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Abstract9

This paper describes a fast and reliable method for redistributing a10

computational mesh in three dimensions which can generate a complex11

three dimensional mesh without any problems due to mesh tangling. The12

method relies on a three dimensional implementation of the parabolic13

Monge-Ampère (PMA) technique, for finding an optimally transported14

mesh. The method for implementing PMA is described in detail and ap-15

plied to both static and dynamic mesh redistribution problems, studying16

both the convergence and the computational cost of the algorithm. The17

algorithm is applied to a series of problems of increasing complexity. In18

particular very regular meshes are generated to resolve real meteorolog-19

ical features (derived from a weather forecasting model covering the UK20

area) in grids with over 2 × 107 degrees of freedom. The PMA method21

computes these grids in times commensurate with those required for op-22

erational weather forecasting.23

This work was funded by EPSRC Knowledge Transfer Grant XXX-XXXX-24

XXXX.25

1 Introduction26

1.1 Overview27

Many physical problems exhibit variety of different spatial scales and feature28

localised small scale structures embedded within a much larger scale geometry.29

Examples include the boundary layers frequently encountered in fluid mechanics30

and gas dynamics, meteorological inversion layers
Piccolo2012
[1], weather fronts, combus-31

tion layers and shock waves. Computations on such problems using a uniform32
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computational mesh may encounter problems when the computational mesh size1

is too large to resolve the small scale structures. When such a computation is2

part of a computational fluid dynamics calculation then this may lead to large3

truncation errors
Gullbrand2003
[2]. In the data assimilation context, an adaptive mesh is a4

convenient way of representing spatially varying correlation structures which5

would otherwise have to be represented by an unmanageably large correlation6

matrix. It is thus often important, both for accuracy and for computational7

efficiency, to use a computational mesh which is adapted in some manner to8

the small scales in the underlying problem. This is relatively easy in one spa-9

tial dimension with many excellent examples of successful implementations both10

in PDE calculations
Huang1996
[3] and in data assimilation,

Piccolo2011
[4] leading to significant in-11

creases in accuracy and computational efficiency. However, the computational12

difficulties of (dynamically) adapting a mesh for a three dimensional problem13

and coupling it to a solver, are considerable
Pain2005
[5]. Furthermore, fully three di-14

mensional adapted meshes can take a significant time to generate
Chacon2011
[6]. In this15

paper, we will describe an algorithm for adaptive mesh redistribution based on16

optimal transport ideas, which is both fast to implement, avoids mesh tangling17

and gives excellent three dimensional meshes for some large and challenging18

problems. We demonstrate the effectiveness of this procedure on a number of19

problems, including large meteorological calculations based on real data. These20

methods have the potential for relatively easy coupling to both CFD codes and21

data assimilation procedures.22

1.2 An outline of Adaptive mesh redistribution23

Broadly speaking adaptive meshes fall into three types. The most commonly24

used is Adaptive Mesh Refinement, AMR or h-adaptivity, in which a structured25

mesh is locally refined (or possibly de-refined) by the addition (or subtraction)26

of new mesh points
Behrens1998
[7] when some local refinement condition is satisfied

Weller2009
[8]. This27

is closely related to p-adaptive methods
Ainsworth1997
[9] in which the order of the elements28

used in the computation is locally increased, again prompted by some local re-29

finement condition. Both of these methods have the advantages of a degree of30

maturity in implementation and flexibility of use. However they also suffer from31

various disadvantages. The complex and evolving data structures needed to de-32

scribe the mesh and its changing connectivity
behrens2006
[10] can make it difficult to couple33

them to other software. Furthermore the very local nature of the mesh refine-34

ment, can lead to meshes with poor global structures, without good alignment35

or regularity. An alternative procedure, described in this paper, is Adaptive36

Mesh Redistribution, also known as r-adaptivity (or more simply as a moving37

mesh method). In this procedure a fixed number of mesh points in a constant38

connectivity structure is redistributed so that the points are optimally placed39

to resolve the fine-scale features of interest. A powerful method for doing this40

is to move the points so that the point density is controlled by equidistributing41

an appropriate scalar or matrix monitor function. This procedure has certain42

similarities to Lagrangian methods in which the velocity of the mesh points is43

coupled to convective features of the underlying solution. However, it avoids the44
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mesh tangling problems often associated with such methods
Budd2009a
[11]. Whilst less1

mature than AMR type methods, adaptive mesh redistribution offers potential2

advantages. Firstly, the constant data structure makes them straightforward3

both to use in their own right and to couple to existing software. Secondly,4

the fact that all of the points in the mesh are calculated together means that5

both local refinement and global regularity of the mesh can be treated together,6

leading to potentially very regular meshes. (Indeed it is possible to build a de-7

gree of global regularity directly into the implementation of the method
Budd2009a
[11].)8

Thirdly, the mesh points can inherit underlying dynamical features of the prob-9

lem such as symmetries and self-similarity. Various methods for implementing10

adaptive mesh redistribution of varying levels of complexity include Geometric11

Conservation Law methods, Harmonic maps, and variational methods. See the12

reviews in
Budd2009
[12], and

huang2011
[13]. All of these methods consider adaptivity in at most13

two-dimensions. An alternative method based on Optimal Transport ideas is14

described in
Budd2009a
[11],

Delzanno2008
[14], and takes a differing approach, coupling equidistribution15

to global mesh regularity and calculating an appropriate scalar mesh potential16

from which the mesh can be determined. Optimal transport based methods17

are relatively cheap to implement and have been coupled successfully to com-18

putations of incompressible flows in two-dimensions
Budd2013
[15], and also to large scale19

data assimilation calculations
Piccolo2012,Piccolo2011
[1, 4]. Objections to adaptive mesh redistribution20

methods include the possibilities of mesh tangling and mesh skewness, leading21

to elements with small angles and the loss of balance relationships when rep-22

resenting certain fluid motions. Whilst these objections are often valid, it is23

certainly the case that optimally transported meshes can be computed cheaply,24

even in three dimensions, they have provable regularity
Budd2009a
[11],

Budd2013
[15], they do not25

suffer from mesh tangling, the reduction in errors due to improved resolution26

can outweigh the extra errors given by mesh skewness, and skewness can also27

be an advantage if it leads to better alignment of the mesh with the underlying28

solution
Cao2005
[16],

H
[?],

HR
[?]. Finally the preservation of balance laws can be built into29

the mesh construction through the construction of the monitor function.30

In this paper we show how the optimal transport method, coupled to a simple31

relaxation approach, can be implemented practically to deal with large three di-32

mensional problems with severe geometric distortion. We then test this method33

on a series of challenging problems including large scale meteorological systems.34

In this implementation the calculation of a three dimensional meteorological grid35

with 21772800 degrees of freedom could be accomplished in five minutes on a36

laptop computer. In principle these meshes can be coupled to data assimilation37

codes using methods of
Piccolo2012,Piccolo2011
[1, 4].38

The remainder of this paper is structured as follows. In Section 2 we describe39

some of the underlying theory of r-adaptive mesh redistribution and the optimal40

transport method of doing this, leading to a single equation (the Monge-Ampère41

equation) describing the mesh. In Section 3 we describe a relaxation method42

for solving this equation. In Section 4 we describe a simple, practical and effec-43

tive method for discretising this equation and calculating a three dimensional44
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mesh. In Section 5 we consider various static mesh redistribution problems in-1

cluding some which use meteorological data from the Met Office UK4 forecast2

system. Finally in Section 6 we consider an evolving problem with dynamic3

mesh redistribution.4

2 Adaptive mesh redistribution in three dimen-5

sions6

amr

Adaptive mesh redistribution methods work by keeping the number of mesh
points and the topology of the mesh fixed but redistribute the mesh in space.
For a time evolving problem the mesh can then evolve with the solution of
the underlying problem. The simplest three dimensional mesh TC comprises a
regular subdivision of the unit cube into identical smaller cubes. We denote the
unit cube by ΩC = [0, 1]3, and it represents a reference or computational space.
We can then map the mesh TC into any other logically (or topologically) cuboid
mesh TP occupying a physical space ΩP ⊂ R3, through the map

F(., t) : ΩC → ΩP .

