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Abstract. This article considers a new method for generating a moving mesh which is suit-
able for the numerical solution of partial differential equations (PDEs) in several spatial dimensions.
The mesh is obtained by taking the gradient of a (scalar) mesh potential function which satisfies
an appropriate nonlinear parabolic partial differential equation. This method gives a new technique
for performing r-adaptivity based on ideas from optimal transportation combined with the equidis-
tribution principle applied to a (time-varying) scalar monitor function (used successfully in moving
mesh methods in one-dimension). Detailed analysis of this new method is presented in which the
convergence, regularity, and stability of the mesh is studied. Additionally, this new method is shown
to be straightforward to program and implement, requiring the solution of only one simple scalar
time-dependent equation in arbitrary dimension, with adaptivity along the boundaries handled auto-
matically. We discuss three preexisting methods in the context of this work. Examples are presented
in which either the monitor function is prescribed in advance, or it is given by the solution of a
partial differential equation.
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1. Introduction. The numerical solution of many nonlinear partial differential
equations (PDEs) posed in d-dimensions, using a computational mesh, requires some
form of mesh adaptivity in order to generate reliable solutions efficiently. This is due
to the difficult nature of the underlying physical phenomena with evolving structures
on small length scales possibly manifesting as shocks, singularities, localization, or
moving interfaces. Regular, as well as even nonregular, but fixed meshes are often
insufficient due to the transient character of such behavior. Adaptive meshes allow
enhanced resolution in certain regions of the time-space domain, capturing natural
time and length scales and often allowing for the computations to be extended where
non-adaptive methods breakdown. There are typically three approaches to mesh
adaptivity known as p, h, and r [43]. In p-adaptivity higher-order basis functions are
used in certain regions as smoothness permits. A posteriori error estimates typically
motivate h-adaptivity approaches in which meshes are locally refined or coarsened
until error tolerance criteria are met. The third approach, r-adaptivity, moves a
(typically) fixed number of nodes, with a constant connectivity structure, so that the
nodal density is highest where some monitor of the solution is also high. One purpose
of such a calculation is to gain as high an accuracy as possible for a given problem and a
given number of mesh points. This can be done statically, regridding whenever given
conditions are met, or dynamically through the use of a transformation depending
continuously on time. While combinations of the different approaches are possible,
dynamic r-adaptivity is the focus of this paper, which aims to describe an efficient r-
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adaptive method which can be analyzed in some detail. While not as widely used as h-
or p-adaptive methods, r-adaptivity has been used with success in many applications
including computational fluid mechanics [43], phase-field models and crystal growth
[38], and convective heat transfer [18]. It also has a natural application to problems
with a close coupling between spatial and temporal length scales, such as in problems
with symmetry, scaling invariance, and self-similarity [4], [12], where the mesh points
become the natural coordinates for an appropriately rescaled problem.

The approach we describe is a natural extension of the moving mesh PDE methods
which have been very successfully implemented in one-dimension by Russell and his
co-workers [33], [43]. These methods are all based on finding a mesh which evolves
to be close to one which equidistributes a suitable monitor M of the properties of
the underlying solution, computational errors, and/or of the regularity of the grid.
The equidistribution principle will be outlined in later sections, and has the difficulty
that while it defines a unique mesh in one-dimension, it fails to do so in higher
dimensions, and extra constraints have to be applied to the mesh to give uniqueness.
Various approaches have been considered in the literature, varying from constructing
the gradient flow of a variational principle [36], the condition that the curl (with
respect to X) of the mesh velocity should be zero [17], or the requirement that the
map should be a harmonic function [43]. In this paper we will instead impose the
condition that (in a suitable norm) the mesh should be as close as possible to a uniform
mesh, consistent with it equidistributing the monitor function. This idea has a long
history in the fields of geometry and fluid mechanics, where it is called the optimal
transport condition. However, it has certain obvious advantages when used as part of
a mesh-generating strategy. From a point of view of being effective for discretizing
a PDE, meshes close to uniform ones are less likely to have long thin elements than
ones which are not. Furthermore, as we shall show, such meshes can be derived by
finding the gradient of a scalar mesh potential P . Such meshes then have the property
that they are irrotational. Determining the mesh then becomes equivalent to solving
a (fully nonlinear) Monge–Ampère (MA) type elliptic PDE for the scalar P . Thus
it is then solved in parallel with solving the underlying PDE. In practice solving the
Monge–Ampère equation is hard, and we propose instead a relaxation method to
find P which is a generalization to d dimensions of the one-dimensional moving mesh
PDE (MMPDE) approach to generating a mesh described in [33]. For our system
this reduces to the problem of finding the solution to a parabolic Monge–Ampère
(PMA) equation (PMA) which closely resembles the problem of evolving a Gauss
mean-curvature system. In this paper we will derive a parabolic Monge–Ampère
equation, and will analyze the properties of its solution and the resulting mesh. In
particular the strong structure that the optimal transport condition places on the
mesh means that we can make much more precise analytic estimates of its behavior
than are possible with other schemes. Indeed, one of the most difficult theoretical
aspects of r-adaptive methods for d > 1 is in establishing that the mapping remains
bijective for all time. In this paper we show rigorously that the PMA method not only
generates bijective mappings for all time but that the stationary state is exponentially
stable in time, and if the solution changes slowly, then the mesh generated by PMA
follows its structure faithfully. We shall also show how the skewness of the resulting
mesh can be determined in terms of P and apply this to a problem of meshing a front.

The remainder of this paper is as follows. In section 2 we describe the basic theory
behind r-adaptive methods based upon equidistribution. In section 3 we develop the
theory behind moving mesh PDE method in one-dimension. In section 4 we look
at the optimal transport condition and show how this leads to the MA equation for
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the mesh. In section 5 we look at PMA which is a relaxed form of MA and prove
a number of results on the existence and regularity of the meshes that it generates.
In section 6 we compare the PMA method with other mesh-generating algorithms.
In section 7 we show how the method can be implemented. Finally, in section 8 we
show a number of applications of this method to generating moving meshes, both
where the monitor function is prescribed in advance, and also where it depends upon
properties of the solution u of the associated PDE. In particular we look at examples
with moving fronts, and one with finite time blow-up governed by a scale invariant
PDE.

2. r-adaptivity and the equidistribution principle.

2.1. r-adaptivity. Suppose that we have a PDE with solution u(X, t) which
is posed in a physical domain ΩP ⊂ Rd with independent spatial variable X ∈ Rd.
(The theory developed in this paper applies for any d � 1 but for convenience we
will generally consider the case of d = 2.) Conceptually, an r-adaptive approach to
generating a moving mesh continuously maps a suitable computational space ΩC into
ΩP . To do this we presume that a computational coordinate ξ ∈ Rd is continuously
mapped to the physical coordinate so that

X ≡ X(ξ, t).

Thus the r-adaptive method is implementing a coordinate change prior to making
any discretization. The basis of the r-adaptive approach is that a fixed set of mesh
points (with fixed connectivity) in ΩC is moved by this map to a moving set of points
in ΩP where the solution is developing interesting structure. For simplicity we will
often assume that ΩC is a cuboid with unit volume so that

(1)
∫

ΩC

dξ = 1.

Throughout this paper we will define coordinates in the computational domain us-
ing greek letters ξ = (ξ, η, . . . ) and in the physical domain by roman letters X =
(X, Y, . . . ). We will usually assume that the computational domain is meshed by a
uniform mesh with Nd cells; see Figure 1. However, there is always complete freedom
in choosing an appropriate mesh for the computational domain, and in certain cases
(such as when important behavior occurs close to boundaries) it may be useful to
consider a nonuniform but fixed mesh in ΩC which is then mapped to a moving mesh
in ΩP .

Now consider a time-dependent map F from ΩC to ΩP so that

X = F(ξ, t).

We assume further that, for all t, F : ∂ΩC → ∂ΩP . For the r-adaptive procedure
to be effective, the function F should be easy to compute and should evolve at least
as rapidly as the underlying solution of the PDE being solved. This map takes the
uniform mesh in ΩC to a nonuniform mesh in ΩP . To avoid mesh tangling and a
failure of the solution procedure, the map F must also be 1-1, so that if

(2) J(ξ, t) = det
(

∂X(ξ, t)
∂ξ

)
,

then J > 0. In general mesh tangling can be a significant problem with the imple-
mentation of r-adaptive methods. However, we will show that the condition (2) is
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Fig. 1. A generic mapping from the computational to physical space.

automatically satisfied by the maps constructed using the parabolic Monge–Ampère
algorithm, and will show a series of computations of meshes in which no tangling is
observed.

