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Bogdanov—Takens Bifurcation Points aBifnikov
Homoclinicity in a Simple Power-System
Model of Voltage Collapse

C. J. Budd and J. P. Wilson

Abstract—The bifurcation structure of a simple power-system saddle-node and Hopf bifurcation points and to the erosion of
model is investigated, with respect to changes to both the real and the basins of attraction of stable fixed points.

reative loads. Numerical methods for this bifurcation analysis In this paper, we consider a reduced power-system model
are presented and discussed. The model is shown to have a ' '

Bogdanov-Takens bifurcation point and hence homoclinic orbits; previously Inve_stlgated b_y a number of researchers and argue
these orbits can be ofSil’nikov type with many Coexisting periodic that the dynam|ca| behaVIOI‘ Of thIS mOdel can be beSt underStOOd
solutions. We may use the bifurcation calculations to divide the in terms of a Bogdanov—Takens (BT) bifurcation point and an
two-parameter plane into a number of regions, for which there associated (globa§il'nikov bifurcation. This model comprises
are qualitatively different dynamics. We classify and further 06 hyses modeling two generators supplying power to a load.
investigate the dynamical behavior in each of these regions, using Whilst hiahlv simolified f tand-noint of electrical .

a Monte Carlo method to investigate basins of attraction of various ' S 9 _y Simpli '_e !’om a s_an -poin 9 electrica er_lg_l—
stable states. We then show how this classification can be used toheering, this model is still very rich dynamically and exhibits
denote each regions as either safe or unsafe with respect to themany of the features of voltage-collapse that we are interested
likelihood of voltage collapse. in.

Index Terms—Basinofattraction, bifurcation, Bogdanov— We show some unobserved behavior in this system and in
Takens, continuation, dynamical system, homoclinic orbit, Monte particular demonstrate that the parameter regimes which might
Carlo, power system, shilnikov, Takens—Bogdanov, voltage col- be considered stable may be overly optimistic. In particular we
lapse. identify the existence of a BT bifurcation point with nearby

Sil'nikov-type homoclinic orbits. The BT-point acts as a orga-
l. INTRODUCTION nizing centre in the bifurcation structure of the model and plays

. L a significant role in helping to understand the overall mechanism
LECTRICAL generation and distribution networks form g Ping

of voltage collapse through the destabilization of fixed points
some of the largest and most complex manmade syste

Whil s of ; d their individual d the erosion of basin boundaries. BT-points will arise natu-
l€ many aspects ot power systéms and theirindividual Comyy iy jyych larger systems as operating parameters change and

ponents are well understood_ and have been researched N ghe te we consider the observed dynamics of the 3-bus model to
depth, other phenomena evident in these systems remain eel

ivel lained. E ; d oth . a fairly general explanation for much of the dynamics asso-
atively unexplained. Economic and other pressures mean tghe 4 i voltage collapse. Because of the importance of the

power systems are now being run ever closer to their Opera;Fﬁ}-pointwe consider in detail techniques for calculating it both

limits. This has lead to an increasing number of “voltage c or the reduced system and also for more complex systems.

:apse" inclzidclants [ﬁ]g[:ﬂ’ r_esulting intrs]ystelT br((ejakdoyvn ton 4 The layout of the remainder of this paper is as follows. In Sec-
arge scale. In such behavior we see the voltage dropping to 280, || we introduce the model used and briefly discuss some of

in a very short time. . the dynamics associated with voltage collapse. In Section Il we
Greater awareness of modern mathematical methods, m.

: Over the last f ber of h S3:]Saittraction and their numerical approximation. In Section IV we
ems. Over the fast 1w years, a number of researcners @&, ,nsirate the existence of saddle-node and Hopf bifurcations,
discussed the application of dynamical systems and blfurcatlgrqd show how these lead to a BT-point and a closely related

theory to power networks.. !n partlculgr voltage c_oIIapsg h%ﬁl’nikov bifurcation. In Section V we relate the existence of
been related to the destabilization of fixed operating points tﬂte various bifurcation points to the overall dynamics observed

in the model. In particular, we study the basins of attraction of
various attracting states and differentiate between those solu-
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We use the following system parameters, which are all dimen-
sionless, apart from the angles which are in radians. Generator
parametersiM = 0.3,D = 0.05,P,, = 1.0. Load parame-
ters: K, = 0.4,K,, = 03, K, = —0.03,K,, = —2.8,

K2 =217T=285FP = 0.6,Q9 = 1.3. Network parame-
ters:V,, = 1.0,Y,, = 5.0,6,, = —57/180,V} = 2.5, Y] =
8.0,0( = —127/180.

In the load, the constant parts of the real and reactive power
demands P, and@;) are parameters which could in principle
= be varied in an experiment. In principle we could also vary the
system damping and inductance or other parameters, but we
shall not consider doing this here. By varyiy and 0; we

identify certain types of dynamics of (1) and the transitions be-
Il. 3-Bus MODEL DESCRIPTION tween them.

0p—)79%

%é\/ﬂzén c—= i (n

=

enerator Load : { Generatos

Fig. 1. Circuit diagram for the 3-Bus model.

We consider a 3-bus model introduced in [4], [5] and fur-
ther investigated in [6]-[11]. Whilst being simple, it has the IIl. B IFURCATIONS AND NUMERICAL METHODS
same basic dynamical structure of more realistic power-systen Basic Definitions
models. The model comprises two generator buses and a lo
bus connected according to the circuit diagram in Fig. 1. . . )

: ; . : ra[neterlsed autonomous dynamical systems defined by the so-

One generator is modeled by a simple swing equation mo%at.on to then-dimensional ODE
and the other is a slack bus acting as an infinite power source at
fixed voltageVy Z . _ _ o = flx,A) 3)

The real and reactive loads at the third bus comprise fixed , N .
real and reactive load8; and(},, in parallel with an empirical with sfystem s}ate vi\nablese AS R,  parameters, € R
model of induction motor load suggested by [1]. We note that #d.f: £ x R™ — R" a smooth function. For the 3-bus model
general, many power-system load models involve “static” reld-= 4% = (6, wm, 6, V) @ndA = (P, Qu). _
tions between the real and reactive lo&t&), and the supplied 1) Bifurcations: The overall dynamics of (3) can be partially
voltage V" and relative phase angte,. There is no reason to understood in terms of the bifurcations that occur as one of the
presuppose that the load will be independent of the derivati\fé@hponems in the param(_atkatchanges. At such a b|furgat|9n
of V andé,,. If the dynamical behavior of power systems i@oint the flow mappmg defined by (3) u'n_dergoes.a qualitative
to be properly investigated it is necessary to to use modelsctg'f“"m_ge [12]. Bifurcation can be classified as either global or
the system components which involve time derivatives of thgcal; static or dynamic. All are observed in the 3-bus system.
system states (i.e., models which are truly dynamic in the math_LocaI static bifurcations of fixed points may occur when the
ematical sense). system Jacobian matrik, has a simple zero eigenvalue, such

Normally, the application of Kirchoff's laws to calculate the?S thesaddle—nodg blfurcauo_wher_] two f|?<ed points coalesce.
power flow through the network would give an algebraic conl1€Nn/f= has apair of purely imaginary eigenvalues, the system
straint on the system leading to a differential-algebraic systefi2y undergéiopf bifurcationin which the fixed point becomes
However, with this simple network we substitue, P, and(; unstable and is replaced by a nearby periodic orbit satisfying

into the dynamical part of the model and write the entire systepy?) = #(t + 1) for someT". This is an example of a local, dy-
as a four-dimensional ordinary differential equation namic bifurcation. From a power engineering perspective, since
oscillatory behavior is undesirable, we can consider Hopf bifur-

b1 = Win cations to be generally destabilising, even though they may not
lead directly to voltage collapse. Both of these forms of bifur-

a’ﬁihe 3-bus model (1) is an example of a general class of pa-

1
U:)rn = _(_drnwrn + Prn - Pe)

M cation are observed repeatedly in the 3-bus model.
. 1 ) It is possible for periodic orbits (which may or may not have
b= K (_K(I'UV — K2 V7 Q= Qo — Ql) been created in a Hopf bifurcation) to themselves undergo

qwl changes at local bifurcations in the Poincaré map associated

V= TK,.K,, (KpwKqur V? + (Kpu Kgo — Ko Kpo)V with the orbit. In particular, we segeriod doublingpifurcations
_ _ _ when an eigenvalue of this map equald and cyclic fold
HEpo(Qo+ QL= Q) = Keo(Po+ PL=F)) . (1) i cations when an eigenvalue equals 1.
whereP., P, and(; are given by We alsg observe glopal bifurcat.ions leading to more dramatic
changes in the dynamical behavior of the system. An example
Py = —-VgVYysin(b + 65) — V,, VY, sin(6 — 6, + 6) of such a global bifurcation occurs ahamoclinic bifurcation

