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Background information

Consider a Phase 3 confirmatory trial comparing a new treatment
and a control.

Prior to around 2000, the general philosophy was to
Specify everything:
Patient population,
Treatment,
Primary endpoint,
Sample size,

Method of analysis

Conduct the trial as planned

Around 2000, adaptive trials started to become fashionable. With
adaptation, one may re-visit initial plans in the light of trial data.

Chris Jennison Adaptive design with treatment selection and survival endpoint



Background information

ICH E20: The International Council on Harmonisation has issued
a draft Guideline on Adaptive Designs for Clinical Trials.

This sets out five key principles that adaptive trials should follow
— but it does not stipulate particular methods to achieve this.

Many research papers and several books
describe methods that can meet some of

Chapman & Hall/CR

the ICH E20 guidelines. SroupSequantisl and

Adaptive Methods for
Clinical Trials

Second Edition

Existing methods may have to be
applied in particular ways

Some methods may need further
development to satisfy E20 principles.

Bruce W. Turnbull

See my recently published book with
Bruce Turnbull and references therein.
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Background information

Roche's GATSBY trial (2012 to 2015) compared treatments for
patients with HER2-positive advanced gastric cancer.

Initially, there were three treatment arms:
Trastuzumab Emtansine (T-DM1), high dose every 3 weeks,

Trastuzumab Emtansine (T-DM1), lower dose once a week,

Control arm, Taxane

At an interim analysis, the independent Data Monitoring
Committee (iDMC) selected one of the T-DM1 treatment arms.

Subsequent patients were randomised between the selected arm
and control.

At a further interim analysis, the trial could stop futility.
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Outline of talk

1.
2.

A study with a survival endpoint and treatment selection
Protecting the type | error rate in an adaptive design

A closed testing procedure

Combination tests
Properties of log-rank statistics
Applying a combination test to survival data
Avoiding error rate inflation in an adaptive trial

(Jenkins, Stone & Jennison, Pharmaceutical Statistics, 2011)

Properties of the proposed adaptive design
Experiences as an iDMC member for adaptive trials
Conclusions
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1. A survival study with treatment selection

Consider a Phase 3 trial of cancer treatments comparing

Experimental Treatment 1: Intensive dosing
Experimental Treatment 2: More frequent lower doses

Control treatment
The primary endpoint is Overall Survival (OS).

At an interim analysis, information on OS, Progression Free
Survival (PFS), PK measurements and safety will be used to
choose between the two experimental treatments.

Note that PFS is useful here as it is more rapidly observed.

After the interim analysis, patients will only be recruited to the
selected treatment and the control.
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Overall plan of the trial

Interim Final
analysis analysis
/ ’Exp. Treatment 1‘ Further
Stahge -, ’Exp. Treatment 2‘ . Followup follow up
cohort PFS & OS
\ ’ Control ‘ of 05
Selected Foll
Stage 2 —" |Exp. Treatment| —~ '©ONOW UP
cohort of OS
T ’ Control

At the final analysis, we test the null hypothesis that OS on the
selected treatment is no better than OS on the control treatment.
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2. Protecting the type | error rate

We shall assume a proportional hazards model for OS with
A1 = Hazard ratio, Control vs Exp Treatment 1
Ao = Hazard ratio, Control vs Exp Treatment 2
01 = log(A1), 062 = log(A2).
We test null hypotheses
Hoi: 61 <0 vs 61 >0 (Exp Treatment 1 superior to control),

Hy: 62 <0 vs 03 >0 (Exp Treatment 2 superior to control).

In order to control the familywise error rate (FWER), we require
Ps, 0,)1Reject any true null hypothesis} < «

for all (61,02).
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A closed testing procedure

Define level « tests of
Hyq: 01 <0,
Hpo: 02 <0
and a level « test of the intersection hypothesis
Hy12 = HoiNHpz: 67 <0 and 62 <0.
Then:
Reject Hy 1 overall if the above tests reject Hy1 and Hy 12,

Reject Hy o overall if the above tests reject Hyo and Hy 12.