2.2. Maps which equidistribute a monitor function. We will construct all
of the maps for the r-adaptive procedure by using the equidistribution principle. The
idea of equidistribution is a powerful one for identifying a possible map and goes back
to de Boor [25]. To implement it we introduce a (time-dependent) scalar Stieltjes
measure M(X, t) dX into the physical domain. Here the scalar function M(X, t) > 0
is called the monitor function, which is presumed to be large in those regions of ΩP

where the mesh points need to be clustered, so that the density of the mesh points
is large in these regions. This may occur, for example, in the neighborhood of a
solution singularity or a sharp front. This monitor function is often defined indirectly
via the solution so that we might have M(X, t) ≡ M(X, u(X, t),∇u(X, t), . . . , t).
To implement the equidistribution strategy we introduce an arbitrary nonempty set
A ⊂ ΩC in the computational domain, with a corresponding image set F(A, t) ⊂ ΩP .
The map F equidistributes the respective monitor function M if the Stieltjes measure
of A and F(A, t) normalized over the measure of their respective domains are the
same. This implies that

(3)

∫
A

dξ∫
ΩC

dξ
=

∫
F(A,t) M(X, t) dX∫

ΩP
M(X, t) dX

.

It follows from a change of variables that

(4)

∫
A

dξ∫
ΩC

dξ
=

∫
A

M(X(ξ, t), t)|J(ξ, t)| dξ∫
ΩP

M(X(ξ, t), t) dX
.

As the set A is arbitrary, the map F(ξ, t) must (for all (ξ, t)) obey the identity

(5) M(X(ξ, t), t)|J(ξ, t)| = θ(t) where θ(t) =

∫
ΩP

M(X(ξ, t), t) dX∫
ΩC

dξ
.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3442 C. J. BUDD AND J. F. WILLIAMS

We shall refer to (5) as the equidistribution equation and it must always be satisfied
by the map F(ξ, t). The equidistribution principle has different consequences in one-
dimension from higher dimensions. In one-dimension it (together with boundary
conditions) uniquely defines the map F(ξ, t). However, uniqueness is lost in higher
dimensions. Informally this is because there is a unique interval (up to translation)
of prescribed length in one-dimension, but there are an uncountable number of sets
of prescribed area in higher dimensions. Thus the equidistribution principle needs to
be augmented with additional conditions if it is to be applied in dimension d > 1.

2.3. Choice of the monitor function. The choice of an appropriate monitor
function M is difficult, problem dependent, and the subject of much research. We do
not consider this in detail here but give a brief review of various choices used for certain
problem classes. The function M can be determined by a priori considerations of the
geometry or of the physics of the solution. An example is the generalized solution
arc-length given by

(6) M =
√

1 + c2|∇xu(x)|2 or alternatively M =
√

1 + c2|∇ξu(x(ξ))|2.

The first of these is often used to construct meshes which can follow moving fronts with
locally high gradients [48], [31]. In [18] the second (with u being the temperature) was
used sucessfully to resolve small scale singular structures in Boussinesq convection.
It is also common to use monitor functions based on the (potential) vorticity, or
curvature, of the solution [5], and these have been used in computations of weather
front formation [12], [13], [47]. In certain problems, moving fronts are associated with
changes in the physics of the solution. An example is problems with phase changes,
where the phase front occurs at those points (xm)i at a temperature T = Tm. In
such cases it is possible to construct meshes which resolve behavior close to the phase
boundary by using the monitor function M = a/

√
b|x− xm|+ c where |x − xm| =

min |x − (xm)i| [38]. Alternatively, M can be linked to a posteriori estimates of the
solution error. An example of such, in the context of a piecewise linear finite element
approximation uh to a function u, is M =

√
1 + αζ2, where

(7) |u− uh|21,ΩP
∼ ζ2(uh) ≡

∑
l: interior edge

∫
l

[∇uh.nl]2l dl

and [.]l is the jump in the computed solution along the element edges. This monitor
function is used by Tang [43] to adaptively compute solutions to the Navier–Stokes
equations with thin shear layers and/or high Mach numbers. Similarly, in a series of
papers [27], [28], [29], [30], [31], Huang explicitly considers monitor functions which
are designed to control the regularity, alignment, and quality of the mesh. These
include monitor functions which are based as estimates of the interpolation error of
the computed solution. Finally, it is sometimes possible in the case of PDEs with
strong scaling structures (such as problems related to combustion and gas dynamics)
to find suitable monitor functions which give meshes that reflect the natural scales of
the problem [8]. We give an example of such in section 7, looking at a PDE which
has solutions which blow up in a finite time. In this case we need a fine mesh when
the solution is large, and take M(u) =

√
a2 + b2u2p, p > 0.

3. Equidistribution and r-adaptivity in one-dimension.

3.1. Existence and uniqueness of the mesh. In one-dimension, the equidis-
tribution condition (5) uniquely defines the map F. To see this, we set ΩC = ΩP =
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[0, 1] and pose (5), enforcing the condition of mapping boundaries to boundaries. This
gives

(8) M(X(ξ, t), t) Xξ = θ(t), X(0) = 0, X(1) = 1.

Integrating both sides with respect to ξ we have
(9)

N(X, t) = θ(t) ξ where N(X, t) =
∫ ξ

0

M(X(ξ, t), t)|Xξ| dξ =
∫ X

0

M(X ′, t) dX ′.

As M > 0 it follows that the function N(X, t) is monotone increasing in X ; thus
each value of ξ is associated with a unique X . For a given function M(X, t) (9)
is a nonlinear function of X which must be solved at the same time as solving an
underlying time-dependent PDE. It is in general hard to do this, especially when also
solving the underlying PDE, and various strategies have been devised to make the
problem easier.

3.2. Relaxation and MMPDES. One approach which will motivate the cal-
culation of meshes in higher dimensions, and couples naturally to the solution of
time-dependent PDEs, is to use relaxation. This is based on the idea that it is not
necessary to solve (9) exactly in order to generate a mesh which is effective for the
computation of the solution of the underlying PDE. Instead we can solve a relaxed
version of the first equation of (8). As calculating the integral of M over ΩP is in-
convenient, we differentiate (8) with respect to ξ and perform a parabolic relaxation.
(Typically this relaxation is in pseudo-time when initially generating the mesh and
proceeds in real time thereafter.) Two possible relaxations are

(10) εXt = (MXξ)ξ and − εXtξξ = (MXξ)ξ .

Both forms of relaxation are employed in the code MOVCOL where they are referred
to as moving mesh PDE MMPDE5 and MMPDE6, respectively. The advantage of
this approach is that it can be intialized with an arbitrary mesh which need not satisfy
the equidistribution equation (9). Typically we then see a period of rapid evolution
over a time-scale O(ε) during which the mesh X evolves toward an equidistributed
mesh. As the monitor function M evolves with time, it then remains ε-close to
the equidistributed mesh for subsequent times. In this evolution the mesh evolves
sufficiently fast to track the solution of the underlying PDE provided that the time-
scale for the mesh to evolve under (10) is shorter than the evolutionary time-scale of
the underlying PDE. The construction of meshes with this property for the solution
of PDEs with a scaling structure is described in [8], [2].

4. Optimal transport and Monge–Ampère equation in Rd.

4.1. Optimal transport. We now consider the question of generating a mesh in
dimension d > 1 for which equidistribution does not uniquely define a mesh. Thus, in
addition to the equidistribution condition, additional constraints need to be imposed
in order to uniquely define a mesh. Various of these have been suggested; see the
review article [43]. From a perspective of solving PDEs using, say, the finite element
method, we might seek meshes which avoid long thin triangles and the possibility of
mesh tangling arising. Observing that the mesh with the least possibility of either of
these occurring is a uniform mesh, then we propose that a good equidistributed mesh
is one which is as close as possible to a uniform mesh. There are various ways to
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define this, but a simple one is to use the Lp measure of distance, so that we define an
optimal equidistributed mesh to be one closest in the Lp norm to a uniform mesh, i.e.,
one which minimizes the distance that the uniformly distributed mesh points in the
computational domain have to move to the associated points in the physical domain.
We make this precise as follows.

