
in the model. In particular, we study the basins of attraction of
various attracting states and differentiate between those solu-
tions which remain bounded and those which exhibit voltage
collapse. In Section VI we draw some conclusions from this
work. In the Appendix we look at the computation of BT-points
in both the model problem and higher dimensional systems.
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Fig. 1. Circuit diagram for the 3-Bus model.

II. 3-BUS MODEL DESCRIPTION

We consider a 3-bus model introduced in [4], [5] and fur-
ther investigated in [6]–[11]. Whilst being simple, it has the
same basic dynamical structure of more realistic power-system
models. The model comprises two generator buses and a load
bus connected according to the circuit diagram in Fig. 1.

One generator is modeled by a simple swing equation model
and the other is a slack bus acting as an infinite power source at
fixed voltage .

The real and reactive loads at the third bus comprise fixed
real and reactive loads and , in parallel with an empirical
model of induction motor load suggested by [1]. We note that in
general, many power-system load models involve “static” rela-
tions between the real and reactive loads , and the supplied
voltage and relative phase angle . There is no reason to
presuppose that the load will be independent of the derivatives
of and . If the dynamical behavior of power systems is
to be properly investigated it is necessary to to use models of
the system components which involve time derivatives of the
system states (i.e., models which are truly dynamic in the math-
ematical sense).

Normally, the application of Kirchoff’s laws to calculate the
power flow through the network would give an algebraic con-
straint on the system leading to a differential-algebraic system.
However, with this simple network we substitute and
into the dynamical part of the model and write the entire system
as a four-dimensional ordinary differential equation

(1)

where and are given by

(2)

We use the following system parameters, which are all dimen-
sionless, apart from the angles which are in radians. Generator
parameters: . Load parame-
ters:

. Network parame-
ters:

.
In the load, the constant parts of the real and reactive power

demands ( and ) are parameters which could in principle
be varied in an experiment. In principle we could also vary the
system damping and inductance or other parameters, but we
shall not consider doing this here. By varying and we
identify certain types of dynamics of (1) and the transitions be-
tween them.

III. B IFURCATIONS AND NUMERICAL METHODS

A. Basic Definitions

The 3-bus model (1) is an example of a general class of pa-
rameterised autonomous dynamical systems defined by the so-
lution to the -dimensional ODE

(3)

with system state variables , parameters
and a smooth function. For the 3-bus model

and .
1) Bifurcations: The overall dynamics of (3) can be partially

understood in terms of the bifurcations that occur as one of the
components in the parameterchanges. At such a bifurcation
point the flow mapping1 defined by (3) undergoes a qualitative
change [12]. Bifurcation can be classified as either global or
local; static or dynamic. All are observed in the 3-bus system.

Local static bifurcations of fixed points may occur when the
system Jacobian matrix has a simple zero eigenvalue, such
as thesaddle-node bifurcationwhen two fixed points coalesce.
When has a pair of purely imaginary eigenvalues, the system
may undergoHopf bifurcationin which the fixed point becomes
unstable and is replaced by a nearby periodic orbit satisfying

for some . This is an example of a local, dy-
namic bifurcation. From a power engineering perspective, since
oscillatory behavior is undesirable, we can consider Hopf bifur-
cations to be generally destabilising, even though they may not
lead directly to voltage collapse. Both of these forms of bifur-
cation are observed repeatedly in the 3-bus model.

It is possible for periodic orbits (which may or may not have
been created in a Hopf bifurcation) to themselves undergo
changes at local bifurcations in the Poincaré map associated
with the orbit. In particular, we seeperiod doublingbifurcations
when an eigenvalue of this map equals and cyclic fold
bifurcations when an eigenvalue equals 1.

We also observe global bifurcations leading to more dramatic
changes in the dynamical behavior of the system. An example
of such a global bifurcation occurs at ahomoclinic bifurcation.
A periodic orbit may grow as a parameter changes so that it
intersects an unstable fixed point to give an infinite periodho-
moclinicorbit for which there is a point

1The parameterised function mapping all possible states of the system at time
t to their states at time(t + �).
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with as . This bifurcation is global as it
cannot be detected merely by local analysis alone (for instance
by monitoring eigenvalues of at ).

A more detailed mathematical description of all these con-
cepts can be found in texts such as [13]. It should be emphasized
that bifurcations do not give the whole picture for a phenomenon
such as voltage collapse. Here, a very important role is played
by the basins of attraction of the relevant attractors, such as the
fixed points, periodic and chaotic attractors.

B. A Brief Description of the System Dynamics

The system represented by the 3-bus model (1) ideally op-
erates in a fixed, stable, steady state. If such a state is unique
and globally attracting—or at least has a large basin of attrac-
tion—then we can consider the overall system to be operating
safely. Large deviations of initial conditions from the steady
state (caused, for example, by a power line failure or some other
fault) will not prevent the system from returning to its stable
operating conditions. For a wide class of parameter values, it is
known [14, Ch. 14], that the power systems with networks of this
type will generally have two (or indeed several) fixed operating
points where all time derivatives vanish. One of these points is
a stable attractor whereas the other is an unstable saddle point.

As either or are varied then the fixed points also vary,
typically meeting at a saddle-node bifurcation point at which
we have maximum power transfer. Past this point, there are no
fixed operating points and typically the power system is unstable
with an immediate collapse of the voltage. Such voltage collapse
corresponds mathematically to a solution of (1) which isun-
boundedin finite time. Voltage collapse can occur either when
there is no attracting bounded solution or when an initial state
(for instance caused by a transient due to a local power failure)
lies outside the basin of attraction of such a bounded state.