The requirement to reject Hy 12 compensates for testing multiple
hypotheses and the “selection bias” in choosing the treatment to
focus on in Stage 2.
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A closed testing procedure

Definition of a closed testing procedure

In a closed testing procedure of hypotheses H;, i =1, ..., p, with
FWER at most «, we define level « tests of

H; = Nier H;
for each subset I of {1,...,p}.

In the closed testing procedure, the simple hypothesis H; is
rejected if Hy is rejected for every set I containing index j.

Proof of strong control of familywise error rate
Let I be the set of indices of all true hypotheses H;.
Since Hj is true, P{Reject H;} = a.
For a familywise error to be committed, H; must be rejected.

Hence, the probability of a familywise error is no greater than a.
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Combining data across stages

Consider testing a generic null hypothesis Hy: # < 0 against 8 > 0.
Suppose Stage 1 data produce Z; where
Z1 ~N(0,1) ifg=0.
After adaptations, Stage 2 gives Zs with conditional distribution
Zy ~N(0,1) if0=0
and this is also the unconditional distribution of Z5 when 6 = 0.
Weighted inverse normal combination test
With pre-specified weights wy and ws satisfying w? + w3 = 1,
Z = w1 Z1+waZy ~ N(0,1) if =0,
and Z is stochastically smaller than N(0,1) if § < 0.

So, for a level a test, we reject Hy if Z > ® (1 — a).
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3. Properties of log-rank tests

For now, consider Experimental Treatment 1 vs Control.

— Overall
' : Survival
——————o
Jp—
! —
: —
: _—
Start of Interim Final ~ Calendar
study analysis analysis  time
- > <«
Stage 1 cohort Stage 2 cohort
Key: — Subjects randomised to Exp Treatment 1

—  Subjects randomised to Control
Death observed
Censored observation
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Logrank statistic: Comparing Exp Treatment 1 vs Control

Suppose the observed number of deaths at the time of analysis is d.
Elapsed times between entry to the study and these deaths are
T < Tp < ...<Tq (assuming no ties).

Define variables at this analysis

i and 7, Numbers at risk on Exp Trt 1 and Control at 7,—
T =T + Tic Total number at risk at 7;,—
O Observed number of deaths on Control

E = Zle Tic /T “Expected” number of deaths on Control
V= 2(11 ﬁ:rﬁc/?”? “Variance” of O

Z =(0—E)/y/V Standardised logrank statistic
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Properties of log-rank tests

Comparing Experimental Treatment 1 vs Control, define

S1 = Unstandardised log-rank statistic at interim analysis,
Z; = Information for 6, at interim analysis = V; = (No. of deaths)/4
So = Unstandardised log-rank statistic at final analysis,

Zy = Information for 6, at final analysis = V5 =~ (No. of deaths)/4

Here, “Number of deaths” refers to the total number of deaths on
Experimental Treatment 1 and Control arms only.

Then, approximately,
S1 ~ N6, Ih),
So—8S1 ~ N{{Zy—Ti} 61, {Zo — T1})
and S; and (S2 — S1) are independent (independent increments).

Reference: Tsiatis (Biometrika, 1981).
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4. A combination test for survival data

We create Z statistics for comparing Exp treatment 1 and control

Based on data at the interim analysis:

S
Z = =,
v
Based on data accrued between the interim and final analyses:
Sy — S
Zy = 22 1

VI, —1;
If 6 =0, then Z; ~ N(0,1) and Z3 ~ N(0,1) are independent.
If 1 <0, Z; and Z, are stochastically smaller than this.

So, we can use Z = wy 41 + wy Z5 in an inverse normal
combination test of Hp 1: 61 < 0.

Chris Jennison Adaptive design with treatment selection and survival endpoint



A combination test for survival data

The above distribution theory for logrank statistics of a single
comparison requires

Ss — 51
VI -1

regardless of decisions taken at the interim analysis.

Zy = ~ N(0,1) under 6; =0,

Bauer & Posch (Statistics in Medicine, 2004) note this implies that
the conduct of the second part of the trial should not depend on
the prognosis of Stage 1 patients at the interim analysis.

Suppose, after observing particularly good PFS data for patients
on the selected treatment, the Stage 2 cohort size is reduced and
follow up of Stage 1 patients is extended. Then, the distribution
of Zy could be biased upwards.