Definition. An optimally equidistributed mapping F minimizes Ip, where

(11) Ip =
∫

ΩC

|F(ξ, t)− ξ|p dξ,

over all invertible mappings X(ξ, t) = F(ξ, t) for which the equidistribution condition
(5) also holds.

Here Ip is the cost of rearranging the initial uniform mesh into the equidistributed
mesh. The scientific study of determining such optimal mappings dates back to Monge
in 1781, who considered optimally rearranging a pile of material from one configuration
to another. This problem has, in various forms, seen a wide array of interest in the
past ten years with applications to such diverse fields as meteorology [23], probability,
differential geometry, astrophysics, and the study of porous media equations; see the
references in [6] and [26] and the book [46]. Of particular relevance to the present
study are the works by Brenier [7], Caffarelli [14], [15], and Benamou and Brenier [6].
It also lies at the heart of the problems of image registration. In the original problem
Monge took p = 1; the case p = 2 corresponds to the Kantorovich (or Wasserstein)
distance. Consequently the minimizer F with p = 2 is said to optimally transport
the unit measure to M , or, solve the Monge–Kantorovich problem. We will consider
the case of p = 2 for the remainder of this paper. In this case the class of optimal
transported maps can be completely classified by the remarkable results in the papers
[7] and [15]. These can be summarized in the following theorem which makes the
numerical study of optimally transported systems possible.

Theorem 4.1 (Brenier, Cafferelli [7, 15, 46]). There exists a unique optimal
mapping F(ξ, t) satisfying (5). This map has the same regularity as M . Furthermore
F(ξ, t) is the unique mapping from this class which can be written as the gradient
(with respect to ξ) of a convex (mesh) potential P (ξ, t), so that

(12) F(ξ, t) = ∇ξP (ξ, t), ΔξP (ξ, t) > 0.

Corollary 4.2. The map F is irrotational so that ∇ξ×F = 0, and the Jacobian
of F is symmetric.

4.2. Legendre transformations. The class of mappings which are the gradi-
ent of a scalar function P (ξ, t) (or equivalently have symmetric Jacobians) are termed
Legendre transformations [41]. They have the property that they are invertible and
that their inverses are also Legendre transformations with a dual potential R(X, t).
Indeed if F = ∇ξP , then F−1 = ∇XR, P + R = X · ξ. This fact is key to many
applications of optimal transport, particularly in the formation of fronts in meteorol-
ogy [22], [19], [20], and [23], and has been the motivation for some adaptive schemes
described in the papers [13], [3]; see also [21], [24]. Many natural maps are exam-
ples of Legendre transformations. For example: (a) A translation by b is given by
P = b · ξ. (b) A uniform scaling by a scalar factor Λ is given by P = Λ

2 ξT ξ. (c) A
linear map described by the action of a symmetric positive definite matrix A is given
by P = ξT Aξ. (d) A tensor product map in two-dimensions ξ = (ξ, η) is given by
P (ξ, η) = A(ξ) + B(η) so that X = Aξ(ξ), Y = Bη(η).
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4.3. The Monge–Ampère equation and the properties of its solution.

4.3.1. The existence of an optimal, regular, equidistributed mesh. It is
immediate that if X = ∇ξP , then

∂X
∂ξ

= H(P ),

where H(P ) is the Hessian of P . Additionally, if the measure M ∈ W 2(ΩP ) is strictly
positive on its supports (assumed to be convex), then the potential P ∈ W 2

loc(ΩC)
and satisfies, in the classical sense, the Monge–Ampère equation

(13) M(∇ξP, t)|H(P )| = θ(t).

Here |H(P )| denotes the determinant of the Hessian matrix of P . This is a
famous equation in differential geometry. Solving it defines the map F uniquely. In
order to solve it we must specify boundary conditions for the solution. In general
applications of mesh generation, we consider bounded domains mapping to bounded
domains. We can then prescribe a boundary condition where (13) is supplemented
with the condition that the boundary of the computational domain ΩC must map to
the boundary of the physical domain ΩP . Suppose that the boundary of ΩC is given
by those points ξ which satisfy implicit equation GC(ξ) = 0, and that of ΩP by those
points X which satisfy GP (X) = 0. We then have the following (nonlinear) Neumann
boundary condition for the solutions of (13):

(14) GP (∇ξP ) = 0 if GC(ξ) = 0.

The existence, uniqueness, and regularity of the solutions of (13, 14) has been
well studied [7], [14], [15]. From the point of view of grid generation this puts us into
the nice situation of being able to infer properties of the mesh from those of a function
P with known regularity. We have the following very important result.

Theorem 4.3. If both ΩC and ΩP are smooth, convex domains, then (13, 14)
has a unique solution (up to an additive constant) which is as regular as the monitor
function M . This in turn leads to a unique regular mesh.

Proof. This follows immediately from the results of Brenier [7] and Caffarelli [14],
[15].

If ΩC and/or ΩP are not smooth, then there is a possible reduction of mesh
regularity. In the case of solutions which are logical rectangles, this is not severe and
applies only at the corners, where it can be shown [24] that P ∈ C3 and F ∈ C2.
This is sufficient regularity for most applications.

Note. The result as stated applies to convex (and thus simply connected domains).
Clearly many problems in adaptivity also arise in nonconvex domains (such as those
with reentrant corners). The present study, however, will concentrate on the problems
associated with resolving solution features, such as singularities and fronts, which
occur interior to the domain.

4.3.2. Boundary behavior. An immediate consequence of Theorem 4.3 is that
the solution of the Monge–Ampère equation not only defines a map from ΩC to
ΩP but also from the boundaries of the respective domains. This is a desirable
property from the perspective of mesh generation as we do not have to consider
separate equations for the mesh on the boundary. This is in contrast to other methods
for mesh generation such as those described in [35] which require separate equations to
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describe the mesh on the boundaries. For much of this paper, and in many numerical
analysis applications, we will limit ourselves to mappings between fixed logical cubes,
taking

(15) ΩC = [0, 1]d = ΩP .

The advantage of doing this is that the underlying mesh in the computational do-
main can be as simple as possible. In particular, if we are considering a map in
two-dimensions from a unit square domain to itself (as in the examples discussed in
section 7), the appropriate Neumann boundary conditions are

(16) Pξ = 0, 1 if ξ = 0, 1 and Pη = 0, 1 if η = 0, 1.

4.3.3. Mesh symmetries. Some very desirable properties of the mesh follow
immediately from the properties of the Monge–Ampère equation. It is trivial to see
that the equation is invariant under translations in (ξ, η). It is also easy to see that (in
a similar manner to the Laplacian operator) the Monge–Ampère equation is also in-
variant under any orthogonal map such as a rotation or a reflexion. This is because the
Monge–Ampère equation is the determinant of the Hessian which transforms covari-
antly under such maps. This simple observation implies that (away from boundaries)
the meshes generated by solving the Monge–Ampère equation should have no diffi-
culty aligning themselves to structures, such as shocks, which may occur anywhere in
a domain and at any orientation. We will see evidence for this in the examples at the
end of this paper. (In this sense Monge–Ampère generated meshes should perform
better than meshes constrained by the underlying coordinate axes.) It is also imme-
diate that Monge–Ampère equation is also invariant under scaling transformations of
the form ξ → λξ, η → μη, P → νP .

4.3.4. Mesh skewness. The regularity of the mesh generated by this approach
gives a useful feature in seeing control in the variation of the element size across
the domain. However this does not immediately indicate how appropriate the mesh
will be for calculations, such as in the finite element method, where we might seek
to avoid long, thin regions. However, it is possible to make some estimates for the
resulting skewness of the mesh in terms of the properties of the function P . Consider
a two-dimensional problem for which the map from ΩC to ΩP has the Jacobian J . A
measure for the skewness s of the mesh in ΩP is given by

s =
λ1

λ2
+

λ2

λ1
=

(λ1 + λ2)
2

λ1λ2
− 2 =

trace(J)2

det(J)
− 2,

where λ1 and λ2 are the (real and positive) eigenvalues of J . As J is the Hessian of
P , it follows immediately that

(17) s =
Δ(P )2

H(P )
− 2.