The computation of saddle-node bifurcations is important,
as it defines the maximum possible region of safe operation.
Various attempts have been made to obtain estimates for these
points in more general systems. However, as we demonstrate
below, voltage collapse can easily occur prior to saddle-node bi-
furcation, due to complex behavior arising from coexisting pe-
riodic, steady-state and chaotic solutions.

C. Numerical Path Following Methods

The bifurcations described above occur as a parameter (say
the reactive power ) is varied. The value of at which the
bifurcation occurs depends in turn on other parameters such as

. To investigate the system fully it is important to have a nu-
merical method which can both look at the varying dynamics
as one parameter is varied and can also followpathsof bifurca-
tion points in a second parameter, such that if a (saddle-node or
Hopf) bifurcation occurs at then the value of can be
determined as a function of the second parameter (such as).

A useful tool for such a numerical investigation is Keller’s
pseudo-arc length continuation method. Given a fixed point
of our system at a particular parameter value , the implicit
function theorem [15] implies the existence of a locus of such
fixed points in parameter and phase space. We wish to approxi-
mate this locus by finding a new fixed point for some in

a neighborhood of . We could choose and then find a
root of (3) using a Newton-type method; however this “param-
eter” continuation method may fail if is at or near a turning
point of the solution locus. Instead, if we calculate the tangent to
the solution locus at (the “pseudo-arc”), take a point

some distance along it, and then iterate to find a new
fixed point , we will have a highly stable algorithm.
This is the basic method implemented in numerical bifurcation
packages such as AUTO [16] and in the authors own code. The
pseudo-arc continuation method has been applied to power engi-
neering problems but is not always known as such—for a useful
survey of the use of such methods in power systems see [17].
The method may be extended to compute the loci of other dy-
namically interesting solutions such as loci of periodic orbits.

The detection of both saddle-node and Hopf bifurcation
points is then determined by monitoring the eigenvalues
of the linearization of the system during the course of the
computation. To calculate the loci of such bifurcation points
in 2-parameter space, a suitable extended system is formed,
the roots of which define points on the locus. The continuation
algorithm may then be applied to the extended system. In
practice, the size of these extended systems may be relatively
large, so reformulations of the problem and efficient solution
methods must be considered. For instance, see [18], [19].

D. BT Points

The algorithm above accurately computes paths of Hopf and
saddle node bifurcations. In particular it can identify special
values of the second parameter at which these two paths inter-
sect. Such a point is generally referred to as a BT point. BT
points have been shown to play an important role in ‘organizing’
the dynamics of a variety of physical systems of high dimen-
sion, for example [20]–[22]. A similar organization is seen in
the 3-bus model.

A BT-point is a co-dimension two bifurcation point; where a
fixed point of the system has a Jacobian matrixwith a zero
eigenvalue of algebraic multiplicity 2 but of geometric multi-
plicity 1 [13]. Subject to satisfaction of transversality conditions
and absence of certain symmetries in the system [13] this point
occurs when there is a tangential intersection, in the 2-param-
eter plane, of a path of folds and a path of Hopf-bifurcations. An
algorithm for the calculation of these points in a larger system
is given in the Appendix.

For parameter values close to that of the BT-point the dy-
namics of the system can be reduced to that of a much simpler
system given by one of the following normal forms:

(4)

This means that near a BT point, the dynamics of the system
(3) are governed by the solution of (4) on a two-dimensional
(2-D) center-manifold [23] of the larger system. The dynamics
on this manifold, in particular the behavior of the periodic and
homoclinic orbits, completely describes the local behavior of
the original system. This remains true even for systems of much
higher dimension than considered here and it is for this reason
that we believe that an analysis of the BT-point for the simple
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3-bus model is extendable and will give insight into the general
behavior of more complex problems.

A more detailed analysis [13] of the normal form (4) shows
that a path of homoclinic orbits also emanates from such a
BT-point. That is along a curve in the space there is a
homoclinic orbit. At the BT-point this curve is also tangential
to the loci of the saddle-node and Hopf points. As we shall
demonstrate, the existence of this homoclinic orbit has a
profound effect on the overall stability of the 3-bus system. A
further discussion of the numerical detection of BT-points is
given in the Appendix.

E. Branch Switching at BT-Point

Starting from a BT-point, continuation methods can be used
to determine paths of folds, Hopf-bifurcations, and homoclinic
orbits in the parameter space. However, to do this we
will need to calculate an initial point on each of the paths.

For the computation of a paths of folds and Hopf points em-
anating from the BT-point, the initial step in the continuation
algorithm will converge provided we do not attempt to step too
far from the BT-point. It is important not to choose a value too
small, as the Jacobian of the defining system for the bifurcation
point locus may be singular [20].

Details of a method to start the calculation of the path of ho-
moclinic orbits emanating from the BT-point are given in [24].

This gives us a methodology for a more complete detection of
the bifurcation structure. First locate a fixed point of the system
(e.g., a stable operating point); perform continuation on this
fixed point and detect a saddle-node bifurcation. Compute a path
of saddle-node bifurcations and detect a BT-point. Finally, com-
pute paths of Hopf and homoclinic bifurcations emanating from
the BT-point.