The mesh points in TP are therefore the images of the corners of the cuboids in7

TC and these points redistribute as the time t evolves. For clarity we define a8

point in ΩC by ξ ∈ ΩC = (ξ, η, ζ). Similarly we denote a point x in the physical9

space ΩP by x ∈ ΩP = (x, y, z). An example of a section of mesh TC in ΩC and10

a section of its image TP in ΩP is given in Figure 1.11

(a) A mesh TC in computational space
ΩC , denoted ξ = (ξ, η, ζ)

(b) A mesh TP in physical space ΩP , de-
noted x = (x, y, z)

Figure 1: A mesh TC ∈ ΩC and its image TP ∈ ΩP .radaptexample

For redistribution to be effective we need to concentrate mesh points so that12

they have a high density in certain regions of ΩP . The value of this mesh density13

is taken to be proportional to the size of a monitor function m(x, t) > 0, so that14

4



if |J(ξ, t)| is the determinant of the Jacobian of the map from ΩC to ΩP given1

(in 3 dimensions) by2

|J(ξ, t)| =

∣∣∣∣∣∣
xξ xη xζ
yξ yη yζ
zξ zη zζ

∣∣∣∣∣∣ (1)

then3

m(x, t) |J(ξ, t)| =
∫

Ωp

m(x, t) dx. (2) equi1

We call this the equidistribution equation. In one dimension the equidistribution4

equation uniquely defines the map F and a number of methods exploit this, most5

particularly the moving mesh PDE methods listed in
Huang1994a
[17]. In higher dimensions6

additional conditions are required to define the map uniquely. Noting that for7

many computations there are signficant advantages to using a uniform mesh, it8

makes initial sense to look for meshes which are close to being uniform in some9

sense. In other words we seek functions F which are close to the identity in10

some measure. A convenient such measure is the Wasserstein metric I given by11

I =

∫
ΩC

|F(ξ, t)− ξ|2 dξ (3) optim

Definition 1. A map F which minimises I is over all invertible mappings12

satisfying (2) called an optimally transported map. The resulting mesh TP is an13

optimally transported mesh.14

Finding such a map is an example of a Monge-Kantorovich problem (see
Brenier1991
[18]).15

Although the condition of minimising I appears to be a coarse global restraint16

on the mesh TP , it not only leads to a system which is easy to calculate, but also17

to meshes with provably excellent regularity, good mesh grading and good mesh18

alignment
Budd2009a
[11],

Budd2013
[15]. We now seek to solve the Monge-Kantorovich problem to19

determine the optimal mesh TP . The key underlying result which allows us to20

compute this mesh is the following21

Theorem 1 (Brenier
Brenier1991
[18]). There exists a unique optimally transported map22

F(ξ, t) which minimises I, and the Jacobian of which satisfies the equidistribu-23

tion equation (2). This map has the same regularity as the monitor function24

m. Furthermore, F(ξ, t) can be written as the gradient (with respect to ξ) of a25

convex scalar (mesh) potential P (ξ, t), so that26

(x, y, z) ≡ x(ξ, t) = ∇ξP (ξ, t), Hξ(P (ξ, t)) � 0. (4) Peqn

Finding the (three dimensional) map F and the associated mesh TP is thus27

reduced to the simpler problem of finding the scalar mesh potential P . As28

x = ∇P it follows immediately that J(ξ) = H(P ) where H(P ) is the Hessian29

matrix of P . Hence the Jacobian J(ξ) is a symmetric matrix which imposes30

certain restrictions on F. For example it cannot be a plane rotation. Such31
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maps are called Legendre Transformations and play an important role in many1

fields including fluid mechanics and image processing
sewell2002
[19] In 3-dimensions the2

determinant of the Hessian of P is given by3

|H(P )| =

∣∣∣∣∣∣
Pξξ Pξη Pξζ
Pηξ Pηη Pηζ
Pζξ Pζη Pζζ

∣∣∣∣∣∣ . (5)

The equidistribution equation (2) then becomes the following equation for P :4

m(∇ξP, t)|H(P )| =
∫

ΩP

m dx. (6) mongeampere

which is a Monge-Ampère equation. To fully specify the mesh we need to impose
boundary conditions on P . Typically we require that the boundary ΓC of ΩC
is mapped to the boundary ΓP of ΩP . If the latter is given implicitly by the
condition

ΓP = {(x, y, z) : G(x, y, z) = 0}

then we have the nonlinear Neumann boundary condition5

G(∇ξP ) = 0 if ξ ∈ ΓP . (7) nlbc

Observe that this procedure allocated points to the boundary, but does not6

prescribe their precise location. If ΩP is a cuboid domains so that, for example,7

one face of ΩP is given by the plane x = 0 , then the nonlinear condition (7)8

simplifies to the simpler linear Neumann condition9

Pξ = 0. (8) lbc

For certain problems, for example a number of problems in meteorology, it is10

natural and convenient to use periodic boundary conditions instead. See
Budd2013
[15]11

for an example.12

3 Parabolic Monge-Ampère formulation13

Equation (6) is a fully non-linear elliptic PDE which is challenging to solve.14

There is a significant literature describing various solution techniques both for15

the equation in its own right
SFU
[?], as part of a meteorological calculation

cullen2006,Chynoweth1991
[20, 21]16

and as part of a mesh generation algorithm
Chacon2011
[6],

Delzanno2008
[14] Typically these methods use17

a careful finite difference or finite element discretisation of (6) which is then18

solved using a Newton-type algorithm. In
Chacon2011
[6] the resulting linear equations are19

in turn solved using a multi-grid method. These methods are necessarily com-20

putationally expensive and use significant computer time to give an accurate21

answer. However, in the context of mesh generation, we do not want to invest22

much effort in solving (6) as its function is to generate a mesh which is then used23

for other calculations. In this context an accurate solution of (6) is unnecessary,24
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provided that the resulting mesh is sufficiently regular and aligned, and exhibits1

the correct compression properties that we desire. Accordingly, a simple, ex-2

plicit, relaxation method for solving (6) has certain advantages in this context.3