The value of s could, in principle, be controlled directly by including (17) directly
into the monitor function. This is similar to the approach used by Huang [29], [30] in
which he took a monitor function which controlled the mesh alignment. Alternatively,
the skewness can be estimated in certain cases. One example of this arises in the
scale-invariant meshes for the local singularities blow-up problems studied in [8], in
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which a sequence of meshes are calculated which close to the singularity take the form
P (ξ, t) = Λ(t)P̂ (ξ) for an appropriate scaling function Λ(t). It is immediate that

Δ(P )2

H(P )
− 2 =

Δ(P̂ )2

H(P̂ )
− 2

so that the skewness of the rescaled mesh is the same as the original. Hence, if an
initially uniform mesh is used, then the mesh close to the singularity will retain local
uniformity. We will see an example of this in section 8. A further calculation of s in
the case of a mesh close to a narrow front is also given in section 8.

4.3.5. Mesh orthogonality. The boundary condition, (16), applied in two-
dimensions implies the orthogonality of the grid lines at the boundaries of the square.
To see this, consider the bottom boundary of the square in the physical domain, for
which Y = 0. A grid line Γ which intersects this side is given by

Γ = {(X, Y ) : 0 � η � 1, ξ fixed}.

The tangent to this line in the physical domain is given by τ = (Xη, Yη)T , and,
trivially, the tangent to the bottom boundary of the square by the vector t = (1, 0)T .
However, on the bottom boundary, the function P satisfies the identity Pη(ξ, 0) = 0
and by definition X = Pξ. It follows immediately that when η = 0,

Xη(ξ, 0) = Pηξ(ξ, 0) = 0,

so that on the lower boundary τ .t = 0. Thus the mesh is orthogonal to the lower
boundary. Similar results apply to the other sides as well. The condition of mesh
orthogonality at the boundary of the square is often desirable in certain circumstances
[45]. However it may cause problems when resolving features, such as fronts, which
intersect boundaries at an angle. In such cases it may be useful to refine the mesh
close to the boundary, either by introducing a finer computational mesh there, or by
locally increasing the value of the monitor function M at mesh points adjacent to the
boundary.

Note. This result is special to mappings from the square to itself and does not
necessarily follow for other more general boundaries.

5. Parabolic regularization of the Monge–Ampère equation.

5.1. Overview. The Monge–Ampère equation (13) for the mesh potential P ,
coupled to the boundary conditions (14), is a fully nonlinear elliptic equation whose
solution determines a grid for a given M(X, t). In general M(X, t) will depend on
the solution u(X, t) of the underlying PDE which is to be solved on the evolving
mesh. Suppose that at a time t the solution u(X, t) is known, we can then determine
the mesh X(ξ, t) by solving the Monge–Ampère equation (13) exactly. However,
this is a formidable task as it involves repeated solutions of a fully nonlinear time-
dependent PDE. It is also, possibly, an unnecessary task as an accurate solution of the
underlying PDE may not necessarily require an exact solution of the mesh equation.
An alternative approach, motivated by the discussion of the MMPDEs in section 3,
is to introduce a parabolic regularization to (13) so that the gradient of solutions
of this evolves toward the gradient of the solutions of (13) over a (relatively) short
timescale. This method also couples naturally to the solution of a time-dependent
PDE. Accordingly we consider using relaxation to generate an approximate solution
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of (13) which evolves together with the solution of the underlying PDE. Accordingly
we consider a time-evolving function Q(ξ, t) with associated mesh X(ξ, t) = ∇ξQ(ξ, t)
with the property that this mesh should be close to that determined by the solution
of the Monge–Ampère equation. To do this we consider a relaxed form of (13) taking
the form

(18) ε(I − γΔ)Qt = (|H(Q)|M(∇Q))1/d
.

(In this expression, and for the remainder of the paper, we shall assume, unless
stated otherwise, that all spatial derivatives are taken with respect to the computa-
tional variable ξ.) To find a moving mesh, we start with an initially uniform mesh for
which

Q(ξ, 0) =
1
2
|ξ|2.

The function Q then evolves according to (18). In (18) the scaling power 1/d is
necessary for global existence of the solution. This is because if Q is scaled by a
factor L(t), then the term |H(Q)| scales as L(t)d. If M is constant, then (18) without
the power law scaling admits a variables separable solution for which Lt = CLd. If
d > 1, then this equation has solutions which blow up in a finite time. The rescaling
prevents this possibility. The operator on the left of this system is a smoothing
operator, similar to the operator used by Ceniceros and Hou in [18], which reduces
the stiffness of this system when it is discretized. Observe that the term θ(t) has not
been included in (18). It will transpire that this term arises naturally as a constant
of integration. Indeed, we note that if P (ξ, t) is a solution of the Monge–Ampère
equation with Neumann boundary conditions, then so is P (ξ, t) + Λ(t) where the
function Λ(t) is arbitrary. As we are only interested in the resulting map X = ∇P
this difference is unimportant. Similarly, we generically expect Q and P to differ by
functions of t only, together with perturbations of order ε.

As in the case of the Monge–Ampère equation, the parabolic Monge–Ampère
equation is invariant under translations and rotations. It is also invariant under
scalings provided that the function M must be chosen with care. This is discussed in
[8], [2] and allows the PMA method to perform effectively when solving PDEs which
themselves have a scaling invariance.

In one-dimension, differentiating (18) with respect to ξ gives

ε(Qξt − γQξξt) = ε(Xt − γXξξt) = (M(X)Xξ)ξ,

which is a linear combination of the mesh equations MMPDE5 and MMPDE6 (10).

5.2. Analysis of the solutions of the parabolic Monge–Ampère equa-
tion. The advantage of using the parabolic Monge–Ampère equation to generate a
mesh is that it does so by solving a single scalar equation for any dimension d. How-
ever, for the method to be usable we must establish that (18) has regular solutions,
which avoid mesh tangling and which converge to a stable solution of the Monge–
Ampère equation.

5.2.1. Regularity and convexity. Given some initial mesh potential P , it
follows from results of Cafferelli [14], [15] that (18) has, local in time, smooth solutions.
For these to correspond to well-defined transformations (and to avoid mesh crossing)
we must show that the map determined from the solution of (18) is bijective. This
is equivalent to showing that the Jacobian of the map is bounded away from zero.
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This Jacobian is precisely given by |H(Q)|. The bijective nature of the map in two-
dimensions follows from the lemma below.

Lemma 5.1. Suppose that Q satisfies the equation

(19) Qt = (M(∇Q)|H(Q)|)1/2, |H(Q)| = QηηQξξ −Q2
ηξ

for all t < T , with ξ = (η, ξ) ∈ ΩC and if |H(Q)| > 0 and ΔQ > 0 at t = 0, and
with M(ξ, t) > 0 for all t < T, ξ ∈ ΩC. Then |H(Q)| > 0, and ΔQ > 0 for all
t < T, ξ ∈ ΩC .

Proof. As |H(Q)| > 0 at t = 0, there must be a first time t∗ at which |H(Q)|
takes its minimum value of |H(Q)| = 0. We initially consider the case where the
minimum point does not lie on the boundary and is interior to the domain so that
∇|H(Q)| = 0 at this point. We shall assume that this is a regular minimum and
without loss of generatlity taking the minimum point to be the origin. We can, by
taking a suitable rotation and using the fact that the Monge–Ampère equation is
invariant under rotations, say that close to this minimum point we have

(20) |H(Q)|(ξ, η) = aξ2 + bη2, for some a, b > 0.

Now, from the definition it follows immediately that

|H(Q)|t = QηηQξξt + QξξQηηt − 2QηξQηξt and Qt = (M(∇Q)|H(Q)|)1/2.

Let M1/2 = N and |H(Q)|1/2 = G, and then Qηηt = NηηG + 2NηGη + NGηη, etc.
Now G =

√
aξ2 + bη2 so that

Gηη =
abξ2

(aξ2 + bη2)3/2
, Gξξ =

abη2

(aξ2 + bη2)3/2
, Gηξ =

−abηξ

(aξ2 + bη2)3/2
.