F. Basin Erosion

When considering the possibility of a systems such as the
3-bus model (1) starting from ageneral initial condition and
potentially exhibiting voltage collapse, we are interested in the
basins of attraction for the attractors of that system. These are
the sets of initial state values for which the corresponding tra-
jectories have the property that they converge to the stable fixed
point, or to a stable periodic orbit, or to a chaotic orbit (and are
thus bounded). These basins are strongly parameter dependent.
It is well known that even for very simple dynamical systems
the boundaries of these basins may be highly complicated, even
fractal [25]. For calculations of safety margins and for avoiding
voltage collapse we must find how these basins change in size
and/or form as parameters change, particularly as we approach
bifurcation points.

From an engineering perspective, the calculation of these
basins will give information as to what perturbations away from
the stable fixed point are permissable (i.e., the trajectory returns
to the desired operating point) and which are inpermissable
(i.e., convergence to some other attractor, or voltage collapse).

In practice, we cannot investigate the whole of phase space,
and so we must pick a bounded subset to use as our region of
investigation for studies of basins of attraction.

1) Review of Methods—Lyapunov Functions, Cell Mapping
and Manifold Estimation:Various methods exist for estimating

basins of attraction. A widely used method is the construction
of a Lyapunov (or “energy”) function for the system; trajecto-
ries starting from points where this function is concave will con-
verge to the stable point about which the function is constructed.
Hence the boundary of the region of concavity of the Lyapunov
function is an estimate of the boundary of the basin of attraction.

There are two reasons why this approach has not been
followed here. Firstly, although such functions have been
constructed successfully for a wide class of power-system
models [26]–[28], it is not clear how to construct a Lyapunov
function for the four-dimensional system (1) with the dynam-
ical load model of the type we consider necessary for proper
understanding of the voltage collapse problem.

Secondly, and more importantly, the Lyapunov function
method will only give a subset of the basin of attraction. There
may be points outside the region of concavity which have
trajectories that converge to the attractor. If the basin boundary
is highly structured (e.g., fractal, or if there are multiple
attractors) the Lyapunov estimate may be very bad indeed. It is
also not known precisely whether the Lyapunov function gives
a good indication of the change in the basin as parameters vary.

A second widely used class of methods for calculation of
basins of attraction are cell mapping methods [29]–[33]. These
methods avoid the calculation of long time trajectories by
dividing the region of investigation into a number of discrete
“cells”, trajectories from which define a discrete mapping from
each cell to another. The cell mappings can be analyzed in
various manners to give a full picture of the long time trajectory
behavior of the system and hence the basins of attraction. These
methods are extremely useful for low dimensional systems.
However, the calculation of the mapping from cell to cell does
not scale well to dimensions greater than 3 and we wished to
use a method which is applicable to larger systems.

A third method of investigation of the basins of attraction is
the calculation of stable manifolds of the fixed points and peri-
odic orbits of the system. These manifolds will act as boundaries
between basins of attraction. A number of efficient and general
numerical methods have been proposed for such calculations;
see [34] and references therein. Although these methods gen-
eralize theoretically to high dimensional systems, like the cell
mapping methods they are not currently practical for dimen-
sions greater than 3 or 4.

2) Monte Carlo Methods:We may randomly select a finite
number of starting points within our region of investigation. We
can then use a numerical procedure to calculate the trajectories
starting from these points, over a suitably long time interval, and
examine whether they lead to an attractor or to collapse. This
method has been used with success in [35] to determine a wide
variety of the possible dynamics in a dynamical system, some
of which were not found by path following methods.

This method has several benefits. It is easy to adjust the ac-
curacy of the method by simply changing the number of ini-
tial points, the error tolerance of the integration routine and the
time period of the total integration. This allows a preliminary
investigation at low tolerance; subsequent calculations can be
performed at higher accuracy once regions of interest have been
identified. The method is adaptable to systems of higher dimen-
sion and of arbitrary structure—we may select an integration
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routine which most efficiently calculates trajectories for that
particular problem. The method is simple to code and to use. Al-
though this is a rather brute force approach to basin calculation,
the continuing rapid fall in the cost of computational capacity
makes this method viable as an experimental tool and perhaps
an industrial one also.

Some care must be taken in the choice of integration routine
used. The computed trajectories are only estimates of those in
the real system, but we desire them to have the same qualitative
behavior; that is we wish the numerical schemes, considered as
discrete dynamical systems to “shadow” the underlying contin-
uous system. It has been proved that several commonly used in-
tegration methods do not have this property [36]. To guarantee
proper qualitative results, for DAE systems and stiff systems
such as power-system models, we must use methods such as
backward differentiation—even though they may be more com-
putationally expensive.

For the results below, integration was initially performed
using the RK-2(3) solver with adaptive step-sizing, which is
a default method in Matlab. However, the step-sizes used by
this explicit method were too small to be efficient for the long
time period calculations necessary; in addition the step-size
selection algorithm created quite obvious errors and disconti-
nuities, probably related to the stiffness of the system (1). As
an alternative, the implicit second order method TR-BDF2 [37]
was used with much greater success.

IV. BIFURCATION ANALYSIS OF THE 3-BUS MODEL

The analysis and methods developed in the last section can
now be applied to a full study of the dynamics of the 3-bus model
(1). To do this we firstly consider varying separately the two pa-
rameters and , determine the bifurcation points, and then
follow paths of these points in both parameters. The resulting
calculation allows us to divide up parameter space into regions
in which the behavior of the overall system will be qualitatively
different. In the next section we give examples of the dynamical
behavior in each region.