Firstly it can be implemented cheaply using a Forward Euler method, and the4

mesh calculated rapidly. Secondly, the relaxation method can be terminated5

at any time when the mesh generated is sufficient for subsequent computations6

rather than when we have an exact solution of (6). This gives a very signifi-7

cant speed increase in the mesh generation algorithm (with times reduced from8

hours to minutes). In two-dimensions it has been demonstrated
Budd2009a
[11],

Budd2013
[15], that9

a parabolic relaxation of the Monge-Ampère equation, the Parabolic Monge-10

Ampère equation (PMA), is effective for generating meshes. We now extend11

this method to higher dimensions and demonstrate that it continues to be effec-12

tive as a mesh generator. In this formulation we initially consider the true time13

t to be fixed during the computation of the mesh, and introduce a pseudo-time14

τ ∈ [0,∞) and a corresponding pseudo-time dependent function Q(ξ, τ) so that15

∇ξQ→ ∇P as τ →∞ where P solves (6).16

Definition 2 (PMA). The Parabolic Monge-Ampère equation in d−dimensions17

is defined by18

LQτ ≡ (I − γ∆ξ)Qτ = (m̂(∇ξQ)|H(Q)|)
1
d (9) PMA

where γ is a scalar parameter defining the amount of smoothing applied. The19

function m̂ is a filtered version of the monitor m obtained by averaging m20

over several mesh points. (The necessity for such filtering for data assimilation21

problems is carefully illustrated in
Piccolo2012
[1].)22

In this equation the application of L−1 acts as a smoothing operator (described23

first in
Ceniceros2001
[22]) which leads to more regular meshes. Furthermore the action of24

L−1 on the discrete form of the right hand side of (9) acts to damp out certain25

(mesh dependent) chequer-board instabilities
Budd2011
[23]. It can be rapidly calculated26

for cuboid domains by using the FFT or the Fast Cosine Transform (depending27

upon whether we have periodic or Neumann boundary conditions). The oper-28

ator (H(Q))1/d is used on the RHS (instead of H(Q)) as it has the property29

that (H(λQ))1/d = λ(H(Q))1/d. Thus both sides of (9) scale linearly. This30

is useful both to ensure global existence of the solutions of (9) and to give it31

certain desirable scaling properties
Budd2009a
[11]. It is further shown in

Budd2009a
[11] that the32

equation (9) is locally stable so that, if ∇Q is sufficiently close to ∇P then33

∇ξQ → ∇Pξ as τ → ∞. with standard linear convergence. Furthermore,34

during the evolution of (9) both H(P ) and ∇2Q are bounded away from zero.35

This prevents mesh tangling provided that the equation (9) has a sufficiently36

fine discretisation
Budd2009a
[11].37

The evolutionary system (9) is subject to the same boundary conditions as (6).38

It is convenient when solving the PMA equation, especially when using periodic39

boundary conditions, to consider instead of Q the difference between it and the40

function |ξ|2/2. Consider the displacement of the periodic potential, Q̃, such41
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that1

Q̃ = Q− |ξ|
2

2
. (10)

This gives2

∇ξQ̃ = ∇ξQ− ξ (11)

and hence3

x = ∇ξQ̃+ ξ (12)

as x = ∇ξQ. The PMA equation can then be rewritten as4

(I − γ∆ξ)Q̃τ = (m̂(∇ξQ̃+ ξ)|I +H(Q̃)|)
1
d (13) tildeQ

In the absence of a better initial guess, we use the initial conditions for (13)5

Q̃(0) = 0. In the case of a dynamically evolving monitor function, it is sub-6

stantially more efficient to evolve Q̃ starting from the most recently computed7

value of Q̃. If the monitor function m̂ is known then a corresponding mesh can8

be found by evolving (13) in time, either until a steady state is reached or until9

the resulting mesh is sufficient, in compression and regularity, for solving any10

coupled PDE or data assimilation problem. This latter option results in very11

significant time savings.12

If the mesh is used to solve a time dependent PDE then the monitor function13

m will evolve in the true time t. In this case the mesh is evolved in the pseudo-14

time until it is adapted to the solution of the PDE. The solution of the PDE15

is then interpolated onto the new mesh. The true time is then advanced by16

an appropriate amount and the new solution to the PDE, and hence the new17

value of m is calculated. The process of finding the new mesh by evolution in18

pseudo-time is then repeated. We now consider the practical issues with solving19

(13) forwards in pseudo-time on the assumption that the monitor function is20

known a-priori. In our examples we will consider cases where m is fixed and21

also where m evolves in time.22

4 Implementation23

When implementing (13) to find Q̃ and hence the mesh, it is essential that the24

algorithm used is fast and robust as it will typically be part of a much larger25

solution process. For example, the UK4 model, a model with 4km resolution26

over the UK used by the Met Office for both numerical weather prediction and27

for data assimilation, has dimension 288×360×70 = 7257600 grid points. Each28

of these has 3 degrees of freedom (latitudinal, longitudinal and vertical) and29

each degree of freedom is stored in double precision and thus requires 8 bytes of30

storage. Hence to store one grid requires 288×360×70×3×8 = 174182400bytes31

= 166.11MB. This shows the scale of the problem we are considering and why an32

efficient implementation of the algorithm to redistribute the mesh is essential.33

However, for mesh generation it need not be especially accurate.34
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Accordingly when calculating Q̃, we seek an explicit method where possible, for1

both time and memory considerations. One such method uses a forward Euler2

discretisation of (9) to evolve Q̃ so that3

Q̃(τ + δτ) = Q̃(τ) + δτQ̃τ (τ) (14) model_evo

where Q̃τ (τ) is given by4

Q̃τ = L−1(m̂(∇ξQ̃+ ξ)|I +H(Q̃)|)
1
d . (15) mesh_evo

To compute the RHS of (15) we discretise the Hessian operator in (15). This can5

be done most simply by using a finite difference scheme in the computational6

space ΩC . We assume that ΩC is divided into regular cuboids with the values of7

Q̃ given at the vertices of the cuboid. The location (x, y, z) of the mesh in the8

physical space ΩP at these vertices can then be recovered from Q̃ by taking a9

discrete gradient (most simply by using central differences). The d-dimensional10

mesh can then be stored as d d-dimensional arrays, each containing one of the11

degrees of freedom of the mesh. So in a 2-dimensional case, with nx grid points12

in the x-direction and ny grid points in the y-direction, the mesh is stored as 213

nx × ny arrays. The first of which contains the x coordinates of the grid and14

the second containing the y coordinates. Similarly in the three dimensional case15

there are 3 arrays, x, y and z, each of size nx×ny ×nz where nz is the number16

of grid points in the z-direction. The connectivity of the grid is then implicitly17

defined by the relationship within the d-dimensional array. Algorithms 1 and18

2 outline the steps taken to find a solution of the Monge-Ampère equation (6)19

and determine the corresponding mesh in the static and dynamic situations20

respectively. Due to memory constraints for the meteorological test problem,21

these algorithms to solve the PMA equation were implemented in Fortran95.22
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Algorithm 1 The PMA algorithm in 3D for a static monitor function
PMAalgo_static

1: Read initial mesh ξ = (ξ, η, ζ)
2: τ ← 0
3: Initialise Q̃(τ) = Q̃0

4: Store the grid x(τ) = (x(τ), y(τ), z(τ)) as

x(τ)← ξ +
∂Q̃(τ)

∂ξ
, y(τ)← η +

∂Q̃(τ)

∂η
, z(τ)← ζ +

∂Q̃(τ)

∂ζ
.