. . A periodic orbit may grow as a parameter changes so that it
1 / 2

* (1//0 Sn}(eO) * lesm(em))v intersects an unstable fixed point to give an infinite petiod

Qr = —VVY;c08(8 + 6p) = Vin VY c08(6 = 6m 4+ 6m)  moclinicorbit {z(t) : t € [—o0, 0]} for which there is a point

Y] cos(8)) + Y, cos(6,,))V?
+ (Y5 ( 0) + Yo (0m)) , _ 1The parameterised function mapping all possible states of the system at time
P, =V, VY, sin(6 — b, — O) — V.. Y, sin(f,,).  (2) 1 to their states at timgt + 7).

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on July 27, 2009 at 08:25 from IEEE Xplore. Restrictions apply.



BUDD AND WILSON: BT BIFURCATION POINTS ANDSILNIKOV HOMOCLINICITY 577

«* with z(t) — «* ast — +oo. This bifurcation is global as it a neighborhood of(”’. We could choos€{" and then find a
cannot be detected merely by local analysis alone (for instarreet of (3) using a Newton-type method; however this “param-
by monitoring eigenvalues gf. atz*). eter” continuation method may fail@gl) is at or near a turning

A more detailed mathematical description of all these copoint of the solution locus. Instead, if we calculate the tangent to
cepts can be found in texts such as [13]. It should be emphasizigd solution locus atzo, §°>) (the “pseudo-arc”), take a point
that bifurcations do not give the whole picture foraphenomenq)@’ Q1) some distance along it, and then iterate to find a new
such as voltage collapse. Here, a very important role is playgebd point (21, §1>), we will have a highly stable algorithm.
by the basins of attraction of the relevant attractors, such as #l§s is the basic method implemented in numerical bifurcation

fixed points, periodic and chaotic attractors. packages such as AUTO [16] and in the authors own code. The
pseudo-arc continuation method has been applied to power engi-
B. A Brief Description of the System Dynamics neering problems but is not always known as such—for a useful

The system represented by the 3-bus model (1) ideally oprvey of the use of such methods in power systgms see [17].
erates in a fixed, stable, steady state. If such a state is unicﬁ? method may be extended to compute the loci of other dy-
and globally attracting—or at least has a large basin of attrgr@mically mte_restlng solutions such as loci of penodlg orbltg.
tion—then we can consider the overall system to be operating! € detection of both saddle-node and Hopf bifurcation
safely. Large deviations of initial conditions from the stead§©ints is then determined by monitoring the eigenvalues
state (caused, for example, by a power line failure or some ottpérthe linearization of the system during the course of the
fault) will not prevent the system from returning to its Stab|_gomputat|on. To calculate the loci of such b|furcat|0_n points
operating conditions. For a wide class of parameter values, iffis2-Parameter space, a suitable extended system is formed,
known [14, Ch. 14], that the power systems with networks of thige rqots of which define pomFs on the locus. The continuation
type will generally have two (or indeed several) fixed operatirfd90rithm may then be applied to the extended system. In
points where all time derivatives vanish. One of these pointsREactice, the size of these extended systems may be relatively
a stable attractor whereas the other is an unstable saddle poffge, SO reformulations of the problem and efficient solution
As eitherP, or Q; are varied then the fixed points also varyMethods must be considered. For instance, see [18], [19].
typically meeting at a saddle-node bifurcation point at which .
we have maximum power transfer. Past this point, there are Ro BT Points
fixed operating points and typically the power system is unstableThe algorithm above accurately computes paths of Hopf and
with animmediate collapse of the voltage. Such voltage collapsaddle node bifurcations. In particular it can identify special
corresponds mathematically to a solution of (1) whicluis values of the second parameter at which these two paths inter-
boundedn finite time. Voltage collapse can occur either whesect. Such a point is generally referred to as a BT point. BT
there is no attracting bounded solution or when an initial stap@ints have been shown to play animportantrole in ‘organizing’
(for instance caused by a transient due to a local power failutbe dynamics of a variety of physical systems of high dimen-
lies outside the basin of attraction of such a bounded state. sion, for example [20]-[22]. A similar organization is seen in
The computation of saddle-node bifurcations is importarthe 3-bus model.
as it defines the maximum possible region of safe operation.A BT-point is a co-dimension two bifurcation point; where a
Various attempts have been made to obtain estimates for thtised point of the system has a Jacobian maykixwith a zero
points in more general systems. However, as we demonstreigenvalue of algebraic multiplicity 2 but of geometric multi-
below, voltage collapse can easily occur prior to saddle-node plicity 1 [13]. Subject to satisfaction of transversality conditions
furcation, due to complex behavior arising from coexisting p@nd absence of certain symmetries in the system [13] this point

riodic, steady-state and chaotic solutions. occurs when there is a tangential intersection, in the 2-param-
eter plane, of a path of folds and a path of Hopf-bifurcations. An
C. Numerical Path Following Methods algorithm for the calculation of these points in a larger system

The bif i d ibed ab ; is given in the Appendix.
e bifurcations described above occur as a parameter (sa or parameter values close to that of the BT-point the dy-

the rea<_:t|ve powe®,) is vane_:d. The value o, at which the namics of the system can be reduced to that of a much simpler
bifurcation occurs depends in turn on other parameters Suchs%tem given by one of the following normal forms:
P;. To investigate the system fully it is important to have a nu- '

merical method which can both look at the varying dynamics t=vy
as one parameter is varied and can also folpathsof bifurca- - 2
tion points in a second parameter, such that if a (saddle-node or Y=kt £y @
Hopf) bifurcation occurs a@P then the value o can be This means that near a BT point, the dynamics of the system
determined as a function of the second parameter (su¢h)as (3) are governed by the solution of (4) on a two-dimensional
A useful tool for such a numerical investigation is Keller'g2-D) center-manifold [23] of the larger system. The dynamics
pseudo-arc length continuation method. Given a fixed paint on this manifold, in particular the behavior of the periodic and
of our system at a particular parameter va@ﬁg), the implicit homoclinic orbits, completely describes the local behavior of
function theorem [15] implies the existence of a locus of sughe original system. This remains true even for systems of much
fixed points in parameter and phase space. We wish to apprdxgher dimension than considered here and it is for this reason
mate this locus by finding a new fixed point for somngl) in that we believe that an analysis of the BT-point for the simple
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3-bus model is extendable and will give insight into the generahsins of attraction. A widely used method is the construction
behavior of more complex problems. of a Lyapunov (or “energy”) function for the system; trajecto-
A more detailed analysis [13] of the normal form (4) showses starting from points where this function is concave will con-
that a path of homoclinic orbits also emanates from suchvarge to the stable point about which the function is constructed.
BT-point. That is along a curve in thg?, (1) space there is a Hence the boundary of the region of concavity of the Lyapunov
homoclinic orbit. At the BT-point this curve is also tangentiafunction is an estimate of the boundary of the basin of attraction.
to the loci of the saddle-node and Hopf points. As we shall There are two reasons why this approach has not been
demonstrate, the existence of this homoclinic orbit hasfellowed here. Firstly, although such functions have been
profound effect on the overall stability of the 3-bus system. Aonstructed successfully for a wide class of power-system
further discussion of the numerical detection of BT-points odels [26]-[28], it is not clear how to construct a Lyapunov

given in the Appendix. function for the four-dimensional system (1) with the dynam-
ical load model of the type we consider necessary for proper
E. Branch Switching at BT-Point understanding of the voltage collapse problem.