A. 1-D Bifurcation Diagrams

1) Varying the Reactive Power Demand:Increasing reactive
power demand is believed to be a factor in many voltage collapse
incidents; for this reason used here and elsewhere [5] as
the primary continuation parameter. The bifurcation diagram of
fixed points of the system (1) with respect to is shown in
Fig. 2, with fixed .

Here, the upper branch is stable close to the saddle-node bi-
furcation at and the lower branch is un-
stable.

The two saddle-node bifurcations on the unstable branch at
and have not been pre-

viously presented. Previous analysis of power-system models
has not paid much attention to the unstable branch of fixed
points. However, these points are important; in determining the
maximum basin of attraction associated with stable fixed points
and when they lie on a homoclinic orbit or are associated with
boundary crisis events destroying a strange attractor. Any struc-
ture in the unstable branch, such as the two bifurcations, is,

Fig. 2. Bifurcation diagram inQ for the 3-bus model,P = 0.

Fig. 3. Bifurcation diagram inQ for 3-bus model (Detail—periodic orbits).

therefore, of potential interest and so unstable paths must be cal-
culated and considered carefully.

On the branch of stable fixed points exists a pair of Hopf-bi-
furcation points, at and .
The first of these two points is a subcritical bifurcation where an
unstable periodic orbit coalesces with the fixed point (as we in-
crease ). The second is supercritical giving rise to a stable pe-
riodic orbit. Paths of periodic orbits bifurcate from the primary
branch at each Hopf point (Fig. 3). The unstable periodic orbit
bifurcating from subsequently coalesces with a stable pe-
riodic orbit in a cyclic fold bifurcation at .
This point has a significant effect on the stability of the elec-
trical system. For the only stable operating point
of the 3-bus model is a fixed point, whereas for
the fixed point coexists with a stable periodic orbit. As the pe-
riodic orbit has a non trivial domain of attraction, it is quite
possible that the 3-bus model of the power system may settle
into a stable periodic orbit. This may well not be a safe oper-
ating condition, although it is bounded and does not result in a
voltage collapse. We show presently that many cyclic folds are
associated with the homoclinic orbit which emanates from the
BT-point and that they may be computed as parameters vary. If

is increased from then the stable periodic orbit under-
goes a sequence of period doubling bifurcations, the first being
at , and subsequently evolves into a strange
attractor. The attractor gives an erratic behavior in the electrical
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Fig. 4. Bifurcation diagram inP for 3-bus model,Q = 11:25.

system, but the resulting orbits are all bounded and are indeed
not very far from the fixed point.

At the point , it was observed in that the
strange attractor disappears in a boundary crisis where it collides
with the unstable manifold of the neighboring saddle point [38]
(this is also observed in a similar system with different parame-
ters [9]). If is decreased from the value , the super-crit-
ical Hopf bifurcation, then we observe a series of super-critical
period doubling bifurcations, leading to a chaotic attractor. This,
in turn, vanishes at .

For , there are no bounded at-
tracting states and most initial conditions lead to voltage col-
lapse.

We present figures of the strange attractor, of periodic orbits
and of collapsing trajectories in Section V, in our discussion
of the system’s -limit sets (and their meanings) at different
parameter values.

2) Varying the Real Power Demand:To clarify and unfold
the structure observed in the above section we now consider
varying the real power demand. Starting from the stable fixed
point at we compute the fixed point as a
function of , keeping fixed. This yields the bifurcation
diagram presented in Fig. 4. This bifurcation diagram has an
approximately circular structure, with saddle-node bifurcations
at and . We observe that
whereas the bifurcation at is a coalescence of a stable and
an unstable fixed point, that at is a coalescence of two
unstablefixed points. For this fixed value of , these two bi-
furcations give the maximum and minimum real power transfer
limits.

As in the previous investigation, we observe a super-critical
Hopf bifurcation at leading to the creation of a
stable periodic orbit. Again, these orbits exhibit cyclic fold and
period doubling bifurcations. We will see presently that further
bifurcations from these periodic orbits leads to more complex
behavior.

B. 2-D Bifurcation Diagram and BT Point

We now extend our continuation methods to compute paths
in the parameter space of the saddle-node, Hopf, and
cyclic fold bifurcation points computed in the previous two sub-
sections, as described in Section III-C. Examples of the ex-

tended systems used for continuation of saddle-node and Hopf
bifurcations are given in [19] and are implemented in AUTO
[16] and other packages. To follow cyclic fold points we use the
method as implemented in AUTO [16].

1) Physical Meaning of Parameter Values:These curves
naturally all continue into the parameter range . This is
apparently an unphysical approach as this would correspond to
a scenario in which the loads (or at least the constant part of
the empirical induction motor load) are providing power to the
rest of the network. However, our aim is to investigate the qual-
itative behavior of a highly reduced system and demonstrate
the effectiveness of certain methods, so there is a two-fold
justification for considering the parameter region.

It is possible that by following paths of certain bifurcation
points that we will naturally consider values of the parameters
which are not especially physical; for example if .
However, by identifying organizing centres (such as the
BT-point) for the dynamics in these regimes we can infer
a lot about the dynamics in the more physically interesting
regions of parameter space. So we may step into the region in
which the model is possibly invalid in order to find dynamical
phenomena which may have effects in the “valid” region; such
a procedure is widely used in other investigations of physical
systems. In addition, the position in 2-D parameter space of
the structures and phenomena described may be dependent on
further parameters. Hence if these parameters were to change
or be adjusted, the phenomena occurring in a “physically
unrealistic” region could move to a parameter region where
they might be observable.