5: while r > tol & τ < τmax do
6: Compute Q̃τ (τ) via:

• Compute the monitor function at the current grid points m(x(τ)). This
may be analytically defined of interpolated from a given data set

• Filter the monitor function

m̂(x(τ))← m(x(τ))

• Compute the second derivatives of Q̃(τ) in the computational space by
using via finite differences to give discrete approximations to:

Q̃ξξ(τ), Q̃ηη(τ), Q̃ζζ(τ), Q̃ξη(τ), Q̃ξζ(τ), Q̃ηζ(τ)

• Calculate the determinant, ρ(τ), of the Hessian of the mesh potential
Q̃(τ) at every current grid point:

ρ(τ)← |I +H(Q̃(τ))|

• Calculate the smoothing operator L−1 by applying the Fast Cosine
Transform to the 3-dimensional array (m̂(x(τ))ρ(τ))

1
3 , so

Q̃τ ← L−1(m̂(x(τ))ρ(τ))
1
3

7: Take a Forward Euler step

Q̃(τ + δτ) = Q̃(τ) + δτQ̃τ (τ)

8: Compute the finite difference approximations to ∂Q̃(τ)
∂ξ , ∂Q̃(τ)

∂η and ∂Q̃(τ)
∂ζ

9: Store the new grid as

x(τ)← ξ +
∂Q̃(τ)

∂ξ
, y(τ)← η +

∂Q̃(τ)

∂η
, z(τ)← ζ +

∂Q̃(τ)

∂ζ

10: Compute the change in the mesh

r ← ||∇ξQ̃(τ + δτ)−∇ξQ̃(τ)||2

11: τ ← τ + δτ
12: end while
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For completeness we now augment Algorithm 1 with an outer loop that is applied1

in the case of a time-dependent monitor function, giving Algorithm 2.2

Algorithm 2 The PMA algorithm in 3D for a dynamic monitor function
PMAalgo_dynamic

1: t← 0
2: Apply Algorithm 1 with m(x) = m(x, 0), Q̃0 ≡ 0 and τmax =∞
3: while t < tmax do
4: Apply Algorithm 1 with m(x) = m(x, t) and the initial potential Q̃0

given by the final value of Q̃(τ) from the previous iteration of Algorithm 1
5: t← t+ δt
6: end while

Now we elaborate on the details of the algorithms to show how the PMA method
can be implemented in practice in 3 dimensions for a problem in which a cuboid
region ΩC of dimensions [0, 1]3 is mapped to a corresponding cuboid region ΩP
of dimensions [0, 1]3. As described in Section 2 this leads to a problem with
Neumann boundary conditions of the form

Q̃ξ(0, ., .) = Q̃ξ(1, ., .) = Q̃η(., 0, .) = Q̃η(., 1, .) = Q̃ζ(., ., 0) = Q̃ζ(., ., 1) = 0.

For this implementation we assume that ΩC has a regular cubic mesh with,3

respectively, nx, ny and nz cubes in the the three coordinate directions, of cor-4

responding side lengths hx, hy and hz.5

4.1 First order differentiation6

With the mesh potential Q stored in an d-dimensional ordered array, comput-7

ing the first order derivatives is straight forward to implement using a central8

differencing scheme. So for instance in the 3 dimensional case, the derivative9

with respect to ξ is given by10

Q̃ξ(j, :, :) =
Q̃(j + 1, :, :)− Q̃(j − 1, :, :)

2hx
, j = 2 : nx − 1

At the boundaries we invoke the Neumann boundary conditions so that11

Q̃ξ(1, :, :) = Q̃ξ(nx, :, :) = 0.

Derivatives with respect to other variables follow similarly.12

4.2 Second order differentiation13

Firstly, we note that the enforcing the Neumann boundary conditions implies14

that all mixed derivatives on the boundary are zero, i.e. on the boundary15

Q̃ξη = Q̃ξζ = Q̃ηζ = 0.
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For the non-mixed derivatives on the boundary, a simple forward (or backward)1

scheme is used, so that for example2

Q̃ηη(:, 1, :) =
Q̃(:, 1, :)− 2Q̃(:, 2, :) + Q̃(:, 3, :)

4h2
y

.

In the interior of the domain, central differencing is employed such that3

Q̃ηη(:, j, :) =
Q̃(:, j + 1, :)− 2Q̃(:, j, :) + Q̃(:, j − 1, :)

h2
y

, j = 2 : ny − 1

and similarly for mixed second derivatives away from the boundary, so that for
example

Q̃ξζ(i, :, k) =
1

4hxhz
(Q̃(i+ 1, :, k)− Q̃(i− 1, :, k)−

Q̃(i+ 1, :, k − 1) + Q̃(i− 1, :, k − 1))

for all i ∈ {2, . . . , nx − 1} and k ∈ {2, . . . , nz − 1}.4

Similar approximations can be used for the other second order derivatives of Q̃.5

4.3 Filtering of the monitor function6

As described above, some form of filtering of the monitor function is required7

in practice
Piccolo2012
[1],

Budd2009a
[11] to produces sufficiently smooth meshes in a reasonable time.8

This is typically achieved in numerical weather prediction and other similar ap-9

plications by applying an appropriate low pass filter
Budd2009a
[11] to the monitor function10

m. For a three dimensional isotropic problem this most conveniently can take11

the form:12

m̂(i, j, k) =

∑1
`1=−1

∑1
`2=−1

∑1
`3=−1m(i+ `1, j + `2, k + `3)β|`1|+|`2|+|`3|∑1

`1=−1

∑1
`2=−1

∑1
`3=−1 β

|`1|+|`2|+|`3|
.

(16)
Here β is a smoothing parameter such that β ∈ [0, 1]. However, this type of13

filtering of the monitor function is not suitable for highly anisotropic cases, for14

example the highly stratified flows treated in the data assimilation application15

of
Piccolo2012
[1]. However, filtering only within horizontal atmospheric layers retains this16

stratified structure
Piccolo2012
[1]. Thus a filtering operator that is more suitable for data17

assimilation contexts is as follows:18

m̂(i, j, k) =

∑1
`1=−1

∑1
`2=−1m(i+ `1, j + `2, k)β|`1|+|`2|∑1
`1=−1

∑1
`2=−1 β

|`1|+|`2|
(17)

This produces much sharper monitor functions and hence gives better refinement19

of the grid around the structures of interest. With real data this filtering has to20

be applied several times in order to get a monitor function which will produce21

a grid with sufficient regularity.22

12



4.4 Applying the smoothing operator L−1
1

For the solution of PMA on a domain with purely Neumann boundary condi-2

tions, the Fast Cosine Transform can be employed to calculate L−1 and hence3

to apply the smoothing operator of the left hand side of the PMA equation (9)4

in O(N log(N)) operations. In an d-dimensional problem this transform has to5

be applied d times; once along each dimension of the mesh. The freely avail-6

able software FFTW
fftw
[24] was used to apply the Fast Cosine transform as it7

has the ability to work on multidimensional arrays in-place. That is to say the8

data structures do not need to be manually altered to perform a Fast Cosine9

Transform along different dimensions. In the 3-dimensional case, the routine10

dfftw plan r2r 3d is used with the option FFTW REDFT10 along each dimen-11

sion to signify the forward fast cosine transform. When the forward transform12

has been applied, the transformed variable is multiplied by the factor13

1/(1 + γ(k2
x + k2

y + k2
z)). (18) fftfactor

where the frequency-space coefficients kx, ky and kz are 3D vector fields given14

by15

kx(i, j, k) =
i− 1

nx − 1
πnx, ky(i, j, k) =

j − 1

ny − 1
πny, & kz(i, j, k) =

k − 1

nz − 1
πnz

for all i ∈ {1, . . . , nx}, j ∈ {1, . . . , ny} and k ∈ {1, . . . , nz}. Then the inverse16