Our example has another potential source of bias, depending on
how the Stage 2 statistic for testing Hy 12 is defined — see later.
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Analysing an adaptive survival trial

In applying a Closed Testing Procedure, we require level « tests of
Hyi: 01 <0,
Hys: 02 <0,
Hp12: 01 <0 and 62 <0.

Combination tests for these hypotheses are formed from:

Stage 1 data  Stage 2 data

Hy AR Z21
Hy o 21,2 222
Hy 12 2112 2212

How should we define Z11, Z5:, etc?
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Analysing an adaptive survival trial

A natural choice is to:
Base 71,1, Z12 and Z; 12 on data at the interim analysis,

Base Z1, Z22 and Z3 12 on the additional information
accruing between interim and final analyses.

We could take Z11 and Z; 2 to be standardised log-rank statistics,
and Z3 1 and Z3 5 standardised increments between analyses.

For intersection hypotheses:

Form 21712 from Zl,l and ZLQ,

Set Zy 12 = Za j, where j is the selected treatment.
However, treatment j is selected because it has the better PFS
outcomes at the interim analysis.

So, it is likely that future OS for these patients will be “better than
average”, leading to bias in the null distribution of Z3 15.
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5. The method of Jenkins, Stone & Jennison (2011)

If we base a combination test on the two parts of the data accrued
before and after the interim analysis, bias can result:

Stage 1
cohort

Stage 2
cohort

VAl

Z3

Overall survival
(during Stage 1)

Overall survival
(during Stage 2)

Overall survival
(during Stage 2)

Instead, we divide the data into the parts from the two cohorts:

Stage 1
cohort

Stage 2
cohort

Overall survival
(during Stage 1)

Overall survival
(during Stage 2)

Overall survival

(during Stage 2)

Chris Jennison

VA

Z2
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Partitioning data for a combination test

To avoid bias: All patients in the Stage 1 cohort are followed for
overall survival up to a fixed time, shortly before the final analysis.

“Stage 1" statistics are based on Stage 1 cohort's final OS data

Z1,1 from log-rank test of Exp Tr 1 vs Control
Z1,2 from log-rank test of Exp Tr 2 vs Control

Z1,12 from pooled log-rank test, or a Simes or Dunnett test.

“Stage 2" statistics are based on OS data for the Stage 2 cohort

If Exp Treatment 1 is selected:
Zy1 from log-rank test of Exp Tr 1 vs Control, Z3 12 = Z51

If Exp Treatment 2 is selected:
Zao from log-rank test of Exp Tr 2 vs Control, Z3 12 = Zp>.
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Partitioning data for a combination test

No early stopping for efficacy at the interim analysis

Jenkins, Stone & Jennison (2011) introduced the proposed method
in a design where a choice is made between testing for an effect in
the full population or a sub-population.

They stipulated that the amount of follow up for the Stage 1
cohort should be fixed at the outset to avoid any risk of inflating
the type | error rate.

Some adaptive designs allow an early decision based on summaries
of “Stage 1" data at an interim analysis.

In our three-treatment design, the statistics 711, Z12 and Zj 12
are not known at the time of the interim analysis, so we cannot
define a formal stopping rule in terms of these.

However, with only a little OS data available at the interim
analysis, this is not a serious limitation.
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6. Assessing the benefits of an adaptive design

We compare with a non-adaptive trial in which randomisation is to
both experimental treatments and control throughout the trial.

Final
analysis
’Exp. Treatment 1‘
A_” —_— ’Exp. Treatment 2‘ — Follow up
tient
patients \ ’ Comtral ‘ of OS

A closed testing procedure is used to control familywise error rate.

When the total numbers of patients and lengths of follow-up are
the same in adaptive and non-adaptive designs,

Does the adaptive design provide higher power?

Are there other advantages?
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Assessing the adaptive design: Model assumptions

Overall Survival
Log hazard ratio

Exp Treatment 1 vs control 0,

Exp Treatment 2 vs control 0o
Logrank statistics are correlated due to the common control arm.
Progression Free Survival
Log hazard ratio

Exp Treatment 1 vs control U1

Exp Treatment 2 vs control Yo

Denote correlation between logrank statistics for OS and PFS by p.