If r =
√

η2 + ξ2, then, for small r the second derivatives of G are O(1/r) and the first
derivatives of G are O(1) and G = O(r). Thus the terms in Qηηt (and similar) and
hence the terms in the expression for |H(Q)|t are dominated by the second derivatives
of G. Hence, to leading order, close to the origin we have

|H(Q)|t =
abN

(aξ2 + bη2)3/2

(
η2Qηη + ξ2Qξξ + 2ηξQηξ

)
.

But

η2Qηη + ξ2Qξξ + 2ηξQηξ = (ξ η)
(

Qξξ Qηξ

Qηξ Qηη

) (
ξ
η

)
= ξT H(Q)ξ.

Now, suppose that the (real) eigenvalues of H(Q) are λ1, λ2. It follows that |H(Q)| =
λ1λ2 and that ΔQ = trace(H(Q)) = λ1 + λ2. It follows that initially λ1 and λ2 are
everywhere positive and that at the time t∗ they are positive everywhere apart from
at the origin where one or both vanish. Thus |H(Q)| is positive definite at all points
apart from at the origin, where it is positive semi-definite. Accordingly at t = t∗, at all
points close to the origin we have |H(Q)|t > 0 and that |H(Q)|t � 0 at the origin. (In
fact, a careful analysis indicates that |H(Q)|t > 0 at the origin as it is well provided
that λ1 and λ2 both vanish simultaneously). Thus, from the usual application of the
maximum principle it follows that |H(Q)| > 0 for all t. As an immediate consequence
λ1 and λ2 are both positive and hence Δ|H(Q)| is also positive for all t.
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In the case when |H(Q)| vanishes on the boundary of the domain, for |H(Q)| to
be positive within the domain it is necessary that ∇H · τ = 0, where τ is the tangent
vector to the boundary. Furthermore, the boundary is given by the set of points for
which F (∇Q) = 0 for appropriate F . Hence, on differentiating with respect to t we
have n · ∇Qt = 0, where n = ∇F is the normal vector to the boundary. But, as
Qt = (M |H(Q)|)1/2 we have ∇Qt = ∇(M |H(Q)|)1/2. It follows immediately that
if at some point and at t = t∗ we have |H(Q)| = 0 and M > 0, then also at this
point we have that ∇Qt and ∇|H(Q)| are parallel so that n.∇|H(Q)| = 0. It follows
immediately that ∇|H(Q)| = 0. The result then follows as above.

Note. In the case of the more general equation ε(I − γΔξ)Qt = (M |H(Q)|)1/2 we
have εQt = K(M |H(Q)|)1/2, where K is a positive compact operator. The positivity
of K ensures that the various estimates of |H(Q)|t � 0 do not change in this more
general case.

5.2.2. Mesh existence and local stability for a constant in time monitor
function. Having shown that (18) has a solution which leads to a regular transfor-
mation, we now look at the form of the corresponding map. First we show that if the
monitor function M is constant in time, then PMA admits a stable solution which
generates the same mesh as the solution of the Monge–Ampère equation.

Lemma 5.2. Suppose that Mt = 0 and the Monge–Ampère equation (13) admits
a (steady) convex solution P (ξ) with associated map X(ξ) for which H(P ) > 0, so
that P satisfies the equation

M(∇P )|H(P )| = θ,

then
(i) the PMA equation (18) admits a time-dependent solution

(21) Q(ξ, t) =
θ1/dt

ε
+ P (ξ)

for which ∇Q = ∇P = X(ξ).
(ii) The resulting mesh is locally stable.
Proof. (i) Suppose that for an initially arbitrary scalar ϕ and function P (ξ) we

consider the time-dependent function Q(ξ, t) = ϕt/ε + P (ξ). Then ε(I − γΔ)Qt = ϕ
and ∇Q = ∇P , |H(Q)| = |H(P )|. Thus

ε(I − γΔ)Qt − (M(∇Q)|H(Q)|)1/d = ϕ− (M(∇P )|H(P )|)1/d.

Setting ϕ = θ1/d and P to be a solution of (13) we have that Q satisfies (18) identically.
(ii) To show stability, we set Q(ξ, t) = ϕt/ε + P (ξ) + δR(ξ, t) with δ 	 1 and N

= M1/d. Then

ε(I − γΔ)δRt + ϕ = N(∇P + δ∇R)H(P + δR)1/d

so that, to leading order in δ,

(22) ε(I − γΔ)Rt =
1
d
N(∇P )H(P )1/d−1E(P )R + N ′(∇P )H(P )1/d∇R.

Where, if d = 2, E(P ) is the operator given by

E(P )R = PξξRηη + PηηRξξ − 2PηξRηξ,
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and if d = 1, then E(P )R = Rηη. But, as H(P ) > 0 and ΔP > 0 it follows
immediately that E(P ) is a uniformly elliptic operator with a negative real spectrum
(and hence can be locally transformed into the Laplacian). Furthermore, the operator
G ≡ (I − γΔ)−1 is a positive compact operator. It follows immediately that any non-
constant function R satisfying (22) must decay to zero. Hence the solution (and
hence the mesh) is locally stable. Indeed, convergence onto the steady-state solution
is locally exponential.

Note. The case of constant monitor function M is especially important in the first
stage of a moving mesh algorithm. Typically in this stage an initially uniform mesh is
evolved in an artificial time to equidistribute a fixed monitor function. Having done
this, the mesh and monitor function evolve together in real time.

5.3. Slowly varying monitor functions. More generally, the monitor function
M(X, t) = M(∇P, t) will evolve with time. We suppose next that this evolution
is relatively slow, so that εMt is small. Let P (ξ, t) be the solution of (13), with
corresponding map X(ξ, t). We now prove the following.

Lemma 5.3. If ε|Mt| 	 1 and dΦ/dt = θ(t)1/d, then the parabolic Monge–Ampère
equation (PMA) (18) admits a solution Q(ξ, t) such that

(23) Q(ξ, t) =
Φ(t)

ε
+ P (ξ, t) +O(ε) and |∇Q(ξ, t)−X(ξ, t)| = O(ε).

Proof. We consider a solution to the PMA of the form

Q(ξ, t) =
Φ(t)

ε
+ P (ξ, t) + εR(ξ, t).

Substituting into (18), using the identity Φt = θ1/d and assuming that R varies slowly
(so that Rt is of the same order as R) we have

θ(t)1/d + ε(I − γΔ)Pt +O (
ε2

)
= M(∇P, t)1/d|H(P )|1/d

+ ε
(
E(P )R + N ′(∇P, t)|H(P )|1/d∇R

)
+O (

ε2
)
.

As P satisfies (13) it follows (on subtracting off the solution of (13) and dividing by
ε) that R satisfies the equation

E(P )R + N ′(∇P, t)|H(P )|1/d∇R = (I − γΔ)Pt +O(ε).

It follows from the uniform ellipticity of E and the assumed slow variation of the
function Pt that R is bounded and has bounded derivatives. The results in (23) then
follow.

Hence, provided εPt (i.e., provided that εMt ) is small, then certain solutions of
the PMA equation will remain ε close to the solutions of the Monge–Ampère equation.
In the evolution of the solutions of (18) from an initial arbitrary mesh, we expect to
see rapid evolution over a short time as the solutions tend toward those of the Monge–
Ampère equation, followed by slow evolution thereafter as the solutions stay ε-close
to the manifold of equidistributed solutions satisfying (13). This is similar in many
respects to the behavior of the solutions of the MMPDES described in section 3. The
cases when Mt evolves rapidly are much more subtle and are not considered in this
paper. The special case where M has a scaling law behavior are described in the
paper [8].
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6. Connections of PMA to other moving grid methods. As stated previ-
ously, there are many methods which generate meshes in higher dimension. These fall
into two categories, methods which determine the location of the mesh points (such as
PMA), and those which determine the velocity of the mesh points (such as the moving
finite element method). We now present examples of some of these algorithms with
direct connections to the method (18).