Fast Cosine Transform is applied via dfftw plan r2r 3d used with the option17

FFTW REDFT01 along each dimension. This whole operation is equivalent to18

applying the operator (I−γ∆)−1 and can be seen to explicitly damp the higher19

order frequency components in the mesh, such as the potential chequer-board20

modes which can arise in the discretisation of the Hessian operator.21

4.5 Choice of the tuning parameters22

When applying the PMA algorithm we must make decisions on how rapidly
the mesh must be updated, the degree of convergence at each iteration, and
the degree of smoothing which must be applied. This requires us to initially
determine appropriate values for the three parameters used in the static case
(Algorithm 1), namely δτ and γ. In this static case, if the time-step δτ is
too large, the Hessian matrix H will typically become indefinite, leading to
mesh crossing and other undesirable features. If it is too small then the system
becomes overly stiff. This parameter can be controlled adaptively, however it is
generally robust to being set at a small constant value. Noting that the intrinsic
time-scale of this system is given by m−1/d a robust choice is to take

δτ = εm−1/d

where ε is a small constant value typically in the range 0.1 ≤ ε ≤ 1. (This choice23

also has certain useful features when scaling symmetries act on the system
Budd2009
[12].)24
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The parameter γ appears in the smoothing operator L ≡ (I − γ∆ξ)
−1 as part1

of equation (15) and is applied in (18). Larger values of γ correspond to higher2

smoothing of the calculated mesh. Typically we have found that the smaller the3

value of γ, the faster that PMA converges to an equidistributed mesh. However4

with γ too small mesh tangling can occur. Hence once the step length for the5

Euler method (δτ) has been chosen above then γ is chosen to balance the speed6

of convergence with the robustness of the method. Values of γ in the range7

γ ∈ [0.1, 0.6] are typical and, as above, these could be set adaptively for best8

performance.9

In the case of a dynamically evolving monitor function, δt corresponds to the10

natural time-scale of the model (ie. the underlying solution of the PDE). If11

the PDE is calculated numerically then it is sensible (and usual) to take δt to12

be the same as the time-step used to evolve the solution of the PDE, although13

occasionally we might interpolate the value of m between time steps allowing us14

to use values of δt which are smaller than the time-step in the method. When the15

initial redistributed mesh has been found in step 2 of Algorithm 2, it is desirable16

that the mesh is updated more rapidly than the solution of the underlying PDE,17

so that it can track it effectively, but not much more rapidly, so that we are not18

working too hard to calculate the mesh. For the inner loop of Algorithm 2 (step19

4), a value of δτ = 0.1 δt is appropriate for many applications. In the inner loop20

of Algorithm 2 it is not always necessary to run the pseudotime iterations for a21

long time, as the mesh remains close to equidistribution provided δt is not too22

large. Instead we set τmax = δt and take K iterations of the inner inner loop23

with time-step of δτ = δt/K. In correspondence with the above, a typical value24

of K may be in the range [1, 10], with larger values necessary if the difference25

||m(x, t+ δt)−m(x, t)|| is large.26

5 Static mesh results27

We now present a series of examples chosen to demonstrate the performance of28

the PMA algorithm on various challenging problems. In particular the examples29

are chosen to investigate the correspondence of the symmetry and regularity30

of the mesh to that of the underlying monitor function, to demonstrate the31

avoidance of mesh tangling when calculating the meshes in three dimensions32

and also to show that the PMA algorithm can cope with very large problems for33

which the monitor function is defined only at data points. In this section results34

are presented for a series of time invariant test problems in whichm(x, t) ≡ m(x)35

is taken to be a constant (in time) function, and only Algorithm 1 is used,36

starting from an initial potential Q̃0 = 0.37

The first example is a simple symmetrical case in which we present meshes38

generated by considering a monitor function which is large near the boundary of39

a sphere. This serves to show the symmetry preserving properties of the PMA40

equation and the regularity and alignment of the resulting meshes.41

14



The second example is a more complicated, but still analytically determined,1

monitor function describing a helical feature. This will show more clearly the2

meshes which it is possible to construct which can represent a complex three3

dimensional geometry.4

Finally in this section we will consider the very large and practical problem of5

generating adapted three-dimensional meshes for the purposes of meteorological6

data assimilation calculations. In this example we use forecast data from the7

Met Office UK4 model to define a monitor function based on an estimate of8

the potential vorticity, looking at a sequence of different meteorological events.9

This example illustrates the effectiveness of the PMA algorithm to generate a10

mesh when used on a large scale practical three dimensional problem, with a11

monitor function defined by data.12

For all of the examples, the codes for the PMA algorithm were executed on a13

laptop with an Intel R© CoreTM2 Duo CPU P9400 @ 2.4Ghz with 4GB RAM run-14

ning a 32-bit Linux OS and were compiled with the gfortran compiler in double15

precision. All reported times are wall-clock times measured using system clock,16

averaged over 3 runs.17

5.1 Simple test cases18

5.1.1 Example 1: A three dimensional shell19

sec:shell
We define the density f(x) of a smooth three dimensional ball with a (graded)20

boundary of width r2 and centred on the point (x0, y0, z0) as follows. Let s be21

the distance of a point in our domain to the centre of the ball given by22

s(x) = s(x, y, z) =
√

(x− x0)2 + (y − y0)2 + (z − z0)2. (19)

We then define the density of the ball via the function23

f(x) = f(x, y, z) =


1 for s(x, y, z) ≤ r1

1
2 cos( (s(x,y,z)−r1)π

r2
) + 1

2 for s(x, y, z) ≤ r1 + r2

0 for s(x, y, z) > r1 + r2

(20) cartball

where r1 and r2 are scalars defining the width of the ball. For this problem24

we will consider generating a mesh which concentrates points close to the shell25

forming the boundary of the ball. This can be achieved by using a monitor26

function which is large when the derivatives of the density function f(x) are27

also large. Accordingly, we define the monitor function m(x, y, z) by28

m(x, y, z) =
√

(1 + c2(fx(x, y, z)2 + fy(x, y, z)2 + fz(x, y, z)2)). (21) ballmonitor3d

Here c is a regularisation constant, which we set in our examples to be c = 0.75.29

We now consider a three dimensional mesh, constructed within the unit cube,
and adapted to this monitor function in which we set the parameters defining

15
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Figure 2: Plot of distance r that the mesh moved in each iteration (The Eu-
clidean change in the mesh) for the shell problem.conv_ball

the width of the ball to be r1 = r2 = 1
6 , and centred in the domain so that

(x0, y0, z0)T = ( 1
2 ,

1
2 ,

1
2 )T .