Concisely—we are not troubled by taking since it
may lead us to find things out for that we would not
have found otherwise.

2) 2-D Loci of Saddle-Node Bifurcations:The paths of
the main saddle-node bifurcation and the two subsidiary
saddle-node bifurcations on the the unstable branch of fixed
points are given in Fig. 5. The main fold can be thought of as
the maximum reactive power transfer point over all values
of . The 2-D diagram shows that the curve of saddle-node
points itself has a maximum value when occurring
when . Observe that this is close to the value
obtained when . Thus, the observed maximum reactive
power point given when is in fact close to the point of
maximum reactive power transfer over all values of.

3) 2-D Loci of Hopf Bifurcations:A similar diagram to
that of the locus of saddle-node bifurcation points is plotted
for the paths of the sub-critical and super-critical Hopf bifur-
cation points (Fig. 6). It can be seen that for the two
Hopf points approach each other and eventually coalesce at

. The periodic orbits and chaotic structure in the
region between the Hopf points vanishes for leading
to relatively simple and predictable dynamics in this region of
parameter space. This scenario of the annihilation (or creation)
of complex periodic behavior has been observed in many
systems, see, for example, [39] and [25].

For , the sub-critical Hopf bifurcation occurs at con-
sistently lower values of as is decreased. This implies
that the system could be more susceptible to destabilising pe-
riodic behavior at these lower real power demand. In contrast,
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Fig. 5. Paths of saddle-node (fold) bifurcations in 3-bus model, inP –Q
parameter plane.

Fig. 6. Path of Hopf bifurcations in 3-bus model, inP –Q parameter plane.

Fig. 7. Path of cyclic folds in 3-bus model, inP –Q parameter plane.

the path of the right-hand, supercritical, Hopf bifurcation ap-
proaches the path of the main saddle-node tangentially as we
decrease . This can be see more clearly if we plot both paths
at once, Fig. 7.

4) 2-D Loci of the Cyclic Fold Points:The branch of
cyclic fold points which includes the point observed when

may be followed using the method
described above yielding the curve shown in Fig. 7. Observe
that this curve exists for values of in general rather less than

Fig. 8. 2-D bifurcation diagram for 3-bus model, inP –Q parameter plane,
including BT-point.

the value at which Hopf bifurcation occurs, with a consequent
reduction in the parameter range in which we see only a stable
fixed point. The locus of the cyclic fold point intersects the
locus of the Hopf points at .
This curve of cyclic folds is not unique; other curves of
cyclic-folds associated with thĕSil’nikov bifurcation will be
presented in the next section.

5) BT-Point in the 3-Bus Model:The tangential intersection
of the paths of saddle-node and Hopf bifurcation points gives
strong evidence for the existence of a BT-point as described in
the last section. The existence of this point is determined compu-
tationally by monitoring the second rightmost eigenvalue of the
system Jacobian matrix as we compute the path of saddle-node
bifurcations in Fig. 5. This second eigenvalue must vanish at
the BT-point; if it changes sign over two successive continua-
tion steps then the BT-point must lie between them. To further
refine the location of this point we apply the algorithm described
in the Appendix, using one of these two saddle-node bifurcation
points as an initial guess.

Applying this method to the 3-Bus system gave a
BT-point at

. The corre-
sponding eigenvalues of the system at this point are
and . Observe that two of these are real and negative
and have no effect on the dynamics, merely indicating the
rate of convergence onto the centre-manifold of the BT-point.
The BT-point now acts as an organizing centre for paths of
saddle-node bifurcations, Hopf bifurcations, period doubling
bifurcations and homoclinic orbits.

C. Homoclinic Orbits

The theory discussed earlier ensures the existence of a path
of homoclinic orbits in parameter space starting at the
BT-point. Each such homoclinic orbit contains an unstable fixed
point.

The method described in Section III-E was tried for (1) but
failed in practice, as the initial guess for the homoclinic orbit
was not sufficiently precise. An alternative procedure which did
work was instead to approximate the path of homoclinic orbits
by a path of high period periodic orbits (e.g., period ).
To determine such an orbit, the path of periodic orbits created
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Fig. 9. Approximate homoclinic orbits. (a) Close to and (b) slightly away from the BT-point.

Fig. 10. Time period of period orbits in 3-Bus model, plotted against parameter
P . (Q = 11:25).

Fig. 11. Full 2-D bifurcation diagram.

in a Hopf bifurcation at and
was followed as was varied until the orbit had a period .
The locus of the period orbit was then followed as and

Fig. 12. Basin investigation results,(Q ;P ) = (0; 0).

were varied. The resulting curve in parameter space of these
high period points is then shown in Fig. 8.

The resulting computed curve is clearly tangent to the curve
of Hopf and Saddle-node points at the BT-point. Furthermore,
the curve has a high curvature at this point. This curvature indi-
cates that the normal form will only be an accurate reduction of
(1) very close to the BT-point and this explains the difficulties
with the first procedure for calculating the homoclinic orbits.

We illustrate the above calculation by giving the trajec-
tory of the resulting high period orbit in the two cases of
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Fig. 13. Basin investigation results,(Q ;P ) = (5; 0).

which is close to the
BT-point and which
is rather more distant (Fig. 9). Observe the change in the
qualitative form of the orbit in these two cases.