6.1. The gradient flow equidistribution method. Location-based methods
often construct meshes by means of a gradient flow descent of a given functional. The
method of Huang and Russell et al. [37], [36] uses a functional defined in the physical
coordinates. In two-dimensions this takes the form

(24) I[ξ] =
1
2

∫
Ωp

(∇XξT G−1
1 ∇Xξ +∇XηT G−1

2 ∇Xη
)

dX,

where Gi are given symmetric positive definite matrices closely related to the monitor
function M in (18) (for example, we can take Gi = MId). Defining a relaxed gradient
flow by

(25)
∂ξ

∂t
= − 1

τ
√

g1

δI

δξ
,

∂η

∂t
= − 1

τ
√

g2

δI

δη

and inverting gives equations for the mesh:

∂x
∂t

=− xξ

τ
√

g1J

(
∂

∂ξ

[
+

1
Jg1

(
xT

η G1xη

)]− ∂

∂η

[
1

Jg1

(
xT

ξ G1xη

)])
(26)

− xη

τ
√

g2J

(
∂

∂ξ

[
− 1

Jg2

(
xT

η G2xξ

)]
+

∂

∂η

[
1

Jg2

(
xT

ξ G2xξ

)])
.(27)

This system is closed by the addition of additional adaptive boundary conditions.
Typically this means the solution of a lower dimensional MMPDE on the boundary
to provide Dirichlet conditions for the interior equations (26).

6.2. Geometric conservation laws. The geometric conservation law method
[17], [16], [1], [2] is a velocity method based on a time derivative of the equidistribution
equation which, when combined with extra conditions, gives equations for ẋ. If the
monitor function M is normalized to have a constant integral of unity over ΩP , then
integrating the equidistribution equation over an arbitrary set A we have∫

F(A,t)

M(X, t) dX =
∫

A

dξ.

Differentiating this expression with respect to t, applying Reynold’s transport theo-
rem, and allowing the set A to be arbitrary, leads to the conservation law

(28) Mt +∇X · (MV) = 0,

where the mesh velocity is given by V = Xt. In one-dimension (28) specifies V but
in higher dimensions further conditions must be added to give V uniquely. An often
used condition is to require V to be a gradient V(X, t) = ∇Xϕ for some ϕ(X, t),
so that

(29) Mt +∇X · (M∇Xϕ) = 0.
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If M and Mt are both known, then this elliptic PDE can be solved for ϕ and hence V
can be determined. The mesh can then be updated by solving the systems Xt = V.
Note that while this equation is linear in ϕ it is not linear in the computational
coordinates. The Monge–Ampère condition X = ∇ξP (or V = ∇ξPt) is closely
related to the condition V = ∇Xϕ but as the gradients are with respect to different
variables they are clearly distinct.

6.3. The method of Ceniceros and Hou. A mesh generation method due to
Ceniceros and Hou [18] (and closely related to the earlier method of Winslow [48]) has
been used to compute singular solutions of the Boussinesq equations. In this method
the mesh is updated through the PDES

(30) ε(I − γΔξ)Xt = ∇ξ · (M(X, Y )∇ξX), ε(I − γΔξ)Yt = ∇ξ · (M(X, Y )∇ξY ).

See [43], [42] for further applications. There are certain similarities between (30) and
(18), but it involves solving a system of equations, separate equations need to be
solved at the boundaries and there is no guarantee of mesh regularity or stability.

7. Implementation of the parabolic Monge–Ampère method. There are
three key aspects for the useful implementation of the Parabolic Monge–Ampère
method to mesh generation in the context of solving a PDE adaptively. Firstly,
supposing that the Monitor function M is known explicitly (so that M ≡ M(X, t)),
how should (18) be discretized and solved efficiently. Secondly, if we assume that M
is a function M(u(X, t)) of the solution u(X, t) of an underlying PDE, how should
the discretization of this equation be coupled to that of the underlying PDE. Thirdly,
how should the choice of monitor function M be determined. The last of these three
questions was discussed briefly in section 2. The second is very hard to answer in
general, as it depends crucially on the nature of the underlying PDE (elliptic, hyper-
bolic, and/or systems) and the discretization strategy used to solve it (such as finite
difference in the computational domain, finite volume or finite element in the physical
domain, etc.). In [43], [44], and [38] reviews are given of different methods to do
this. In this paper we will concentrate on the first question, but will give a partial
answer to the second. A significant advantage of the approach that we use is that
the spatial discretizations may all be done on a uniform grid in the computational
space (although nonuniform grids can also be used if appropriate, for example, if extra
refinement is needed at the boundaries of the domain).

7.1. Discretizing the parabolic Monge–Ampère equation (18). For inte-
gration of (18) in time together with the Neumann boundary conditions (16) we use a
semidiscrete method, taking a finite difference/spectral method in the computational
space to lead to a set of ordinary differential equations (in time), and then solving
these equations using a fully explicit time-stepping method such as ode45 or any other
appropriate ODE solver. In calculating a mesh to solve a PDE, it is unnecessary to
use a highly accurate method for solving (18) (as it is the solution of the PDE which
matters rather than the mesh itself), and this greatly simplifies the methods that can
be employed. The solution procedure is motivated in part by the methods outlined in
[18] to solve (30) and had no difficulty in solving all the examples in the next section
in a very reasonable period of time. We describe the method for solving this system
on the assumption that we are working in two-dimensions, though there are no theo-
retical difficulties of extending it to higher dimensions. To discretize (18) in space we
impose a uniform grid of mesh size Δξ on the computational space and assume that
Q and Qt take point values Qi,j(t), i, j = 0 . . .N , etc. on this grid, with indices 0
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and N corresponding to mesh points on the boundary. To discretize the differential
operator |H(Q)| we use a nine point stencil, and interior to the domain ΩC , use central
differencing to evaluate all second derivatives in |H(Q)|. For the boundary points,
the central differences are replaced by Taylor series expansions, using the respective
conditions Qξ = 0 or Qξ = 1, etc. The gradient∇Q is calculated similarly, so that the
right-hand side of (18) can be determined. To determine the values of Qt at the mesh
points we then invert the operator (I − γΔξ). As the system is posed on a uniform
(rectangular) mesh in the computational domain, this inversion was done very rapidly
by using a fast spectral solver based upon the discrete cosine transform (invoking the
Neumann boundary conditions for Qt). The value of γ must be chosen to give a
balance between a smooth mesh and one which equidistributes M . Typically we take
γ = 1/ max(M). In the calculation of Qt (and of the value of ut for the underlying
solution), it may be appropriate to build in some (adaptive) temporal rescaling, and
this can be relatively easily incorporated into the (ordinary) differential equations for
the point values of Qi,j by means of an appropriate Sundman transformation [32],
[11].

It is important to apply some form of smoothing and regularization to the monitor
function to allow for more regular meshes [34], [5], [39]. We have found it necessary
to use two forms of regularization to derive the meshes presented in section 8. The
first is to use a low pass filter applied to the point values of the monitor function to
spread large local variations over several mesh points. Following [18] we iterate the
following fourth-order filter twice,

Mi,j ← 4
16

Mi,j +
2
16

(Mi+1,j + Mi−1,j + Mi,j−1 + Mi,j+1)

+
1
16

(Mi+1,j+1 + Mi−1,j−1 + Mi+1,j−1 + Mi−1,j+1) ,

to smooth the point values Mi,j of the monitor function. Secondly, a common problem
with r-adaptive methods is that the mesh points move into regions of singular behavior
only, leaving a relatively sparse number of mesh points in other regions. Such behavior
can be avoided by using meshes in which 50% of the mesh points are placed in regions
where the monitor function is large, and the remainder in other regions [9]. This can
be done [5], [8] by taking the original monitor function M and replacing it with the
function M̂ defined by

M̂ = M +
∫

ΩP

M(X, t) dX.

Applying the various procedures above to generate a moving mesh for which
the function M(X, t) = M(∇Q, t) is known explicitly leads to a system of ordinary
differential equations for the evolution of the mesh potential Q and hence of the
mesh itself. We solve these using an explicit method (typically the MATLAB routine
ode23 or ode45), as the strongly nonlinear nature of the equations makes implicit
time-stepping too expensive in general. We apply this in two stages.