In the examples shown the computational domain ΩC = [0, 1]3 is split into a1

grid of nx × ny × nz points, with nx = ny = nz = 100 and is mapped into2

the same physical domain (so that the solution of the PMA equation satisfies3

Neumann boundary conditions).4

The PMA algorithm was applied to this problem with δτ = 0.2 and γ = 0.2. The5

convergence of the mesh to an equidistributed state to a tolerance of 5E − 116

is shown in Figure 2. The calculation terminated after 41 iterations, taking7

34 seconds on the laptop computer described earlier. From this figure we can8

clearly see the rapid, linear convergence of the algorithm.9

The resulting mesh is presented in Figure 3. From this simple test problem10

it is possible to see how the solution of the PMA equation is equidistributing11

the monitor function. There are many more grid points in the region where12

the monitor function is high than outside of that region, and the mesh shows13

excellent alignment with the boundary of the ball. In Figure 3a we plot the14

values of the monitor function in three dimension, with part of the ball cut15

away to show the variation in value across the shell. In Figure 3b we show a16

plane in the mesh that precisely follows the contours of the monitor function.17

Figures 3c and 3d show the grid from the centre of the computational domain18

16



projected onto the x–y plane in physical space. Figure 3d shows the regularity1

of the grid that is generated and that the PMA equation aligns the mesh with2

the contours of the monitor function. This elegant behaviour arises because3

symmetries in the monitor function lead to symmetries in the PMA equation4

and hence in the function Q.5

17



(a) 3D plot of the monitor function for
m > 1.05ball1

(b) 3D view of grid in physical space of
the grid from z = 1/3 in computational
space.ball2

(c) Projected view of a plane of the mesh
that was at z = 49/99 in computational
spaceball3

(d) Zoomed view of projected mesh from
z = 49/99 around the high monitor func-
tion.ball4

Figure 3: Monitor function and resulting sections from the mesh for the shell
test problem.ballmesh
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5.1.2 Example 2: A three dimensional helix1

We next consider an analytically defined monitor function that describes a com-2

plex three dimensional helical surface without the symmetries of the shell. Tak-3

ing x = (x, y, z)T then a monitor function m(x) which is large in a neighbour-4

hood of such a helix is given by5

m(x, y, z) = exp(−w1[(x− (w2 cos(4zπ) + 0.5))2 + (y − (w2 sin(4zπ) + 0.5))2])
(22) helixm

Here the parameter w1 describes the width of this boundary neighbourhood, and6

the parameter w2 gives the width of the helix. These are set to be w1 = 1007

and w2 = 1
4 . The domain is split into 100× 100× 100 grid points and the three8

dimensional values of the monitor function are shown in Figure 4.9

(a) 3D plot of the helical monitor func-
tion

(b) Cut away plot of 3d monitor func-
tion

Figure 4: 3D plots of the helical monitor function showing only those points
with m > 0.05helix_mon

The PMA algorithm was applied to the helical problem with δτ = 0.1 and10

γ = 0.2 and was successful in generating a highly non-uniform mesh without11

any evidence of mesh tangling at any stage of the application of the algorithm.12

The non-monotone convergence of the mesh to an equidistributed state to a13

tolerance of 5E− 11 is shown in Figure 5. The calculation terminated after 47314

iterations, taking 7.9 minutes on the laptop computer described earlier. We note15

that this convergence is significantly slower than for the shell in the example in16

Section 5.1.1. In Figure 6 we show the mesh generated by the PMA algorithm17

when applied to the problem taking m as defined in (22). In Figure 6b we show18

where the two horizontal planes in Figure 6a are mapped to in physical space.19

19
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Figure 5: Plot of distance the mesh moved in each iteration (Euclidean change
in mesh) for the helical problem.conv_helix

Similarly Figures 6c and 6d show where the vertical planes in Figure 6a are1

mapped to in physical space. These show that the redistributed grid is closely2

following the monitor function and very clearly show the fully 3D nature of the3

problem.4

For this helical problem, compared with the other examples considered in this5

paper, a substantially larger number of iterations are required in order to have a6

suitable mesh and for the algorithm to converge. This is due to the complex and7

highly non-uniform structure of the monitor function which we are considering8

and the fact that the original uniform mesh has to encounter significant deviation9

to wrap around the helical structure. Due to the twisted nature of the monitor10

function, if we were to be aggressive with our strategy to find a mesh for this,11

mesh tangling would easily occur on the path to the final mesh. To avoid this we12

decreased our step size (δτ) in the forward Euler method and hence we increase13

the number of iterations required to reach the same tolerance as considered in14

the other examples. It is a significant achievement of the algorithm that it was15

able to evolve the mesh in this manner without ever encountering a state where16

the mesh was tangled.17

20



(a) Planes in the computational mesh
showing where the meshes in Figures
6b–6d originate in computational spacehelix_planes

(b) Location of the two horizontal
planes in the physical space correspond-
ing to the horizontal planes shown in
computational spacehelix_hor

(c) Location of the plane in physical
space corresponding to y = 1/3 in com-
putational spacehelix_ver1

(d) Location of the plane in physical
space corresponding to y = 7/9 in com-
putational spacehelix_ver2

Figure 6: 3D plots of the mesh generated by the helical monitor function at
various slices.helix_res
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5.2 Meteorological test problems1

We now consider a large scale meteorological problem for which the monitor2

function is not given as an analytic function, but is instead defined at a set3

of discrete data points. This is a commonly encountered situation both in the4

numerical solution of PDES or (as in this case) of function approximation where5

the function is only known at discrete points.6

Data assimilation is the technique of matching noisy data to models of a process7

which also may have error. It is widely, and successfully, used in meteorology to8

determine an atmospheric state consistent both with observations and with the9

underlying physics of the atmosphere. In order to implement data assimilation10

methods effectively, it is important that the underlying covariance matrix of11

the errors is well represented. This matrix is too large to store explicitly. In12

this context adaptive mesh redistribution can be applied to create a simplified13

and thus manageable representation of the background error covariance matrix,14

and in particular include a reasonable representation of the spatially varying15

structure of the covariances
Piccolo2011,Piccolo2012
[4, 1]. The Met Office data assimilation system16

already implements a 1D adaptive meshing procedure for the vertical component17

of their grid used for their data assimilation algorithms. The improvement in18

data correlations represented by doing this has resulted in a measurable increase19

in forecasting accuracy
Piccolo2011,Piccolo2012
[4, 1]. In this paper we consider the first step of extending20

this work by considering how to use the PMA algorithm to generate a suitable21

3D mesh for data assimilation in a variety of meteorological conditions. A22

discussion of the implementation and testing of the adapted meshes within the23

data assimilation system will follow in a later paper.24

To be effective within the context of a data assimilation calculation, the mesh25

generation code must be both fast and robust to use, and must also be easily26

linked to the existing data assimilation software. For the Met Office application,27

the goal is to produce a weather forecast after using data assimilation to get a28

best guess for the current state of the atmosphere. This imposes an immediate29

operational time restriction on the time-frame in which the computations can30

be made, as a forecast delivered after the event is useless. As a rule of thumb, a31

mesh which takes more than five minutes to generate is not useful operationally.32