1) S̆il’nikov Homoclinicity: The 3-Bus system contains ho-
moclinic orbits of S̆il’nikov type where the homoclinic orbit
intersects a fixed point which is a saddle focus (i.e., it has a
one dimensional unstable manifold, and its two least stable,
stable eigenvectors have complex eigenvalues and span a 2-D
space.) These homoclinic orbits are sometimes referred to as
“saddle-focus” homoclinics. Assume the linearization around
the unstable fixed point contained within the homoclinic orbit
has one positive real eigenvalue and next rightmost
eigenvalues are a complex conjugate pair . We
can define a useful quantity2 ; this can be thought of
as the ratio of the speed of rotation and the speed of ejection
of orbits near the fixed point [40]. The homoclinic orbit is said
to be ofS̆il’nikov type if . In this case the linearization
at the unstable fixed point is dominated by the rightmost, com-
plex, pair of eigenvalues; the stable manifold is then essentially
two dimensional, and the homoclinic orbit spirals around the
fixed point as it approaches it. In addition there is a character-
istic bifurcation diagram for the periodic orbits near this type of
homoclinic orbit, and much can also be said about the presence
of chaotic orbits [41].

This is well illustrated by considering the 3-Bus model it-
self. Consider the 1-D bifurcation diagram in (Fig. 4) where

2This ratio is not to be confused with our state variable�; phase angle at load.

Fig. 14. Basin investigation results,(Q ;P ) = (7:5; 0).

and calculate the periodic orbits emanating from
the Hopf point ). A plot of the time period of the orbits
on this path (Fig. 10) show the period increasing with an os-
cillatory pattern, with orbits of increasing period converging
through multiple cyclic folds toward the homoclinic orbit
at . This pattern is characteristic of the be-
havior of a (global)S̆il’nikov bifurcation, with a sequence of
multiple cyclic-fold points also accumulating onto the homo-
clinic orbit. It is also possible to follow the periodic orbit cre-
ated in the period doubling bifurcation at .
This orbit also displays an oscillatory structure as it converges
toward a double-pulse homoclinic orbit.

If we examine the eigenvalues of the unstable fixed point at
, we find that

confirming our observations. The value ofchanges along the
path of the approximate homoclinic orbits, accounting for the
qualitative change in the orbits shown in Fig. 9.

The main features of ăSil’nikov bifurcation are: 1) the cre-
ation of an infinite set of cyclic fold points; 2) the creation of an
infinite set of period-doubling bifurcations either side of each
fold; 3) the existence of complex chaotic behavior close to the
homoclinic orbit. In the latter case, it will be very difficult to re-
solve which part of this region is liable to lead to a voltage col-
lapse. We can however calculate the path of cyclic folds passing
through < which acts as a boundary for this
region in the 2-parameter plane.

This particular form of the dynamics, while important, occurs
in this example for nonphysical values of the real power demand
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Fig. 15. Typical trajectories, (a, b)(Q ;P ) = (0; 0), (c) (Q ;P ) = (5; 0), (d) (Q ;P ) = (7:5; 0).

. However, in contrast, the loci of some of the cyclic fold and
period doubling bifurcation points created at this bifurcation can
be followed by continuation in and into more physically
interesting regions of parameter space.

In an exciting new figure (Fig. 11) we plot all these loci. This
gives what we believe is a complete picture of the structure of the
bifurcations in the two parameter space. This picture is likely to
be similar in any related power-system models with a BT-point
and an associated̆Sil’nikov bifurcation.

V. THE IMPLICATIONS OF THEBIFURCATION DIAGRAM ON THE

SYSTEM DYNAMICS

The significance of the previous calculations is that we can di-
vide up parameter space into different regions where we expect
to see contrasting dynamical behavior. This allows us to esti-
mate which parameter regions are likely to be dangerous from
a point of view of voltage collapse and how this might occur.

A. Interpreting the Bifurcation Diagram

With respect to problems such as voltage collapse, we may
consider the usefulness of the bifurcation diagram in two dif-
ferent ways.

One interpretation is to think of the parameters as real, the-
oretically measurable values which change over time (but over
a time scale much larger than that of individual system trajec-
tories at a particular fixed parameter value). So considering all
other parameter values as fixed, we would be interested in what
happens as we move continuously through parameter space, es-
pecially in the case where we are initially at a stable steady state
and the experience a bifurcation as our path through parameter
space intersects a path of bifurcation points of this fixed point.

Alternatively we can think of the parameters as being fixed
and use the bifurcation diagram to explain the behavior of the
system at those fixed parameter values, in terms of the dynam-
ical objects (e.g., stable and unstable fixed points, periodic orbits
and homoclinic orbits) that the bifurcation diagram tells us may
occur at that point. This could be useful if we assume the system
at this parameter value to model the behavior of power system
after a fault or a disturbance. In this post-fault or post-distur-
bance case we would not assume that we were at a stable fixed
point, but instead we would be interested in what might happen
to a general trajectory starting at some point in phase space.

The first interpretation would be useful for real-time moni-
toring of a system, the second for predicting and analysing the
behavior of a proposed system. The two interpretations are not
entirely distinct.
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Fig. 16. Basin investigation results,(Q ;P ) = (11:22;1:5).