Starting from a BT-point, continuation methods can be usedSecondly, and more importantly, the Lyapunov function
to determine paths of folds, Hopf-bifurcations, and homoclini@ethod will only give a subset of the basin of attraction. There
orbits in the( Py, @, ) parameter space. However, to do this wg'ay be points outside the region of concavity which have
will need to calculate an initial point on each of the paths. trajectories that converge to the attractor. If the basin boundary

For the computation of a paths of folds and Hopf points enfs highly structured (e.g., fractal, or if there are multiple
anating from the BT-point, the initial step in the continuatio@ttractors) the Lyapunov estimate may be very bad indeed. Itis
algorithm will converge provided we do not attempt to step toalso not known precisely whether the Lyapunov function gives
far from the BT-point. It is important not to choose a value toa good indication of the change in the basin as parameters vary.
small, as the Jacobian of the defining system for the bifurcationA second widely used class of methods for calculation of
point locus may be singular [20]. basins of attraction are cell mapping methods [29]-[33]. These

Details of a method to start the calculation of the path of hgaethods avoid the calculation of long time trajectories by
moclinic orbits emanating from the BT-point are given in [24]dividing the region of investigation into a number of discrete

This gives us a methodology for a more complete detection‘@fells”, trajectories from which define a discrete mapping from
the bifurcation structure. First locate a fixed point of the systeghch cell to another. The cell mappings can be analyzed in
(e.g., a stable operating point); perform continuation on thigrious manners to give a full picture of the long time trajectory
fixed pointand detect a saddle-node bifurcation. Compute a pgdhavior of the system and hence the basins of attraction. These

of saddle-node bifurcations and detecta BT-point. Finally, COfjethods are extremely useful for low dimensional systems.
pute paths of Hopf and homoclinic bifurcations emanating frofjyever, the calculation of the mapping from cell to cell does

the BT-point. not scale well to dimensions greater than 3 and we wished to
) . use a method which is applicable to larger systems.

F. Basin Erosion A third method of investigation of the basins of attraction is
When considering the possibility of a systems such as ttee calculation of stable manifolds of the fixed points and peri-
3-bus model (1) starting from generalinitial condition and odic orbits of the system. These manifolds will act as boundaries
potentially exhibiting voltage collapse, we are interested in thetween basins of attraction. A number of efficient and general
basins of attraction for the attractors of that system. These argmerical methods have been proposed for such calculations;
the sets of initial state values for which the corresponding traee [34] and references therein. Although these methods gen-

jectories have the property that they converge to the stable fixeghlize theoretically to high dimensional systems, like the cell
point, or to a stable periodic orbit, or to a chaotic orbit (and areapping methods they are not currently practical for dimen-
thus bounded). These basins are strongly parameter dependgans greater than 3 or 4.
It is well known that even for very simple dynamical systems 2) Monte Carlo Methods:We may randomly select a finite
the boundaries of these basins may be highly complicated, evermber of starting points within our region of investigation. We
fractal [25]. For calculations of safety margins and for avoidingan then use a numerical procedure to calculate the trajectories
voltage collapse we must find how these basins change in sitarting from these points, over a suitably long time interval, and
and/or form as parameters change, particularly as we approagamine whether they lead to an attractor or to collapse. This
bifurcation points. method has been used with success in [35] to determine a wide
From an engineering perspective, the calculation of thegariety of the possible dynamics in a dynamical system, some
basins will give information as to what perturbations away fromf which were not found by path following methods.
the stable fixed point are permissable (i.e., the trajectory returnsThis method has several benefits. It is easy to adjust the ac-
to the desired operating point) and which are inpermissatderacy of the method by simply changing the number of ini-
(i.e., convergence to some other attractor, or voltage collapséil points, the error tolerance of the integration routine and the
In practice, we cannot investigate the whole of phase spatime period of the total integration. This allows a preliminary
and so we must pick a bounded subset to use as our regiofingestigation at low tolerance; subsequent calculations can be
investigation for studies of basins of attraction. performed at higher accuracy once regions of interest have been
1) Review of Methods—Lyapunov Functions, Cell Mappindentified. The method is adaptable to systems of higher dimen-
and Manifold Estimation:Various methods exist for estimatingsion and of arbitrary structure—we may select an integration
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routine which most efficiently calculates trajectories for that
particular problem. The method is simple to code and to use. Al-
though this is a rather brute force approach to basin calculation,
the continuing rapid fall in the cost of computational capacity
makes this method viable as an experimental tool and perhaps
an industrial one also.

Some care must be taken in the choice of integration routine
used. The computed trajectories are only estimates of those in
the real system, but we desire them to have the same qualitative
behavior; that is we wish the numerical schemes, considered as
discrete dynamical systems to “shadow” the underlying contin-
uous system. It has been proved that several commonly used in-
tegration methods do not have this property [36]. To guarantee : 2 : ) C 0 e
proper qualitative results, for DAE systems and stiff systems
such as power-system models, we must use methods suclfi@®. Bifurcation diagram i), for the 3-bus model’, = 0.
backward differentiation—even though they may be more com-
putationally expensive. 15| CF

For the results below, integration was initially performed =L
using the RK-2(3) solver with adaptive step-sizing, which is b el
a default method in Matlab. However, the step-sizes used by H-"s 0
this explicit method were too small to be efficient for the long ol e
time period calculations necessary; in addition the step-size S
selection algorithm created quite obvious errors and disconti- = | AR
nuities, probably related to the stiffness of the system (1). As s s PD2
an alternative, the implicit second order method TR-BDF2 [37] \
was used with much greater success. I

IV. BIFURCATION ANALYSIS OF THE 3-Bus MODEL . ‘ , /

L L L )
10.7 10.8 10.9 11 31 1.2 1.3 1.4 115

The analysis and methods developed in the last section can !
now be applied to a full study of the dynamics of the 3-bus modg}; 3. gifurcation diagram i, for 3-bus model (Detail—periodic orbits).
(2). To do this we firstly consider varying separately the two pa-

rametersy; andr, deter_mlne_: the bifurcation points, and the.rt‘herefore, of potential interest and so unstable paths must be cal-
follow paths of these points in both parameters. The resultin

Mlated and considered carefully.

f:alcu_lation allows us to divide up parameter space int_o rE."giOHSOn the branch of stable fixed points exists a pair of Hopf-bi-
in which the behavior of the overall system will be qualltatlvgl¥ rcation points, a'~ = 10.946 09 andQ{” — 11.406 76.

different. In the next section we give examples of the dynami e first of these two points is a subcritical bifurcation where an

behavior in each region. unstable periodic orbit coalesces with the fixed point (as we in-
creasdy;). The second is supercritical giving rise to a stable pe-
riodic orbit. Paths of periodic orbits bifurcate from the primary
1) Varying the Reactive Power Demanthcreasing reactive branch at each Hopf point (Fig. 3). The unstable periodic orbit
power demand is believed to be a factor in many voltage collagséurcating fromQ{{ ~ subsequently coalesces with a stable pe-
incidents; for this reasof); used here and elsewhere [5] asiodic orbit in a cyclic fold bifurcation at)$* = 10.817 66.
the primary continuation parameter. The bifurcation diagram @his point has a significant effect on the stability of the elec-
fixed points of the system (1) with respect@ is shown in trical system. FoQ; < QfF the only stable operating point
Fig. 2, with fixed P, = 0. of the 3-bus model is a fixed point, whereas @ > Q¢F
Here, the upper branch is stable close to the saddle-nodethe fixed point coexists with a stable periodic orbit. As the pe-
furcation atQ$N! = 11.41146 and the lower branch is un-riodic orbit has a non trivial domain of attraction, it is quite
stable. possible that the 3-bus model of the power system may settle
The two saddle-node bifurcations on the unstable branchib a stable periodic orbit. This may well not be a safe oper-
QFN? = 3.92380 and QFN? = 0.909 44 have not been pre- ating condition, although it is bounded and does not result in a
viously presented. Previous analysis of power-system modetstage collapse. We show presently that many cyclic folds are
has not paid much attention to the unstable branch of fixadsociated with the homoclinic orbit which emanates from the
points. However, these points are important; in determining tBa-point and that they may be computed as parameters vary. If
maximum basin of attraction associated with stable fixed pointg is increased fron@$t then the stable periodic orbit under-
and when they lie on a homoclinic orbit or are associated wifpes a sequence of period doubling bifurcations, the first being
boundary crisis events destroying a strange attractor. Any strat€)'°! = 10.873 27, and subsequently evolves into a strange
ture in the unstable branch, such as the two bifurcations, &tractor. The attractor gives an erratic behavior in the electrical