This paper considers adapting the UK4 grid (4km horizontal spacing local area33

model over the British Isles) with efficiency a key consideration for any future34

operational implementation. As a code for an operational centre, the meshes35

produced will have to run automatically and hence be robust to all weather36

conditions. Thus it is essential to have a monitor function which is well scaled37

to maintain good global resolution while still refining sufficiently around features38

of interest.39

This specific application of adaptive meshing is as an aide to help calculate the40

background error covariance matrix within the data assimilation algorithm, and41

thus to ease the finding of the minimum in the variational problem as in
Piccolo2012,Piccolo2011
[1, 4].42
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5.3 Defining a monitor function1

sec:mon
In this example, the physical coordinates x = (x, y, z) correspond to longitude,
latitude and vertical levels respectively. The vertical levels are defined using
a terrain-following coordinate η which is a monotone function of height. It is
plausible to assume that the correlation structure is isotropic in geostrophic and
isentropic coordinates, which implies the use of the semi-geostrophic potential
vorticity as a monitor function

cullen2006
[20]. The PV is the Jacobian of the transforma-

tion from physical to geostrophic and isentropic coordinates. This is given in
terms of the primitive variables u, v and θ by

PV =

∣∣∣∣∣∣
f + vx vy vz
−ux f − uy −uz
gθx/θ0 gθy/θ0 gθz/θ0

∣∣∣∣∣∣
where f is the Coriolis parameter (assumed constant), u and v are the wind ve-
locities in the longitudinal and latitudinal directions respectively, g is the force
due to gravity, θ is potential temperature and θ0 a reference potential temper-
ature

cullen2006
[20]. Since the PV calculated from real data may not be positive, we use

only the dominant diagonal terms of semigeostrophic potential vorticity to form
the basis for the monitor function which we use to control the adapted mesh.
Each of the diagonal terms is regularised to take account of the typical scale
of the individual terms and ensure positivity. This resulting monitor function
then has the following form

m =

∣∣∣∣∣∣∣∣∣

√
1 + c1(1 + vx

10f )2 0 0

0
√

1 + c2(1− uy

10f )2 0

0 0
√

1 + c3( θzθ0 )2

∣∣∣∣∣∣∣∣∣ .
Note that the wind gradients uy and vx have been rescaled by a factor of 10 to2

remove some of the greater variability in the wind speeds than in the potential3

temperature. The constants c1, c2 and c3 are regularisation parameters which4

allow for different weightings to be given to the different components. With a5

great deal of testing, it was found that all the normalisation parameters equal6

0.75 gave good results. Note that c1 = c2 = 0 reduces this three dimensional7

monitor function to the one dimensional static stability based monitor function,8

which is currently used operationally
Piccolo2011,Piccolo2012
[4, 1].9

In the application to atmospheric data assimilation it is important to respect10

the stratified structure of the atmosphere. Though the monitor function should11

be smoothed to avoid computational difficulties caused by rapid grid variations,12

the smoothing should be applied only in the horizontal and not the vertical.13

Thus the filtering operator that is applied is14

m̃i,j,k =

∑1
`1=−1

∑1
`2=−1mi+`1,j+`2,kβ

|`1|+|`2|∑1
`1=−1

∑1
`2=−1 β

|`1|+|`2|
(23)
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This produces much sharper monitor functions and hence gives better refinement1

of the grid around the structures of interest.2

5.4 Test cases3

In our calculations we considered three different meteorological data sets to test4

the grid generation capabilities of the 3D PMA algorithm. These data sets were5

actual forecast data provided by the UK Met Office for periods of very different6

weather conditions, in particular: (a) a stable boundary layer, (b) scattered7

showers, and (c) a frontal system. In keeping with the possible operational8

restrictions on adapted grid generation, all parameters used in the subsequent9

results will be fixed across all cases to show the robustness of the method.10

In all of these calculations, the parameters used were δτ = 0.5, γ = 0.5 and11

the convergence tolerance was set to 5E − 11. The PMA algorithm performed12

very well in each case and the meshes obtained captured all the features of the13

underlying localised systems (identified by the monitor function). Consequently14

we are confident that the resulting meshes should perform very well when used15

for data assimilation calculations. The table below shows the convergence results16

from the three test cases.17

Test case Iterations CPU time (minutes)
Stable boundary layer 22 4.0
Scattered showers 22 4.2
Frontal system 21 5.4

Table 1: Results for the three meteorological test casestab:met

Observe, that even in these large data sets, the PMA algorithm converges18

rapidly. We now show the resulting meshes in each case. For each figure we give19

the monitor function and the mesh at appropriate sections through the domain.20

5.4.1 Stable boundary layer21

This test case uses the same UK4 model data described in
Piccolo2012
[1], representing a22

scenario when UK was mainly covered by low-level clouds. The synoptic situa-23

tion over the UK at the time (3rd January 2011 at 00UTC) was characterised24

by a weak flow within a large anticyclone of 1030 hPa surface pressure. Ob-25

served vertical profiles show saturated boundary layer below an inversion of26

850 hPa.There is a warm front in the south-west with some likely enhancements27

from a vorticity anomaly aloft. This is associated with extensive low clouds28

particularly in the south-west. Figure 7 shows a cross section (longitude versus29

levels) of the monitor function described in Section 5.3 for 3 January 2011 at30

00 UTC and the corresponding mesh. The three dimensional monitor function31

clearly captures the vertical structures in the troposphere which indicates the32

presence of clouds at different levels in agreement with the results showed when33

using the one dimensional static stability monitor function described in
Piccolo2012
[1]. The34
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mesh follows the monitor function by moving the vertical height levels further1

together when the monitor function is greater than one and further apart when2

it is smaller than one. This is in agreement with the one dimensional results. In3

addition the three dimensional monitor function moves the mesh horizontally4

capturing more realistically local variations of the cloud layering.5

Another cross section is shown in Figure 8. Again the mesh (latitudes versus6

height levels) follows the structure of the corresponding monitor function and7

captures local variability both vertically and horizontally.8

35
L

ev
el

70
0

11.51W 4.83E3.34W7.43W 0.75E

35
L

ev
el

70
0

11.51W 4.83E3.34W
Longitude

7.43W 0.75E

Figure 7: The monitor function and the resulting mesh for the stable boundary
layer system at a 94th latitude increment ad with increasing longitude. The func-
tion is shown in the vertical plane from (50.68N, 11.51W ) to (50.80N, 4.84E)fig7
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Figure 8: The monitor function and the mesh for the stable boundary layer sys-
tem at a 260th longitude increment. In the vertical plane from (47.91N, 2.89E)
to (60.79N, 4.86E).fig8
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5.4.2 Scattered showers1

The next two cases have been selected to test the capability of the scheme2

to capture two different extremes, i.e. localised convective activity as in the3

scenario of scattered showers and a large scale weather system as in the case of4

a front. The synoptic situation over the UK on the 24 April 2012 at 12UTC was5

characterised by a weak flow within a large scale upper trough with an upper6

filament of vorticity in the south-west of England giving focus to the convective7

activity. The latter gives large values of the monitor function. The convective8

activity is shown by the radar image in Figure 9. The adaptive mesh scheme9

here needs to pick up very small and localised showers scattered over the UK10

as well as the response to the large scale forcing over SW England.11

Figure 10 shows an horizontal cross section of the monitor function on the left12

and the corresponding mesh on the right for a low height level of the model.13

The monitor function tends to capture local and small scale phenomena. These14

do not coincide with the radar image in Figure 9, this is because the monitor15

function is calculated from a T+3h forecast and not from observations. The16

monitor function does not respond to the random showers over Ireland, but17

does pick up the area with no showers over central England. The mesh follows18

the monitor function behaviour and clustered mesh points near the high values of19

the monitor function. When the showers are better organised and less random,20

like the filament over North Scotland, the mesh nicely aligns with this feature.21