Proportional hazards models for both endpoints are not essential
(or possible?) — the implications for the joint distribution of
logrank statistics are what matter.
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Assessing the adaptive design: Model assumptions

Log hazard ratios for OS: 6y, 0.
Log hazard ratios for PFS: )1, .

We simulate logrank statistics distributed as if both OS and PFS
follow proportional hazards models (!) and

1/)1:’Y><91 and wgz’}/xeg

Final number of OS events for Stage 1 cohort = 300 (over 3
treatment arms)

Number of OS events for Stage 2 cohort = 300 (over 2 or 3
treatment arms — for adaptive and non-adaptive cases)

Number of PFS events at interim analysis = A x 300.

When the log hazard ratio is 6, the standardised logrank statistic
based on d observed events is, approximately, N(6+/d/4,1).
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Testing the intersection hypothesis H 12

We have null hypotheses Hy 1: 61 < 0 and Hpo: 02 < 0.

In the closed testing procedure, we must also test

H(]’lg = HO,l mHO,Q : 01 <0 and 65 <0.

Pooling: We could test Hy 12 by pooling the Exp Trt 1 and Exp
Trt 2 patients and carrying out a logrank test vs the Control group.

Alternatively we could use a Simes test or a Dunnett test.

Simes’ test:
Given observed values p; and py of P; and P, Simes’ test of
Hy 12 yields the P-value

min (2 min(py, p2), max(py, p2) ).

Simes’ test protects type | error conservatively when P; and P> are
independent or positively associated.
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Dunnett’s test of an intersection hypothesis

Dunnett’s test for comparisons with a common control

Suppose Z; and Z5 are the Z-values for logrank tests of Exp Trt 1
vs control and Exp Trt 2 vs Control.

If z1 and zo are the observed values of Z; and Z5, the Dunnett
test of Hy 12 yields the P-value

P(max(Zy, Z) > max(z1, 22))
where (Z1, Z3) is bivariate normal with
Z1 ~ N(O, 1), Z2 ~ N(O, 1), COH’(Zl, Zg) =0.5.

Our investigations of different tests of the intersection hypothesis
showed the Dunnett test to give the most efficient overall testing
versions of both adaptive and non-adaptive designs.
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Comparing adaptive and non-adaptive trial designs

With selected values of 91, 01, 19, 0 and p, we simulate logrank
statistics from their large sample distributions.

For the adaptive design, we define
P(1) = P(Select Treatment 1 and Reject Hy; overall)

P(2) = P(Select Treatment 2 and Reject Hy 3 overall)

For the non-adaptive design, we set
P() = P(gl > 6, and Hy 1 is rejected overall)
P(2) = P(6,>0; and Hy o is rejected overall)

Hence, we define the overall expected “Gain" or utility measure

E(Gain) = 61 x P(1) + o x P(2).
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Comparing tests of the intersection hypothesis

Intersection tests produce Zj 12 in an adaptive trial design with

1 =01 and Yo =06y (y=1), A=1, p=0.6, a=0.025.

P(1) E(Gain)
01 09 Pooled Simes Dunnett Pooled Simes Dunnett
0.3 0.0 0.77 0.85 0.86 0.232 0.254  0.259
03 0.1 0.78 0.81 0.82 0.238 0.245  0.247
03 02 0.68 0.68 0.69 0.238 0.237  0.238
0.3 0.25 0.58 0.58 0.58 0.250 0.249  0.249
0.3 0.295 0.48 0.47 0.47 0.275 0.274 0.274

All simulation results are based on 1,000,000 replicates.

The Dunnett test has the highest power. Unlike the pooled test, it
is well aligned (consonant) with individual tests of Hy; and Hy .
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Comparing adaptive and non-adaptive trial designs

We compare designs using a Dunnett test for Hy 12 with

¢1:91 and 1/)2:92 (’}/:1), )\:1, p:0.6, a = 0.025.