B. Parameters for Trajectory and Monte-Carlo Computation

The following results were each computed in Matlab using
the method described in Section III.F.2. 8000 initial conditions
were used from the range

. The TR-BDF2 method used a relative toler-
ance of and an absolute tolerance of . Trajectories
were said to have escaped (voltage collapse) and integration
halted if

. Here we are not allowing phase
changes at load or generator of more than, or allowing neg-
ative voltage magnitude—this would be physically unrealistic.
Calculation of trajectories was halted after 100 s (or after 50
000 steps), at which time the trajectory was assumed to have
converged sufficiently close to an attractor.

These parameters constitute a reasonable trade off between
accuracy and speed. More initial points, smaller tolerances,
longer integration time and a less naive definition of “attracted”
would give more accurate results, but the method would be
less useful as an experimental tool. In particular it has been
noted [9] that in the presence of periodic and chaotic attractors,
the time to collapse may be atypically long. Our observations
confirm this and so we suggest use of longer integration time
as a way of improving the results rather than more points or
better tolerances.

C. Dynamics for Regions in the 2-D Bifurcation Diagram

We take each region in Fig. 11 in turn and discuss the likely
dynamics and their practical implications. Where applicable we
include time series plots of typical trajectories.

Fig. 17. Basin investigation results,(Q ;P ) = (10:96; 0:3).

1) Region 0: Outside the region bounded by 2-parameter
path of the primary saddle-node point. There are no known
stable (fixed point or periodic) solutions in this region.

2) Region 1: This region is characterized by reasonably low
values of the parameter , the existence of a stable steady state
at a higher (physically realistic) voltage, and an odd number of
unstable steady states at a lower (physically unrealistic) voltage.

Some parameter values in this region (i.e., ) may be
less physically valid than others, but as a whole this parameter
region can be thought of as being operationally “safe”. The de-
gree of this safety depends on the proximity to the paths of bi-
furcation points.

For investigation of basins of attraction in this region,
we choose four typical parameter values

and ; recall that the primary
saddle-node bifurcation occurs at .
The results are plotted in Figs. 12–14, and 16 respectively. Re-
call that the only physically realistic attractor in this parameter
region is the stable fixed point. All trajectories not leading to
this point diverge to (voltage collapse).

Each shows the randomly chosen initial values
projected onto the planes (plane

of generator variables) and (plane of load variables).
The values are color coded depending on whether they lead to
the stable fixed point (black) or lead to collapse (grey). We also
plot on each graph the stable (diamond) and unstable (square)
fixed points for that parameter value.

The first three of these figures show that there is a clear reduc-
tion of in the size of the basin of attraction as the reactive power
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Fig. 18. Typical trajectories at(Q ;P ) = (5; 0).: (a) attracted to fixed point and (b) attracted to periodic orbit.

increases toward the value at which Hopf and saddle-node bifur-
cations occur (but still remains some distance from paths of such
points). We may also see that the basin boundary suggested by
these computations does not have the hyper-spherical structure
as might be suggested by some Lyapunov functions. Instead,
there are points inside the basin of attraction (especially in the

direction) which lie a long way from the stable fixed point.
In Fig. 15 we plot some typical attracted and collapsing tra-

jectories at these three parameter values.
Fig. 16 shows the basin computations at a point

close to both the path of Hopf bifurcations and the
path of saddle-node points. There are very few points attracted
to the stable fixed point. The closeness of this parameter value
to the bifurcation points means that the basin of attraction for
the operating point has all but disappeared.

3) Region 2: The region is bounded by a path of cyclic folds
CF1 (i.e., limit points on paths of periodic orbits), a path of sub-
critical Hopf bifurcations , and a path of period doublings
PD.

In this region, there exist multiple stable states—a stable
steady state and a stable periodic orbit. There are also unstable
periodic orbits and unstable fixed points. If a disturbance were
to occur, it would be possible for the trajectory to be attracted
to the stable periodic orbit. The resulting oscillatory behavior
may lead to some form of collapse or shutdown.

We plot the basin computation for the parameter value
in Fig. 17. Some sample trajectories at

this parameter value, Fig. 18 clearly show attraction to both the
stable fixed point and to the stable periodic orbit, depending on
the initial condition.

4) Region 3: This region bounded by the path of Hopf bifur-
cations and period doublings. PD There are stable periodic
orbits and unstable fixed points in this region, but no stable fixed
points. The absence of period doublings in this region excludes
the possibility of cascades to chaotic behavior. Basin computa-
tions for this region, Fig. 19 show that the basin of attraction of
the periodic orbits is likely to be extremely small.

We plot a typical periodic orbit in Fig. 20.

Fig. 19. Basin investigation results,(Q ;P ) = (11:2; 1:0).

5) Region 4: A path of subcritical Hopf bifurcations
and a path of period doubling bifurcations PD bound the points
in this region.

Both stable fixed points and stable (period doubled) periodic
orbits are present at some parameter values in this region. (The
period doubling path is of period doublings of the stable peri-
odics emanating from the cyclic fold CF1, not from the subcrit-
ical Hopf points ). In some parts of this region there may
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Fig. 20. Periodic Orbit,(Q ;P ) = (11:2; 1:0).

Fig. 21. (a) Strange attractor,(Q ;P ) = (11:3768; 0:0), (b) Double pulse
homoclinic,(Q ;P ) = (11:25;�1:731537).

exist further period doublings and cascades of such leading to
chaos. There also exist boundary crises of periodic orbits, also
leading to loss of stability.