A. 1-D Bifurcation Diagrams
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s e tended systems used for continuation of saddle-node and Hopf
. ~ bifurcations are given in [19] and are implemented in AUTO
’ A [16] and other packages. To follow cyclic fold points we use the
/ \ method as implemented in AUTO [16].
H+ 1) Physical Meaning of Parameter ValueShese curves
o \ naturally all continue into the parameter range< 0. This is
* SN. apparently an unphysical approach as this would correspond to
osf \ ;' a scenario in which the loads (or at least the constant part of
* H the empirical induction motor load) are providing power to the
i N / rest of the network. However, our aim is to investigate the qual-
s e itative behavior of a highly reduced system and demonstrate
R the effectiveness of certain methods, so there is a two-fold
Y+ = =% p A > g 2 justification for considering thé’, < 0 parameter region.
It is possible that by following paths of certain bifurcation
Fig. 4. Bifurcation diagram idP, for 3-bus model(, = 11.25. points that we will naturally consider values of the parameters
which are not especially physical; for exampleRf < 0.
system, but the resulting orbits are all bounded and are indagglvever, by identifying organizing centres (such as the
not very far from the fixed point. BT-point) for the dynamics in these regimes we can infer
At the pointQP® = 10.8943, it was observed in that the 5 |ot about the dynamics in the more physically interesting
strange attractor disappears in a boundary crisis where it colligggions of parameter space. So we may step into the region in
with the unstable manifold of the neighboring saddle point [3§}hich the model is possibly invalid in order to find dynamical
(th|S is also observed in a similar System with different paramShenomena which may have effects in the “valid” region; such
ters [9]). IfQ, is decreased from the val@’*, the super-crit- a procedure is widely used in other investigations of physical
ical Hopf bifurcation, then we observe a series of super-criticystems. In addition, the position in 2-D parameter space of
period doubling bifurcations, leading to a chaotic attractor. Thlme structures and phenomena described may be dependent on
in turn, vanishes af); = 11.3768. further parameters. Hence if these parameters were to change
For 10.8943 < Q1 < 11.3768, there are no bounded at-or be adjusted, the phenomena occurring in a “physically
tracting states and most initial conditions lead to voltage CQ!nrea]istic" region could move to a parameter region where
lapse. they might be observable.
We present figures of the strange attractor, of periodic orbits Concisely—we are not troubled by takify < 0 since it
and of collapsing trajectories in Section V, in our discussiafay lead us to find things out faP;, > 0 that we would not
of the system’su-limit sets (and their meanings) at differenthave found otherwise.
parameter values. 2) 2-D Loci of Saddle-Node Bifurcationsfhe paths of
2) Varying the Real Power Demandfo clarify and unfold the main saddle-node bifurcation and the two subsidiary
the structure observed in the above section we now considggdle-node bifurcations on the the unstable branch of fixed
varying the real power dematd. Starting from the stable fixed points are given in Fig. 5. The main fold can be thought of as
point atP; = 0,(; = 11.25 we compute the fixed point as athe maximum reactive powep, transfer point over all values
function of P1, keeping@; fixed. This yields the bifurcation of p,. The 2-D diagram shows that the curve of saddle-node
diagram presented in Fig. 4. This bifurcation diagram has @ints itself has a maximum value whén = 11.45 occurring
approximately circular structure, with saddle-node bifurcationghen P, = —1.5. Observe that this is close to the value
at PPNt = 1.44896 and PPN ? = —4.18066. We observe that optained wherP, = 0. Thus, the observed maximum reactive
whereas the bifurcation &°N ! is a coalescence of a stable angower point given whet, = 0 is in fact close to the point of
an unstable fixed point, that &>~ 2 is a coalescence of two maximum reactive power transfer over all values-of
unstablefixed points. For this fixed value af,, these two bi-  3) 2-D Loci of Hopf Bifurcations:A similar diagram to
furcations give the maximum and minimum real power transf@fat of the locus of saddle-node bifurcation points is plotted
limits. for the paths of the sub-critical and super-critical Hopf bifur-
As in the previous investigation, we observe a super-criticghtion points (Fig. 6). It can be seen that #&r > 0 the two
Hopf bifurcation atP”* = 1.283 83 leading to the creation of a Hopf points approach each other and eventually coalesce at
stable periodic orbit. Again, these orbits exhibit cyclic fold angb, ~ 1.46. The periodic orbits and chaotic structure in the
period doubling bifurcations. We will see presently that furthgegion between the Hopf points vanishes fr> 1.5 leading
bifurcations from these periodic orbits leads to more complgy relatively simple and predictable dynamics in this region of

behavior. parameter space. This scenario of the annihilation (or creation)
) ) ) ) of complex periodic behavior has been observed in many
B. 2-D Bifurcation Diagram and BT Point systems, see, for example, [39] and [25].

We now extend our continuation methods to compute pathsFor P; < 0, the sub-critical Hopf bifurcation occurs at con-
in the (P, @,) parameter space of the saddle-node, Hopf, asdtently lower values of}; as P, is decreased. This implies
cyclic fold bifurcation points computed in the previous two sulthat the system could be more susceptible to destabilising pe-
sections, as described in Section 1lI-C. Examples of the emedic behavior at these lower real power demand. In contrast,
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Fig. 5. Paths of saddle-node (fold) bifurcations in 3-bus modeR4ir():  Fig. 8. 2-D bifurcation diagram for 3-bus model, i —; parameter plane,
parameter plane. including BT-point.

15

T the value at which Hopf bifurcation occurs, with a consequent

. T reduction in the parameter range in which we see only a stable
T N1 fixed point. The locus of the cyclic fold point intersects the
J locus of the Hopf points a@); = 11.14798, P = 1.31408.

This curve of cyclic folds is not unique; other curves of
cyclic-folds associated with th8il'nikov bifurcation will be
presented in the next section.

5) BT-Pointin the 3-Bus ModelThe tangential intersection
of the paths of saddle-node and Hopf bifurcation points gives
strong evidence for the existence of a BT-point as described in
-ter i o the last section. The existence of this point is determined compu-
tationally by monitoring the second rightmost eigenvalue of the
o ° = system Jacobian matrix as we compute the path of saddle-node

bifurcations in Fig. 5. This second eigenvalue must vanish at
Fig. 6. Path of Hopf bifurcations in 3-bus model.ih—), parameter plane. the BT-point; if it changes sign over two successive continua-
tion steps then the BT-point must lie between them. To further
refine the location of this point we apply the algorithm described
2 in the Appendix, using one of these two saddle-node bifurcation
points as an initial guess.
Applying this method to the 3-Bus system gave a

25 Ty

‘ BT-point at @, = 11.45907, P = —1.41946, (6;m,wm,

VYT = (0.42224,0,0.21355,0.93164)7. The corre-

< sponding eigenvalues of the system at this poinoae—3.059
and —41.955. Observe that two of these are real and negative
o and have no effect on the dynamics, merely indicating the
At rate of convergence onto the centre-manifold of the BT-point.
I Pt The BT-point now acts as an organizing centre for paths of
e saddle-node bifurcations, Hopf bifurcations, period doubling

fe T we o wa dﬁf W W Ttz nd bifurcations and homoclinic orbits.
Fig. 7. Path of cyclic folds in 3-bus model, i —); parameter plane. C. Homoclinic Orbits