1. Starting from an initially uniform mesh in the physical space, we adapt this
to equidistribute the monitor function at the initial time over ΩP . To do this
we set M0(X) ≡ M(X, 0), Q(ξ, 0) = (ξ2/2 + η2/2) and solve (18) with M
fixed to equal the function M0, with ε = 1 for 0 < t < T , where T is a fixed
time. In this first calculation t is an artificial time during which the uniform
mesh evolves toward an equidistributed mesh. It follows from Lemma 5.2
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that such a mesh exists and is stable. The relatively large value of ε prevents
this calculation from being unnecessarily stiff, and T is chosen large enough
to allow the mesh to relax toward the equidistributed state.

2. We then solve (18) with the time-dependent monitor function M(X, t) with
t now actual time. For this calculation we now set ε = 0.01. It follows from
the results in Lemma 5.3 that the mesh resulting from taking the gradient of
the solution of the parabolic Monge–Ampère problem will, as time evolves,
be ε-close to a mesh which exactly equidistributes M(X, t), provided that M
does not change too rapidly with time). As this procedure starts from a mesh
which exactly equidistributes M(X, 0), the resulting differential equations are
not especially stiff.

7.2. Coupling the parabolic Monge–Ampère equation to the underlying
partial differential equation. In general, the function M is not known explicitly,
but is a given function of the solution of the underlying PDE which we assume has
the form.

(31) ut = f(t,X, u,∇Xu, ΔXu).

This equation is coupled with (18) to evolve the solution and mesh together. This
can be done in various ways, see [43], [31] for reviews of these. The quasi-Lagrangian
approaches (which avoid interpolation) allow directly for the mesh movement and
express the PDE in Lagrangian variables

(32) u̇−∇Xu · Ẋ = f(t,X, u,∇Xu, ΔXu),

where the u̇, Ẋ indicates differentiation with respect to time with the computational
variable ξ fixed. The two equations (18) and (32) can then both be discretized on
the computational mesh and solved simultaneously. This procedure is often used in
calculations in one spatial dimension [33], but is harder to use in higher dimensions
as the coupled system can be rather stiff and the equations are very nonlinear. This
method has the advantage that there is no need to interpolate a solution from one mesh
to the next as the mesh evolves and also that the mesh can inherit useful dynamical
properties of the solution such as scaling structures [10], [8], [2]. Alternatively the
two equations (18) and (32) can be solved alternately [31], [36], [18]. This reduces the
stiffness problems but can lead to a lag in the mesh movement. As an alternative to
the quasi-Lagrangian method, a rezoning method can be used [43]. In such methods
equations similar to (18) are solved to advance the mesh by one time step. The current
solution u is then interpolated onto this new mesh in the physical domain, and the
original PDE (31) solved on the new mesh in this domain (often using a finite element
or finite volume method). The advantage of this method is that standard software
can be used to solve the PDE, but at the expense of an interpolation step.

We now briefly detail the implementation of the simultaneous solution method
solving the mesh equation (18) and the PDE (32) by using finite differences in the
computational domain. To do this we associate each mesh point in the fixed com-
putational mesh with a solution point Ui,j(t). To discretize (32) we transform the
derivatives in the physical domain to ones in the computational domain. For exam-
ple, in two-dimensions, if we have general transformation F with Jacobian J , then (see
[18] for details) the derivatives of u can be expressed in terms of the computational
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variables in the following manner:
(33)

ux =
1
J

(yηuξ − yξuη) ,

uy =
1
J

(−xηuξ + xξuη) ,

uxx =
1
J

(
yη

(
J−1yηuξ

)
ξ
− yη

(
J−1yξuη

)
ξ
− yξ

(
J−1yηuξ

)
η

+ yξ

(
J−1yξuη

)
η

)
,

uyy =
1
J

(
xη

(
J−1xηuξ

)
ξ
− xη

(
J−1xξuη

)
ξ
− xξ

(
J−1xηuξ

)
η

+ xξ

(
J−1xξuη

)
η

)
.

As the computational domain has a uniform mesh, and the Jacobian J = |H(Q)|
may be determined directly from Q, it follows that (33) can be discretized to high
accuracy in space. The solution u is then determined by solving (18) and (32) together
using the Matlab routine ode45. We give examples of this in the next section.

8. Examples. To demonstrate the effectiveness of this approach, we now de-
scribe a sequence of examples in two-dimensions. We consider two types of exam-
ples: Generating time-dependent grids based on given time-evolving monitor func-
tions M(X, t) in two-dimensions, and the adaptive solution of two PDEs, one with a
moving front and the other exhibiting finite time blow-up.

8.1. Examples with a prescribed monitor function. We have chosen the
first of these examples to compare with other methods presented in the literature and
described in section 6. All examples have been run in Matlab on a desktop computer
in under five minutes.

Example 1. We first take a case motivated by [17] with a monitor function
localized over a moving circle of the form

M1(x, y, t) = 1 + 5 exp(−50|(x− 1/2− 1/4 cos(2πt))2

+ (y − 1/2− sin(2πt)/2)2 − 0.01|).
This is described in [17] as a severe test of a moving mesh method, and the meshes
calculated from this using the (velocity based) geometric conservation law (GCL)
method [17] have a high degree of skewness. To compute a corresponding moving
mesh using the parabolic Monge–Ampère method (and also the solutions in all of the
examples in this subsection) we use a uniform computational mesh to solve (18) with
N = 30 mesh points in each direction and mapping the unit square to the unit square.
We see from this calculation that the resulting mesh closely follows the moving circle
with now evidence of skewness or irregularity. Note the orthogonality and regularity
of the mesh at the boundary of the domain. Notice further that in Figure 2 the
solution partially exits the domain with no ill consequence and that the grid at t = 10
is virtually indistinguishable from that at t = 0. This is to be contrasted with a
similar figure in [17] in which the grid is significantly distorted after the circle has
passed out of the domain. It is clear from these figures that the mesh generated has
excellent regularity. Observe the high degree of mesh uniformity close to the solution
maximum.

Example 2. In an example taken directly from [17] we consider a monitor function
localized on a sine-wave of the form

M2(x, y, t) = 1 + 5 exp(−50|y − 1/2− 1/4 sin(2πx) sin(2πt)|)
and proceed to use exactly the same method as described in Example 1.
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Fig. 2. Example 1. Snapshots at t = 0, 1/4 in the top row and t = 1/2, 10 in the bottom. As
the solution is advected about, the grid follows the maxima of the solution and does not ever fall
behind or become distorted.

In this example, presented in Figure 3, we again see that the PMA method has
generated a very regular and periodic (in time) mesh. This is again in stark contrast
to the GCL method which resulted in nonsmooth and nonperiodic meshes.

Example 3. In this example we consider a monitor function localized on the
support of two travelling linear fronts moving toward each other and show the resulting
mesh in Figure 4. For this we take

x0 = t, y0 = 0.2 + t/2,

u0 = γ sech(λ(x − x0 + y − y0)),
x1 = 1− t, y1 = 0.8− t/2,

u1 = γ sech(λ(x − x1 + y − y1)),
M3(x, y, t) = 1 + u0 + u1

with γ = 5 and λ = 100. We note that the fronts pass through each other without
generating spurious oscillations in the mesh. Note also that the solution points do
not follow the front (moving in and out of the region of high mesh density), but that
the density of the solution points does. Observe that the mesh automatically aligns
itself along the front. A close-up of the mesh close to the front is given in Figure 5.
This shows very good resolution of the local structure close to the front and a smooth
transition from a uniform mesh to one refined at the front. If γ is large, then close
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Fig. 3. Example 2. Snapshots at t = 0, 1/3 in the top row and t = 2/3, 1 in the bottom. In this
figure we see both the smoothness and the periodic (in time) forms of the mesh.

to the front we see a mesh compression proportional to γ orthogonal to the front,
with a local skewness of s = γ. The PMA method in this case thus generates a
smooth mesh, for which the degree of skewness can be controlled via the choice of γ.
More details of this calculation are given in [47]. We can also see the effects of mesh
orthogonality close to the boundaries of the domain. As mentioned earlier, it is in
principle possible to reduce the loss of resolution here by increasing the value of M
close to the boundary, although we have not done this here.