6) Region 5: No stable fixed points exist in this region, since
we have greater values of than at the path of subcritical
Hopf points.

This region will contain all manner of periodic orbits (stable
and unstable), chaotic orbits, possible boundary crises and
double pulse homoclinic orbits. Fig. 21 shows a typical strange
attractor at the parameter value
and an approximate double pulse homoclinic orbit at

. We would expect voltage
collapse to be the dominant behavior in this parameter region.

Since much of this region lies well into the “physically real-
istic” region, we would want to avoid it as an operating
region.

7) Region 6: This region lies between the path of homo-
clinic orbits om emanating from the BT-point and the path
of the first cyclic folds CF2 relating to thĕSil’nikov behavior.
It contains an infinite number of periodic orbits and no stable
fixed points.

8) Region 7: There is no known stable behavior or any pe-
riodic behavior (unstable or homoclinic) in this region.

VI. CONCLUSION

We have demonstrated that the dynamics of a simple power-
system model may be investigated with reference to a co-di-
mension 2-BT point. This acts as an organizing centre for the
2-parameter paths of saddle-node, Hopf and homoclinic bifur-
cations. The homoclinic orbits can be ofS̆il’nikov type, leading
to multiple periodic and chaotic orbits.

This bifurcation information can then be used to guide an
fuller investigation of the 2-parameter dynamics of the model;
allowing us to predict the dynamics occurring in different re-
gions. We have shown that significant reductions in the size of
basins of attractions of stable fixed points may occur well be-
fore actual bifurcation takes place.

We have discussed, in general terms, the numerical methods
used for this analysis, allowing for its application to larger prob-
lems. The power-system models clearly have a rich dynamical
structure; investigation of this is of interest to both mathemati-
cian and power engineer. We suggest that further investigation,
along similar lines, of larger (hence more physically realistic)
systems is both practically possible and highly useful.

APPENDIX I
NUMERICAL DETECTION OFBT-POINTS

In order to numerically detect and accurately locate
BT-points we must first be able to compute 2-parameter paths
of folds (or Hopf-bifurcations). This may be achieved by
defining a suitable system, roots of which correspond to folds
(or Hopf points). We can then apply a continuation method to
this system.

While approximating such a path of co-dimension 1 bifurca-
tion points in the two-parameter plane, we may check at each
iteration whether we are in the neighborhood of a BT point. For
instance, while following a path of saddle-node bifurcations we
might monitor whether the eigenvalue with the second smallest
magnitude changes sign in its real part. Having detected the pos-
sibility of a BT point we can then apply an algorithm to locate
the BT point to desired accuracy. Once again, this is by the so-
lution of a suitable extended system, roots of which define a BT
point. Such a system is

(5)
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Here, we are saying that we require a solution to the general-
ized eigenvalue problem . In practice, this
formulation of the BT-point detection problem is highly inef-
ficient. Given that our dynamical system (3) has dimension,
the Jacobian matrix for system (5) (which must be inverted in
a Newton-type solution method) is of dimension by

. A more efficient decomposition of this system, based
on methods proposed by [24] and [42], is now presented.

A. Decomposition

Lemma 1: Define

(6)

where . Then is nonsingular if (for instance)
or , and .

Proof: ABCD-lemma.
Theorem 2: (Griewank and Reddien [42], as presented in

Beyn [24])
Let be defined as above and let functions
and vectors be defined by the solutions to

and (7)

Then, roots of the system

(8)

also satisfy the generalized right eigenvalue problem given in
(5), and so define BT-points.

In addition, if we define and vectors
by

and (9)

then

(10)

where can be either or ; the roots of (8) and solutions of
(9) give

(11)

that is to say the generalized left eigenvalue problem for.
Proof: See [42].

B. Newton’s Method

Newton-type methods to solve (8) require us to solve the four
-dimensional linear systems in (7) and (9) (involving

inversion of and ) and then solve the -dimensional
system

(12)

where we use (10) to give the derivatives of and
can be calculated explicitly or numeri-

cally). The following theorem presents an efficient way to solve
this system, first shown in [42], but presented here in a slightly
different form and with a minor correction.

Theorem 3: If we find and from (7) and (9) as
above and solve the following three linear systems in

(13)

then, the Newton correction in (12) is given by
solution of the (3 3) system

(14)

and

(15)

Proof: Add a further two rows and columns to (12) along
with two dummy variables to get

(16)

(Note that the principal sub-matrix of this expanded matrix is
and that ). The first two “rows” of (16) can be rearranged
to give

(17)

Pre-multiplying this by we get

(18)
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We know from (7) that . The other three terms

involving are found as follows. Consider systems of the
form

(19)

where and . Pre-multiplying this by ,
gives

(20)

From (9) we have and . Hence
. We can let be successively and ; for

these three cases letbe referred to as and respectively,
giving the triple linear system (13).

Equation (18) now gives us (15) and also

(21)

This gives the first row of (14); the second and third rows are
given by substituting (15) into the last two rows of (16).

C. Summary

This decomposition of the BT-point detection problem gives
us a number of smaller systems to solve (when compared with
solving (5) directly), involving just 2 large matrices (and )
plus a 3 3 system.

In addition, we can use and (10) as part of efficient
branch switching algorithms in order to initiate the computation
of paths of homoclinic orbits and Hopf bifurcations in the neigh-
borhood of the BT point. Further details of this can be found in
[24].
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