Non-adaptive Adaptive
01 0 P(1) P(2) E(Gain) P(1) P(2) E(Gain)
0.3 0.0 0.78 0.00 0.235 0.86 0.00 0.259
0.3 0.1 0.78 0.01 0.234 0.82 0.02 0.247
03 0.2 0.70 0.11 0.234 0.69 0.16 0.238

03 025 0.60 0.26 0.244 0.58 0.30 0.249
0.3 0.295 0.47 0.43 0.267 0.47 0.44 0.274

Here, A = 1 implies there are 300 PFS events at the interim analysis.

The adaptive design has higher P(1) when 6, is well above 6.
With 6, and 62 closer, the adaptive design still has higher E(Gain).
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Comparing adaptive and non-adaptive trial designs

The adaptive design can only succeed if there is adequate
information to select the correct treatment at the interim analysis:

Treatment effects on PFS should be be reliable indicators of
treatment effects on OS,

There must be good information on PFS at the interim analysis.
We have investigated varying the parameters v and \ where

Y1 =7y X 01, g =7 x 0z, with §; =0.3 and 62 = 0.1

Final number of OS events for Stage 1 cohort = 300 (over 3 arms)
Number of OS events for Stage 2 cohort = 300 (over 2 or 3 arms)

Number of PFS events at interim analysis = X\ x 300.

NB It is quite plausible that v should be greater than 1, i.e., a
larger treatment effect on PFS than on OS.
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Comparing adaptive and non-adaptive trial designs

We compare designs with 8, = 0.3, 65 = 0.1, p = 0.6, o = 0.025,
PFS log hazard ratios: 11 = v01, 1o =0,

Number of PFS events at interim analysis = A x 300.

Non-adaptive Adaptive
y A P(1) P(2) E(Gain) P(1) P(2) E(Gain)
1.5 1.2 0.88 0.00 0.264
12 1.1 0.85 0.01 0.256
1.0 1.0 0.78 0.01 0.234 0.82 0.02 0.247
09 09 for all v and A 0.78 0.03 0.238
0.8 0.8 (PFS is not used) 0.74 0.04 0.225
0.7 0.7 0.68 0.05 0.208

Adaptation works well when there is enough PFS information for
treatment selection at the interim analysis — but not otherwise.
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7. The independent Data Monitoring Committee

The IDMC for the GATSBY trial had three main tasks:

iDMC iDMC Results
Kick off meeting Safety meetings presented

/AN
2012 2013 /‘ 2014 \ 2015 2016

iDMC iDMC
Regimen selection Futility analysis
meeting meeting

To monitor safety data,

To choose one of the two forms of the experimental treatment
at the Regimen selection meeting,

To consider early stopping at the Futility analysis meeting.
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Independent Data Monitoring Committee

iDMC iDMC Results
Kick off meeting Safety meetings presented

| 27\
R e

ibMC ibMC
Regimen selection Futility analysis
meeting meeting

The Kick off meeting was the final opportunity for the iDMC to
discuss plans for the trial with the sponsor.

There was discussion about how to combine evidence about
Progression free survival, Overall survival, PK data
when choosing a treatment at the Regimen selection meeting.

After this meeting, a firewall was set in place and there could be
no further discussion between the iDMC and the sponsor.
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Independent Data Monitoring Committee

ibMC iDMC Results
Kick off meeting Safety meetings presented

B0\
i

ibMC ibMC
Regimen selection Futility analysis
meeting meeting

The final analysis showed no evidence of a treatment difference.

At the futility analysis, the data supported continuing the study.

At later meetings, the iDMC saw information about overall survival
since Death was recorded as an event in the safety data.

There was no further provision to stop for futility and, with the
firewall in place, the iDMC could not ask the sponsor for advice.

Since treatments were performing equally well, there was no reason
to stop to ensure patient safety.
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Conclusions

The GATSBY trial design offered the chance to compare two
versions of T-DM1 treatment and focus on the superior form in
the second stage of the trial.

In such an adaptive design, significant effort is needed to ensure
the familywise type | error rate is controlled.

It is just as important to assess the properties of an adaptive
design and compare with simpler non-adaptive options.

Adaptive treatment selection can be beneficial if there is enough
information to make a reliable treatment selection decision.

In an adaptive trial, the kick off meeting is the time to discuss
How an adaptation decision is to be made
When, how and why early termination may occur.

Remember: Communication between sponsor and iDMC is
restricted once the trial is under way.
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