Example 4. In this example we look at a monitor function localized on the support
of two fronts meeting at an angle. The behavior of the mesh close to the front is similar
to that in the last example. Significantly there is no mesh tangling as the two fronts
intersect. The full meshes are presented in Figure 6 and in Figure 7 we show a close-up
of the intersection region showing the high degree of mesh regularity there.

x0 = t, y0 = 0.2 + t/2,

u0 = γ sech(λ(x − x0 + y − y0)),

x1 = 1− t, y1 = 0.8− t,

u1 = γ sech(λ(x − x1 + (y − y1)/2)),

M4(x, y, t) = 1 + u0 + u1.
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Fig. 4. Example 3. Snapshots at t = 0, 0.495 in the top row and t = 0.525, 0.75 in the bottom.
Here we have simulated two fronts passing through each other in parallel, and see no difficulties with
the resulting mesh. Note the way that the mesh automatically aligns itself parallel to the front.

0.26 0.28 0.3 0.32 0.34 0.36
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

Fig. 5. Example 3. A close-up of the mesh close to the front, showing the transition from a
uniform mesh to one compressed by a factor γ orthogonal to the front.

8.2. Solution-dependent monitor functions.
Example 5 (Burgers’ equation). A classical problem leading to the formation of

sharp fronts is Bergers’ equation given by

(34) ut +
1
2

(
u2

)
x

+
1
2

(
u2

)
y

= νΔu, ν 	 1.
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Fig. 6. Example 4. Snapshots at t = 0, 0.2 in the top row and t = 0.525, 1.4 in the bottom.
Here we have simulated two linear traveling fronts passing through each other at an angle and see
no difficulties in generating and moving the mesh.

0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Fig. 7. Example 4. A close-up of the region where the two fronts intersect.

This equation has been used as a benchmark for a number of different moving mesh
algorithms [49], [44] with the initial and boundary values chosen so that (34) has the
exact solution given by

u(x, y, t) =
(
1 + e(x+y−t)/2ν

)−1

,
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which has a sharp moving front. We consider coupling this system to the PMA
algorithm to generate a moving mesh which can both compute an approximation to
this solution and follow the front as it evolves over the time interval t ∈ [1/4, 2]. To
do this we discretize (34) in the Lagrangian form

(35) ut = νΔu−
(

1
2

(
u2

)
x

+
1
2

(
u2

)
y

)
+ Ẋux + Ẏ uy, ν 	 1

with all discretizations made in the computational variables. The conservation form
of the equation above is used for this calculation so that, for example, the advective
term u2

x is discretized as

(
u2

)
x

=
1
J

[
yη

(
u2

)
ξ
− yξ

(
u2

)
η

]
with similar discretizations for the other advective terms. The equation posed in the
computational variables is then coupled to the discretized form of PMA equation with
the values of the approximation U to u(x, y) and of Q given on the mesh vertices. In
these computations we take a N ×N computational mesh, a viscosity of ν = 0.005,
and use the arc-length monitor function

M =
√

1 + α
(
u2

x + u2
y

)
with α = 1. A number of different strategies were considered to evolve this coupled
system forward in time, but in practice a simple scheme which solved the PMA equa-
tion and (35) simultaneously using a simple forward Euler method proved effective
with a time-step Δt as given in [49] determined by the CFL condition. In the PMA
equation we used ε = 1, γ = 0.335 to find the initial mesh when t = 1/4 and then
ε = 0.01, γ =

√
max(M) to follow the front up to t = 2. More details are given in

[47]. (Note also that solving the PMA equation coupled to (35), using an alternating
solution strategy coupled with an upwinding discretization, has also been shown to
be effective [40].) In Figure 8 we present the results of a series of computations using
this method, when N = 40, showing both the solution for (34) and the corresponding
mesh. In this figure we see excellent resolution of the solution at the front.

A quantitative measure of the error in the computed solution at t = 1 can be
given by determining the L2-norm of the difference between it and the exact solution.
We consider this error both for a uniform and a moving mesh for various values of N .

N Error on a uniform mesh Error on a moving mesh
20 6e−2 8e−3
40 2e−2 2e−3
80 6e−3 1e−3

(See [40] for a similar table obtained by using the alternating, upwind method
PMA and [49] using a harmonic mapping method to generate the mesh coupled to a
finite volume discretization of (34).) We see a useful reduction in the error by using
the PMA method in this case, similar to that observed in [49].

Example 6 (Blow-up). In this example we consider a problem, in which the mesh
is coupled to a rapidly time-evolving solution of a PDE, by considering a classical
example of a nonlinear parabolic PDE for u(X, t) which admits solutions which blow
up in a finite time T (given sufficiently large initial data) [10], [8] so that |u|∞ as
t→ T . Such solutions develop a large and increasingly narrow peak as t tends to T .
It is not uncommon to consider solutions which change by ten orders of magnitude,
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Fig. 8. Example 5. The solution of Burgers’ equation and the corresponding mesh at the time
t = 1.

with a reduction in the solution length scale by a similar amount. It is essential to
use an adaptive method to capture such behavior accurately. The equation that we
consider is

(36)

⎧⎪⎨
⎪⎩

ut = Δu + u3, X = (x, y) ∈ Ω = (0, 1)2,
u(X, t) = 0, X ∈ ∂Ω,

u(X, 0) = 5 exp
(−25(x− 0.45)2 − 25(y − 0.35)2

)
.

We augment this problem with the PMA equation (18) where the monitor function
is taken as

M(X, t) = u(X, t)4 +
∫

ΩP

u(X′, t)4 dX′.

It is shown in [10], [8] that this choice of monitor function (which is derived a priori
by considerations of the symmetries of the underlying PDE) leads to a mesh which
automatically inherits the correct dynamic length scale of the underlying solution so
that the mesh potential Q(ξ, η, t) takes the form

Q(ξ, η, t) = L(t)Q̂(ξ, η),

where L(t) is a natural length scale for the problem. As a direct consequence of this the
relative local truncation error of the solution close to the peak becomes independent
of the solution scale [8]. (This analysis is applicable to a much wider class of problems
with scaling symmetries.) The previous analysis of mesh skewness then implies that
there should be good mesh regularity close to the evolving solution peak. As described
in section 7, we solve this problem in the computational domain ΩC using a finite
difference method applied to the Lagrangian form of the problem with a rescaling of
the Laplacian to account for the change in the mesh geometry. In this calculation
an adaptive time-step is also used as the blow-up time is approached, employing the
Sundman transformation to derive this. In Figure 9 we show the final grid both over
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Fig. 9. Final grid for Example 6. Left: entire grid when |u|∞ = 1e15. Right: detail near the
blow-up point. The grid is quite regular in the vicinity of the singularity.

the whole domain and also close to the peak near the center as well as the initial
and final solutions. The integration was performed until |u|∞ = 1015, for which the
peak has approximate length scale of 10−15. Over the course of the evolution we see
a mesh compression of a factor of 1012. The final mesh shows a similar gradation of
mesh elements from size O(10−2) to size O(10−14). However, if we study the mesh
close to the solution peak, as illustrated in Figure 9, we see that this shows a strong
degree of local regularity, with no evidence of long thin elements in the region where
the solution gradients are very large. This is exactly as predicted by the previous
theory. (Away from the solution peak the mesh is less degree of smoothness; however
in this region the solution gradients are much smaller than in the peak, and the local
truncation errors are thus lower.)

9. Conclusions. In this paper we have presented a new technique for generating
a mesh close to a uniform one by solving the parabolic Monge–Ampère equation (18).
The numerical advantages of this method are that it is computationally simple (with
automatic treatment of boundaries) and computationally efficient, requiring only the
solution of a scalar problem. It can be initialized with a uniform mesh. It can also be
analyzed analytically, with guaranteed local convergence and stability (without mesh
crossing) for all dimensions d, the ability to find a solution close to an equidistributed
one, and good scaling and rotation properties. The examples presented indicate that
the method copes well with a variety of different geometries, delivering smooth regular
meshes, and it can be coupled to the solution of certain types of PDE with relative ease
and without the need for interpolation. The main disadvantages of this method at
present are the limited choices of monitor function M (which must be scalar valued),
the lack of direct skewness control, and the forced orthogonality of the mesh at the
boundaries.

In subsequent papers we will study the coupling of this method to further prob-
lems with moving fronts and methods for estimating and controlling the skewness of
the meshes that result in general applications.
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