The theory discussed earlier ensures the existence of a path
the path of the right-hand, supercritical, Hopf bifurcation apf homoclinic orbits in( P, ()1 ) parameter space starting at the
proaches the path of the main saddle-node tangentially as B/&-point. Each such homoclinic orbit contains an unstable fixed
decreasé”; . This can be see more clearly if we plot both pathgoint.
at once, Fig. 7. The method described in Section llI-E was tried for (1) but

4) 2-D Loci of the Cyclic Fold PointsiThe branch of failed in practice, as the initial guess for the homoclinic orbit
cyclic fold points which includes the point observed whewas not sufficiently precise. An alternative procedure which did
P, = 0,@; = 10.81766 may be followed using the methodwork was instead to approximate the path of homoclinic orbits
described above yielding the curve shown in Fig. 7. Obserlg a path of high period periodic orbits (e.g., peribti= 200).
that this curve exists for values 6f; in general rather less thanTo determine such an orbit, the path of periodic orbits created
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Fig. 11. Full 2-D bifurcation diagram.

in a Hopf bifurcation at’, = —1.31329 and@; = 11.45918
was followed asP; was varied until the orbit had a peridd.
The locus of the period@™ orbit was then followed a$; and
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Fig. 12. Basin investigation resul@l, P1) = (0,0).

(21 were varied. The resulting curve in parameter space of these
high period points is then shown in Fig. 8.

The resulting computed curve is clearly tangent to the curve
of Hopf and Saddle-node points at the BT-point. Furthermore,
the curve has a high curvature at this point. This curvature indi-
cates that the normal form will only be an accurate reduction of
(1) very close to the BT-point and this explains the difficulties
with the first procedure for calculating the homoclinic orbits.

We illustrate the above calculation by giving the trajec-
tory of the resulting high period orbit in the two cases of
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Fig. 13. Basin investigation resul@):, 1) = (5,0). Fig. 14. Basin investigation resuli),, P) = (7.5,0).

(@, 1) = (11.45916,~1.33260) which isr close to the 5 — 1125 and calculate the periodic orbits emanating from
BT-point and (Q1,P1) = (11.43866,—-1.05069) which he Hopf pointPf+). A plot of the time period of the orbits
is rather more distant (Fig. 9). Observe the change in 188 this path (Fig. 10) show the period increasing with an os-
qualltgtlye_ form of the orbit n these two cases. _ cillatory pattern, with orbits of increasing period converging
1) Sil'nikov Homoclinicity: The 3-Bus system contains ho-ygh multiple cyclic folds”CF ™ toward the homoclinic orbit
moclinic orbits of Sil'nikov type where the homoclinic orbit 4 Pl = —2.30456. This pattern is characteristic of the be-
intersects a fixed point which is a saddle focus (i.e., it hasiayior of a (global)Silnikov bifurcation, with a sequence of
one d|m.enS|onaI unstable mann‘old,' and its two least Stabfﬁultiple cyclic-fold points also accumulating onto the homo-
stable eigenvectors have complex eigenvalues and span a giRic orbit. It is also possible to follow the periodic orbit cre-
space.) These homoclinic orbits are sometimes referred togsq in the period doubling bifurcation & = —0.626 82.
“saddle-focus” homoclinics. Assume the linearization arounfhis orhit also displays an oscillatory structure as it converges
the unstable fixed point contained within the homoclinic orbiy\yard a double-pulse homoclinic orbit.

has one positive real eigenvalue = « > 0 and nextrightmost ¢\ e examine the eigenvalues of the unstable fixed point at
eigenvalues are a complex conjugate paig = —3 £ yi. We o _ 1795 pi — 230456, we find thats = 0.01344
can define a useful quantitys = /3/«; this can be thought of ¢, ming our observations. The value ®thanges along the

as the_ ratio of the_speed _Of rotation and the _SpeEd (_)f_ejec_t'\ggth of the approximate homoclinic orbits, accounting for the
of orbits near the fixed point [40]. The homoclinic orbit is Sa"é]ualitative change in the orbits shown in Fig. 9.

to be of Sil’nikov type if § < 1. In this case the linearization
af the urjst?bl_e flxedl p0|r'1ttr|]s d(t)n'lzlnated t.}y It:? rt'ﬁhtmOSt’ Ct(') tion of an infinite set of cyclic fold points; 2) the creation of an

ENex,dpalr 0 _elgelnva geti he sta I"a _manlb(_)t IS Ien esseg 'tai inite set of period-doubling bifurcations either side of each
wo dimensional, and the homoclinic orbit Spirais aroun hf‘tA)Id; 3) the existence of complex chaotic behavior close to the
fixed point as it approaches it. In addition there is a charact?

The main features of Sil’nikov bifurcation are: 1) the cre-

oo . . o . ; omoclinic orbit. In the latter case, it will be very difficult to re-
istic bifurcation diagram for the periodic orbits near this type q

h linic orbit. and h o b id about th olve which part of this region is liable to lead to a voltage col-
OmMOCAnIc orbit, and much can aiso be said about the preserllgbase_ We can however calculate the path of cyclic folds passing
of chaotic orbits [41].

o . o _through <PF'L = 11.25 which acts as a boundary for this
This is well illustrated by considering the 3-Bus model it-_ . gn <1 G 2 y
. X ) . . region in the 2-parameter plane.
self. Consider the 1-D bifurcation diagramih (Fig. 4) where . . . .
This particular form of the dynamics, while important, occurs
2This ratio is not to be confused with our state variahlphase angle at load. in this example for nonphysical values of the real power demand
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Fig. 15. Typical trajectories, (a, 0§21, P1) = (0,0), (¢) (Q1, P1) = (5,0), (d) (@1, P1) = (7.5,0).

P;. However, in contrast, the loci of some of the cyclic fold and One interpretation is to think of the parameters as real, the-
period doubling bifurcation points created at this bifurcation caretically measurable values which change over time (but over
be followed by continuation i, and(}; into more physically a time scale much larger than that of individual system trajec-
interesting regions of parameter space. tories at a particular fixed parameter value). So considering all
In an exciting new figure (Fig. 11) we plot all these loci. Thiother parameter values as fixed, we would be interested in what
gives whatwe believe is a complete picture of the structure of thappens as we move continuously through parameter space, es-
bifurcations in the two parameter space. This picture is likely fgecially in the case where we are initially at a stable steady state
be similar in any related power-system models with a BT-poiand the experience a bifurcation as our path through parameter
and an associatesil’nikov bifurcation. space intersects a path of bifurcation points of this fixed point.
Alternatively we can think of the parameters as being fixed
and use the bifurcation diagram to explain the behavior of the
V. THE IMPLICATIONS OF THEBIFURCATION DIAGRAMON THE  gystem at those fixed parameter values, in terms of the dynam-
SYSTEM DYNAMICS ical objects (e.g., stable and unstable fixed points, periodic orbits

The significance of the previous calculations is that we can @d homoclinic orbits) that the bifurcation diagram tells us may

vide up parameter space into different regions where we exp@EPu_r at that point. This could be useful if we assume the system
to see contrasting dynamical behavior. This allows us to esdt this parameter value to model the behavior of power system

mate which parameter regions are likely to be dangerous fréfter a fault or a disturbance. In this post-fault or post-distu_r-
a point of view of voltage collapse and how this might occur. bance case we would not assume that we were at a stable fixed

point, but instead we would be interested in what might happen
to a general trajectory starting at some point in phase space.
The first interpretation would be useful for real-time moni-
With respect to problems such as voltage collapse, we maying of a system, the second for predicting and analysing the
consider the usefulness of the bifurcation diagram in two dibehavior of a proposed system. The two interpretations are not
ferent ways. entirely distinct.