Figure 11 shows instead a vertical cross section (latitudes versus height levels)22

for the same case. As well as capturing the small scale variations due to the23

showers the monitor function picks up the upper filament of vorticity (around24

level 35) and the lower filament over north Scotland (around level 8). The25

mesh nicely follows the behaviour of the monitor function both horizontally and26

vertically.27

5.4.3 A Frontal system28

The last case described in this section follows from the scattered showers weather29

system. The large upper trough described in the previous section extends south30

and by 00UTC on the 25 April 2012 it drives the surface cyclonic system east-31

ward bringing a warm front system into the south-west of UK. The activity32

on the front is strongly enhanced by vorticity forcing at 250 hPa. Figure 1233

shows the radar image for the front system on the 25 April 2012 at 03UTC. The34

horizontal cross section of the monitor function and the corresponding mesh for35

this case are shown in Figure 13. The front is clearly depicted in both pictures36

and the refinement of the mesh is high in correspondence with the front. Figure37

14 shows the vertical cross section (latitude versus levels) of the monitor func-38

tion and the resulting mesh. It clearly picks up the three dimensional structure39

of the front (around latitude 50N) as a function of height and latitude. The40

monitor function also displays extra vertical structures over the UK. Again the41

mesh nicely follows the behaviour of the monitor function both horizontally and42

vertically.43
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Figure 9: Radar image of the scattered showers system.fig9
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Figure 10: The monitor function and the mesh for the scattered shower system
at a 8th vertical level. At 261.7mfig10
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Figure 11: The monitor function and the mesh for the scattered shower sys-
tem at a 135th longitude increment. Vertical plane from (48.04N, 3.81W ) to
(60.96N, 4.29W ).fig11
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Figure 12: The radar image of the frontal system crossing the South West coast
of the British Islesfig12
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Figure 13: The monitor function and the mesh of the frontal system at a 23rd

vertical level at 1911.7mfig13
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Figure 14: Monitor function and mesh of frontal system at 16th longitude in-
crement. Vertical plane from (47.77N, 10.17W ) to (60.60N, 12.94W ).fig14

31



6 A moving mesh test problem1

We now consider the performance of the PMA algorithm when used to compute a2

time varying three-dimensional mesh when the monitor function m(x, t) is itself3

a function of time. This situation of course is closer to a typical implementation4

of a mesh redistribution method when it would be used to as part of the solution5

of a time varying PDE. In this section the example considered is the same as6

that studied by Chacón et al.
Chacon2011
[6] which also considers calculating a mesh by7

solving the Monge-Ampère equation, but which uses a Newton method coupled8

with a multi-grid solver to do this. To find the mesh in this case we implement9

Algorithm 2 as described earlier.10

The time-varying, analytically defined, monitor function considered is given by:11

m(x, y, z, t) = 1 + 4 exp

(
−r(x, y, z)2

(
cos2(κ(x, y, z, t))

σ2
x

+
sin2(κ(x, y, z, t))

σ2
y

))
(24)

where r(x, y, z) is the distance to the centre of the domain at
(

1
2 ,

1
2 ,

1
2

)
, σx =12 √

0.05, σy =
√

0.001 are scaling factors and13

κ(x, y, z, t) = arctan

(
y − 1

2

x− 1
2

)
+ 1.6 sin(πz) max[( 1

2 − r)r, 0]t. (25)

The goal of this test problem is to find meshes at times t ∈ {0, 1, . . . , 100}. The14

problem of finding the mesh for this time dependent system is then solved in15

two stages in a manner analogous to the MMPDE method described in
huang2011
[13].16

Firstly at time t = 0 Algorithm 2 sets the monitor function m(x, 0) and,17

starting from a uniform mesh, the system (14) is evolved forward in pseudo-time18

using Algorithm 1 with m(x, 0) fixed until the mesh satisfies the equidistribution19

condition to a high tolerance. For this calculation we take δτ = 0.1, γ = 0.220

and tol = 5E − 11.21

Secondly Algorithm 2 evolves the monitor function in real time, with the value22

of t increased in intervals of δt = 1.0. For each of these outer timesteps, we set23

τmax = δt and δτ = δt/5, ensuring at least 5 pseudo-timesteps per inner loop.24

Some of the resulting meshes for the case of a 128×128×128 mesh are presented25

as follows. In Figure 15 we show the monitor function and the resulting mesh26

at the initial time t = 0. In Figures 16 and 17 we then show the evolved meshes27

at the later times t = 50 and t = 100.28

We can see at time t = 100 that the mesh closely follows the contours of the29

monitor function and is very regular with no hint of mesh tangling.30

We next consider the computational cost of calculating these meshes. To do this31

the unit cube is discretised into a grid of N × N × N , where N = 32, 64, 128,32

32



(a) The monitor function at time t = 0 (b) Planes z ∈ {0, 54
127

, 107
127
} in the com-

putational grid.

(c) Planes y ∈ { 40
127

, 87
127
} in the compu-

tational grid.
(d) Planes x ∈ { 64

127
} in the computa-

tional grid.

Figure 15: The monitor function and the resulting meshes at the time t = 0cfig1

33



Figure 16: The monitor function and the resulting meshes at the time t = 50cfig2
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Figure 17: The monitor function and the resulting meshes at the time t = 100cfig3
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and we list the number of iterations to converge to the given tolerance in the1

pseudo-time calculation at t = 0 and the total CPU time required to compute2

the 101 meshes until t = 100. These results are presented in Table 2.3

Grid resolution N DOFs Initial iterations of static PMA CPU(s)
32× 32× 32 98304 44 15.91
64× 64× 64 786432 45 180.28
128× 128× 128 6291456 44 2356.29

Table 2: Timings for the evolution of the mesh to an equidistributed state for
varying spatial discretisationstable1

A direct comparison with the results in Chacón et. al.
Chacon2011
[6] can be made with4

these results. In their paper they describe and implement a Newton-Krylov5

iteration using modern multigrid methods to solve exactly the fully non-linear6

Monge-Ampère equation. For the high resolution 128 × 128 × 128 grid this7

computation required 32000s of CPU time. The methods produced by the PMA8

algorithm appear similar in structure, despite the significantly reduced cost of9

their calculation.10
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7 Conclusion1

In this paper we have demonstrated that the Parabolic Monge-Ampère algo-2

rithm can be extended from two dimensions to three, and that it is effective3

in generating meshes with good regularity in a short time. In particular it can4

deliver effective meshes for three dimensional meteorological data assimilation5

calculations using large data sets with 21 million degrees of freedom, in times6

commensurate with those required for actual weather forecasting. When applied7

to test problems it shows rapid convergence, with meshes rapidly (and without8

any hint of tangling) converging to an equidistributed state. In particular it is9

an order of magnitude faster in converging than other similar mesh generation10

methods. We therefore think that this method should be considered seriously11

as a fast and effective method for redistributing a large three dimensional mesh.12
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