A. Interpreting the Bifurcation Diagram
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Fig. 16. Basin investigation resultgQ, P,) = (11.22,1.5). Fig. 17. Basin investigation resul@)., P1) = (10.96,0.3).
B. Parameters for Trajectory and Monte-Carlo Computation 1) Region 0: Outside the region bounded by 2-parameter
The following results were each computed in Matlab usingath of the primary saddle-node point. There are no known
the method described in Section IlI.F.2. 8000 initial conditiongable (fixed point or periodic) solutions in this region.
were used fromthe rangé), , w°, 6°,V°) € [—7, 7] x[-2, 2] 2) Region 1: This region is characterized by reasonably low
[—m, ] x [0,2.5]. The TR-BDF2 method used a relative toleryalues of the paramet€}; , the existence of a stable steady state
ance of10~% and an absolute tolerance tf~°. Trajectories at a higher (physically realistic) voltage, and an odd number of
were said to have escaped (voltage collapse) and integratigistable steady states at a lower (physically unrealistic) voltage.
halted if(8,,, w, 6, V)(t) & (&7, — 27, &7, + 27] x [~2.5, 2.5] x Some parameter values in this region (i#.,< 0) may be
[6° — 2, 6° + 27] x [0,3.5]. Here we are not allowing phaseless physically valid than others, but as a whole this parameter
changes at load or generator of more t@anor allowing neg- region can be thought of as being operationally “safe”. The de-
ative voltage magnitude—this would be physically unrealistigree of this safety depends on the proximity to the paths of bi-
Calculation of trajectories was halted after 100 s (or after $Qrcation points.
000 steps), at which time the trajectory was assumed to haveror investigation of basins of attraction in this region,
converged sufficiently close to an attractor. we choose four typical parameter valué€;,P;) =
These parameters constitute a reasonable trade off betwgem), (5,0), (7.5,0) and (11.22, 1.5); recall that the primary
accuracy and speed. More initial points, smaller tolerancegddle-node bifurcation occurs @, = 11.41146, P, = 0).
longer integration time and a less naive definition of “attracted’he results are plotted in Figs. 12—14, and 16 respectively. Re-
would give more accurate results, but the method would kgl that the only physically realistic attractor in this parameter
less useful as an experimental tool. In particular it has begsyion is the stable fixed point. All trajectories not leading to
noted [9] that in the presence of periodic and chaotic attractofi§is point diverge tax (voltage collapse).
the time to collapse may be atypically long. Our observationseach shows the randomly chosen initial values
confirm this and so we suggest use of longer integration timg?  ,° §° V%) projected onto the plane$s,,w) (plane
as a way of improving the results rather than more points ef generator variables) an@,V) (plane of load variables).
better tolerances. The values are color coded depending on whether they lead to
the stable fixed point (black) or lead to collapse (grey). We also
plot on each graph the stable (diamond) and unstable (square)
We take each region in Fig. 11 in turn and discuss the likefixed points for that parameter value.
dynamics and their practical implications. Where applicable we The first three of these figures show that there is a clear reduc-
include time series plots of typical trajectories. tion of in the size of the basin of attraction as the reactive power

C. Dynamics for Regions in the 2-D Bifurcation Diagram
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Fig. 18. Typical trajectories &9+, P1) = (5,0).: (a) attracted to fixed point and (b) attracted to periodic orbit.

increases toward the value at which Hopf and saddle-node bifur-
cations occur (but still remains some distance from paths of such
points). We may also see that the basin boundary suggested by
these computations does not have the hyper-spherical structure
as might be suggested by some Lyapunov functions. Instead,
there are points inside the basin of attraction (especially in the
6 direction) which lie a long way from the stable fixed point.

In Fig. 15 we plot some typical attracted and collapsing tra-
jectories at these three parameter values.

Fig. 16 shows the basin computations at a p6ipt, P,) =
(11.22,1.5) close to both the path of Hopf bifurcations and the
path of saddle-node points. There are very few points attracted i
to the stable fixed point. The closeness of this parameter value i T
to the bifurcation points means that the basin of attraction for 251
the operating point has all but disappeared.

3) Region 2: The region is bounded by a path of cyclic folds Al
CF1 (i.e., limit points on paths of periodic orbits), a path of sub-
critical Hopf bifurcationsH —, and a path of period doublings
PD.

In this region, there exist multiple stable states—a stable > o AR
steady state and a stable periodic orbit. There are also unstable i A R e
periodic orbits and unstable fixed points. If a disturbance were A e
to occur, it would be possible for the trajectory to be attracted
to the stable periodic orbit. The resulting oscillatory behavior
may lead to some form of collapse or shutdown.

We plot the basin computation for the parameter value
(Q1, P1) = (10.96,0.3) in Fig. 17. Some sample trajectories at
this parameter value, Fig. 18 clearly show attraction to both the L - B )
stable fixed point and to the stable periodic orbit, depending o1 19. Basininvestigation resultz:. 1) = (11.2.1.0).
the initial condition.

4) Region 3: This region bounded by the path of Hopf bifur- 5) Region 4: A path of subcritical Hopf bifurcationgf —
cationsH £ and period doublings. PD There are stable periodand a path of period doubling bifurcations PD bound the points
orbits and unstable fixed points in this region, but no stable fixéal this region.
points. The absence of period doublings in this region excludesBoth stable fixed points and stable (period doubled) periodic
the possibility of cascades to chaotic behavior. Basin computabits are present at some parameter values in this region. (The
tions for this region, Fig. 19 show that the basin of attraction gleriod doubling path is of period doublings of the stable peri-
the periodic orbits is likely to be extremely small. odics emanating from the cyclic fold CF1, not from the subcrit-

We plot a typical periodic orbit in Fig. 20. ical Hopf pointsH —). In some parts of this region there may

~2f

I 22 ol S d. R - I 3
3 -2 K] 0 1 2 3 4

Ic
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1.044

Since much of this region lies well into the “physically real-
rof ‘ ’\ 1 {1 W q ! istic” P, > 0 region, we would want to avoid it as an operating
' | i region.
iIE Ii l i\‘ 7) Region 6: This region lies between the path of homo-

’ | clinic orbits H om emanating from the BT-point and the path
‘| ‘ of the first cyclic folds CF2 relating to th8il'nikov behavior.
|
r

L 0.96-]

It contains an infinite number of periodic orbits and no stable

08 fixed points.

oo 8) Region 7: There is no known stable behavior or any pe-
k ‘ riodic behavior (unstable or homoclinic) in this region.

0.94

T w w wm % m e o @ s w VI. CONCLUSION

We have demonstrated that the dynamics of a simple power-
system model may be investigated with reference to a co-di-
mension 2-BT point. This acts as an organizing centre for the
2-parameter paths of saddle-node, Hopf and homoclinic bifur-
cations. The homoclinic orbits can be%if'nikov type, leading
to multiple periodic and chaotic orbits.

This bifurcation information can then be used to guide an
fuller investigation of the 2-parameter dynamics of the model;
allowing us to predict the dynamics occurring in different re-
gions. We have shown that significant reductions in the size of
basins of attractions of stable fixed points may occur well be-
fore actual bifurcation takes place.

We have discussed, in general terms, the numerical methods
used for this analysis, allowing for its application to larger prob-
lems. The power-system models clearly have a rich dynamical
) structure; investigation of this is of interest to both mathemati-
cian and power engineer. We suggest that further investigation,

ol S T~ along similar lines, of larger (hence more physically realistic)

\ systems is both practically possible and highly useful.

\ APPENDIX |

// NUMERICAL DETECTION OFBT-POINTS
— In order to numerically detect and accurately locate

BT-points we must first be able to compute 2-parameter paths
‘ , ‘ ‘ of folds (or Hopf-bifurcations). This may be achieved by
o e y 0z o4 defining a suitable system, roots of which correspond to folds
tb) (or Hopf points). We can then apply a continuation method to
. - this system.
E:)gﬁgé[iniéi)citrgge:t(trﬁc_%?_l3?33133(71)1_'3‘68’ 0-0), (b) Double pulse i approximating such a path of co-dimension 1 bifurca-
tion points in the two-parameter plane, we may check at each

) ) _ _iteration whether we are in the neighborhood of a BT point. For
exist further period doublings and cascades of such leading{@tance, while following a path of saddle-node bifurcations we

chaos. There also exist boundary crises of periodic orbits, alggyht monitor whether the eigenvalue with the second smallest

leading to loss of stability. . . magnitude changes signin its real part. Having detected the pos-
6) Region 5: No stable fixed points exist in this region, sinC&;ipjjity of a BT point we can then apply an algorithm to locate

we have greater values f, than at the pattt/ — of subcritical he BT point to desired accuracy. Once again, this is by the so-

Hopf points. _ o lution of a suitable extended system, roots of which define a BT
This region will contain all manner of periodic orbits (stabl%oint_ Such a system is

and unstable), chaotic orbits, possible boundary crises and

/‘

/

/
e

double pulse homoclinic orbits. Fig. 21 shows a typical strange f

attractor at the parameter valy®,, P;) = (11.3768,0.0) fov

and an approximate double pulse homoclinic orbit at Flz,\pv,w)= | cFv—1| =0 (5)
(Q1,P) = (11.25,—1.731537). We would expect voltage fow — v

collapse to be the dominant behavior in this parameter region. cFw
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Here, we are saying that we require a solution to the generiaiversion of4 andA?) and then solve the: + 2)-dimensional
ized eigenvalue problerfi,v = 0, f,w = v. In practice, this system
formulation of the BT-point detection problem is highly inef-
ficient. Given that our dynamical system (3) has dimension foo IN S bx f
9= G Gu oA | =— g (12)

3

the Jacobian matrix for system (5) (which must be inverted in

a Newton-type solution method) is of dimensin + 2) by bu h

(3n +2). A more efficient decomposition of this system, baseghere we use (10) to give the derivatives @f and

on methods proposed by [24] and [42], is now presented.  p(f,. f.x, f., Can be calculated explicily or numeri-
cally). The following theorem presents an efficient way to solve

he hx hy

A. Decomposition this system, first shown in [42], but presented here in a slightly
Lemma 1: Define different form and with a minor correction.
Theorem 3:If we find g, h, v, w, v and( from (7) and (9) as
A= [f% bo} (6) above and solve the following three linear systemdin
c. O
wherebg, ¢g € R™. ThenA is nonsingular if (for instancé), = A T Ix _— = fﬂ ;
f)\ Orfu,andco gN(fa}) (Z/) f)\)+(gco )\)- - 0
Proof: ABCD-lemma. fu 1 17
Theorem 2:(Griewank and Reddien [42], as presented in A WT 1) + (gcg Nu) = (ﬂ )
Beyn [24]) A . -
Let A be defined as above and let functigné :_(Q xR?) — A f N [ f (13)
R and vectors;, w € R™ be defined by the solutions to (T )+ (gcgf) 10]”
v 0 w v . . L
A L}} = L} and A {h} = {0} . (7) then, the Newton correctiofdz, 6, 6;:)T in (12) is given by

solution of the (3x 3) system
Then, rootsz®, X%, 1;° of the system

g wa)\ - wau - ot Z/)Tf .
flz, A ) [gmv IN—Gefx Gu— gatu ] [M] =- [g - gfo]

S(x, A, 1) = [g(aﬁ,)\,u)] =0 (8) hav  hx—hafa hy—hafy o h—hef
h(z, A, 1)

(14)
. . . . . _and
also satisfy the generalized right eigenvalue problem given |gl

(5), and so define BT-points. @ = (v6t) = (f28X) = (fubp) = f. (1%)
In addition, if we defineg, h : (2 x R?) — R and vectors
¥, ¢ € R* by Proof: Add a further two rows and columns to (12) along
with two dummy variable$¢, 6t € R to get
[v".91A=10,1] and [¢*,R]A = [3,0]. )
o bo 0 fx fuq [z f
then &0 -1 0 0] |é&p 0
0 -1 0 0 © stl=—10 (16)
g=3g=—Y" fov, g 0 0 g gu||6A g
h=h=vy% hy 0 0 hx h, o h
9= = =" fouv (Note that the principal sub-matrix of this expanded matrit is
h, = =Y foow — (T foov (10) andthat¢ = 0). The first two “rows” of (16) can be rearranged
to give
wherez can be eitheg, A or 11; the roots of (8) and solutions of
(9) give fo bo| |bx| _ st 0
’ , k0 sp| 1
P fa=0,  Tbo=1 I ], f
_ _ ml
o=t Tho=0 1) ‘”{0} ‘5“{0} M )
that is to say the generalized left eigenvalue problemnyfor Pre-multiplying this by4—! we get
Proof. See [42].
bx| _ o ,-11]0 —1 [/
B. Newton’s Method [5(/)} = 6tA [1} — &\ [ 0 }
Newton-type methods to solve (8) require us to solve the four SuA-L fo ! f 18
(n + 1)-dimensional linear systems in (7) and (9) (involving oK 0| 0" (18)
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We know from (7) thatA—l[(l)] = [;]. The other three terms  [11]

involving A~! are found as follows. Consider systems of the[
form

L)

[14]
wherea,y € R* and3 € R. Pre-multiplying this byfx*", 0], (15]
gives

[16]

W7 focr+ BT o) = 7.

From (9) we have)® f, + gco = 0 and+%h, = 1. Hence
B = T y+gcl . We can lety be successively, f, andf; for
these three cases tebe referred to agy, f,, andf respectively,
giving the triple linear system (13).

Equation (18) now gives us (15) and also

(20)
[17]
[18]

[19]

0= 6¢ = (g6t) — (¥F fa6N) = (@7 fubp) =97 f. (21)

[20]
This gives the first row of (14); the second and third rows are
given by substituting (15) into the last two rows of (16).

C. Summary

This decomposition of the BT-point detection problem gives[22
us a number of smaller systems to solve (when compared with
solving (5) directly), involving just 2 large matriced Gnd A7)
plus a 3x 3 system.

In addition, we can use>,{ and (10) as part of efficient
branch switching algorithms in order to initiate the computation[25]
of paths of homoclinic orbits and Hopf bifurcations in the neigh-
borhood of the BT point. Further details of this can be found in
[24].

[24]

(26]

REFERENCES [27]

K. Walve, “Modeling of power-system components at severe distur-
bances,” inProc. Int. Conf. Large High Voltage Electric Systemsig.
1986. CIGRE paper 38-18. [28]
U.S. Department of Energy, “The Electric Power Outages in the Western
United States July 2-3, 1996,” U.S. Department of Energy, Washington,
D.C., Report to the President, Aug. 1996. [29]
F. Bourgin, G. Testud, B. Heilbronn, and J. Verseille, “Present prac-
tices and trends on the french power system to prevent voltage collapse[30]
IEEE Trans. Power Systemsl. 8, pp. 778-788, Aug. 1993.

I. Dobson, H. D. Chiang, J. S. Thorp, and L. F. Ahmed, “A model of
voltage collapse in electric power systems,Hroc. IEEE 27th Conf.
Decision and ContrglDec. 1988, pp. 2104-2109.

I. Dobson and H. D. Chiang, “Toward a theory of voltage collapse in
electric-power systems3yst. Control Lettvol. 13, pp. 253-262, 1989.
E. H. Abed, A. M. A. Hamdan, and H.-C. Lee, “On bifurcations in
power-system models and voltage collapse,Pinc. IEEE 29th Conf.
Decision and Contrgl1990, pp. 3014-3015.

V. Ajjarapu and B. Lee, “Bifurcation-theory and its application to non-
linear dynamic phenomena in an electrical-power systéBEE Trans.
Power Systemsol. 7, pp. 424-431, Feb. 1992.

H. D. Chiang, C. W. Liu, P. P. Varaiya, F. F. Wu, and M. G. Lauby,
“Chaos in a simple power systemEEE Trans. Power Systemgol.

8, pp. 1407-1417, Nov. 1993.

H. O. Wang, E. H. Abed, and A. M. A. Hamdan, “Bifurcations, chaos,
and crises in voltage collapse of a model power systéEEE Trans.
Circuits Syst. Jvol. 41, pp. 294-302, Apr. 1994.

A. H. Nayfeh, A. M. Harb, and C. M. Chin, “Bifurcations in a power-
system model,’Int. J. Bifurcation Chaosvol. 6, no. 3, pp. 497-512,
1996.

(1]
(2]
(3]
[4] -

(5]
(6]

(32]
(33]

(71
[34]

(8]
[35]

[0
(36]
[10] [37]

(38]

589

C. W. Tan, M. Varghese, P. Varaiya, and F. F. Wu, “Bifurcation, chaos,
and voltage collapse in power-system®&toc. IEEE vol. 83, pp.
1484-1496, Nov. 1995.

12] P. GlendinningStability, Instability and Chaos, Cambridge Texts in Ap-

plied Mathematics Cambridge, MA: Cambridge Univ. Press, 1994.

J. Guckenheimer and P. Holmddpnlinear Oscillations, Dynamical
Systems and Bifurcations of Vector Fields, Number 42 in Applied
Mathematical Sciences New York: Springer-Verlag, 1983.

P. Kundur,Power System Stability and ControlNew York: McGraw-

Hill, 1984.

C. W. GroetschElements of Applicable Functional AnalysisNew
York: Marcel Dekker, 1980.

E. J. Doedel, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B.
Sandsted, and X. Wan§UTO 97—Continuation and Bifurcation Soft-
ware for Ordinary Differential Equations (With HomCont)Montreal,
Canada: Concordia Univ., 1997.

H.D. Chiang, T. P. Conneen, and A. J. Flueck, “Bifurcations and chaos in
electric power systems: Numerical studiek,Franklin Inst, vol. 331B,

no. 6, pp. 1001-1036, 1994.

A. Jepson and A. Spence, “Folds in solutions of two parameter systems
and their calculation, part ,.51AM J. Numer. Analvol. 22, no. 2, pp.
347-368, 1985.

B. De Dier, D. Roose, and P. Van Rompay, “Interaction between fold and
hopf curves leads to new bifurcation phenomerda,Computat. Appl.
Math,, vol. 26, no. 1, pp. 171-186, 1989.

D. Roose and B. De Dier, “Numerical determination of an emanating
branch of Hopf bifurcation points in a two-parameter probleBiAM

J. Scientific Stat. Computvol. 10, no. 4, pp. 671-685, 1989.

1] E.Freire, A. J. Rodriguez-Luis, E. Gamero, and E. Ponce, “A case study

for homclinic chaos in an autonomous electronic circuit—A trip from
Takens—Bogdanov to Ho8i'nikov,” Physica O vol. 62, no. 2, pp.
230-253, 1993.

] A. Gragnani, S. Rinaldi, and G. Feichtinger, “Cyclic dynamics in

romantic relationships,int. J. Bifurcation Chaosvol. 7, no. 11, pp.
2611-2619, 1997.

] J. CarrApplications of Centre Manifold Theary New York: Springer-

Verlag, 1981.

W. J. Beyn, “Numerical-analysis of homoclinic orbits emanating from
a Takens—Bogdanov point)MA J. Nume. Ana).vol. 14, no. 2, pp.
381-410, 1994.

J. M. T. Thompson, “Global dynamics of driven oscillators: Fractal
basins and indeterminate bifurcations,”Nlen-Linear Maths & Appli-
cations P. J. Aston, Ed. Cambridge, U.K.: Cambridge Univ. Press,
1996.

Y.J. Cao, Q. H. Wu, and S. J. Cheng, “An improved Lyapunov function
for power-system stability,Int. J. Contro| vol. 65, no. 5, pp. 791-802,
1997.

R. J. Davy and I. A. Hiskens, “Lyapunov functions for multimachine
power systems with dynamic load$BEE Trans. Circuits Syst.,lvol.

44, pp. 796-812, Sept. 1997.

D. J. Hill, I. A. Hiskens, and |. M. Y. Mareels, “Stability theory of differ-
ential/algebraic models of power systems,Pimc. Sixdhara—Academy
Engineering Sciencesol. 18, 1993, pp. 731-747.

C. S. Hsu, “Atheory of cell-to-cell mapping dynamical-systerdSME

J. Applied Mech. Transvol. 47, no. 3, pp. 931-939, 1980.

C. S. Hsu and R. S. Guttalu, “An unravelling algorithm for global anal-
ysis of dynamical systems—An application of cell-to-cell mappings,”
ASME J. Appl. Mech. Transvol. 47, no. 2, pp. 940-948, 1980.

C. S. Hsu, “A generalized theory of cell-to-cell mapping for nonlinear
dynamical-systems , ASME J. Appl. Mech. Transvol. 48, no. 2, pp.
634-642, 1981.

B. H. Tongue and K. Gu, “Adaptive mesh strategies for interpolated
mapping procedureslht. J. Eng. Sci.vol. 27, pp. 1143-1154, 1989.

J. Levitas and T. Weller, “Poincare linear interpolated cell map-
ping—Method for global analysis of oscillating-system#SME J.
Appl. Mech. Transvol. 62, pp. 489-495, 1995.

B. Krauskopf and H. Osinga, “Globalizing two-dimensional unstable
manifolds of maps,int. J. Bifurcation Chaosvol. 8, no. 3, pp. 483-503,
1998.

C. J. Budd and A. G. Lee, “Double impact orbits of periodically forced
impact oscillators,” ifProc. Royal Soc. London Serieswbl. 452, 1996,
pp. 2719-2750.

A. M. Stuart and A. R. Humphrie©ynamical Systems and Numerical
Analysis Cambridge, U.K.: Cambridge Univ.Press, 1996.

L. F. Shampine and M. W. Reichelt, “The Matlab ODE suit8|AM J.
Sci. Comput.vol. 18, no. 1, pp. 1-22, 1997.

H. Osinga, private communication, 1998.

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on July 27, 2009 at 08:25 from IEEE Xplore. Restrictions apply.



590

[39] J. M. T. Thompson and F. A. McRobie, “Intermediate bifurcations an'"
the dynamics of driven oscillators,” iroc. 1st Eur. Nonlinear Oscilla-
tions Conf, 1993, pp. 107-128.

[40] T.Mullin, Ed., The Nature of Chaos Oxford, U.K.: Oxford Scientific,

1993.

[41] P. Glendinning and C. Sparrow, “Local and global behavior near hom
clinic orbits,” J. Stat. Phys.vol. 35, no. 5/6, pp. 645-696, 1984.

[42] A. Griewank and G. W. Reddien, “Computation of cusp singularitie
for operator equations and their discretizatiodsComput.Appl. Math.
vol. 26, no. 1, pp. 133-153, 1989.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 49, NO. 5, MAY 2002

Chris Budd received the M.A. degree from Cam-
bridge Universty, Cambridge, U.K., in 1982, and
the D.Phil. degree from Oxford University, Oxford,
U.K., in 1986 where he was a research fellow funded
by the Central Electricity Generating Board.

He has been Professor of Applied Mathematics
at the University of Bath, Bath, U.K., since 1995,
where he has developed interests in industrial
applied mathematics and numerical analysis and
is Co-Director of the Interdisciplinary Centre for
Nonlinear Mechanics. He is a keen popularizer

of mathematics and its applications and has recently been elected Chair of
Mathematics at the Royal Institution.

Jon Wilsonreceived the B.Sc. degree in mathematics
from the University of Bristol, Bristol, U.K., in 1996,
and the M.Sc. and P.D. degrees in the numerical so-
lution of differential equations from the University of
Bath, Bath, U.K., which was funded by the EPSRC
and the National Grid Company plc, both in 2001.

Dr. Wilson is currently the Director of Net
South-West Ltd., Bath, U.K., an IT consultancy
specializing in Unix and Internet services.

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on July 27, 2009 at 08:25 from IEEE Xplore. Restrictions apply.



