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1. Some reminiscences

As a PhD student at Cornell from 1978 to 1982, I learnt from

Jack Kiefer Bob Bechhofer Shayle Searle

Larry Brown Tom Santner Walt Federer

Roger Farrell Lionel Weiss Doug Robson

Eugene Dynkin Les Trotter Philip McCarthy

Bruce Turnbull Mike Todd Paul Velleman

Fellow PhD students included

Iain Johnstone Bob Vanderbei Walter Piegorsch

Susan Groshen Radhika Kulkarni Chuck McCulloch

Costas Gatsonis Carolyn Lichtenstein Luke Tierney

Mosuk Chow Dave Goldsman Richard Smith
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Some reminiscences

In three summer internships at the Dana Farber Cancer Institute in
Boston, I met and learnt from

Marvin Zelen Cyrus Mehta Janet Barnes

Bill Costello Nitin Patel Dave Tritchler

Colin Begg Dave Schoenfeld Gregg Dinse

Marcello Pagano Jim Hanley Gordon Flowerdew

Steve Lagakos

This work taught me about applied data analysis and how clinical
trials are conducted.

It helped bridge the gap between academic research and applied
statistics.
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Some reminiscences

One of the first lectures I attended at Cornell was in the course
IOR 676: Survival Data Analysis, given by Bruce Turnbull

Bruce became my PhD supervisor and we have worked together
ever since.
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Some reminiscences

A year after I graduated, Bruce Turnbull and Bob Bechhofer invited
me back for the summer. This started an annual pattern and I
have returned to Ithaca and Cornell almost every year since then.

Bruce and I have written 25 papers together and two books.
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Some reminiscences

What we looked like then — at the Kiefer-Wolfowitz Statistical
Research Conference, Cornell, 1983:
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2. Optimising a group sequential clinical trial

Reference: Jennison & Turnbull, Kuwait Journal of Science, 2013.

Consider a Phase 3 clinical trial comparing a new treatment
against a standard.

Let θ denote the “effect size”, a measure of the improvement in
the new treatment over the standard.

We shall test the null hypothesis H0: θ ≤ 0 against θ > 0.

Rejecting H0 allows us to conclude the new treatment is superior.

We allow type I error probability α for rejecting H0 when it is true.

We specify power 1− β as the probability of rejecting H0 when
θ = δ. Here δ is, typically, the minimal clinically significant
treatment difference.

The trial design, including the method of analysis and stopping
rule, must be set up to attain these error rates.
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Sequential distribution theory

Let θ̂k denote the estimate of the treatment effect θ at analysis k.

Information for θ at analysis k is Ik = {Var(θ̂k)}−1, k = 1, . . . ,K.

Canonical joint distribution of θ̂1, . . . , θ̂K

In many situations, in the absence of early stopping, θ̂1, . . . , θ̂K are
approximately multivariate normal,

θ̂k ∼ N(θ, {Ik}−1), k = 1, . . . ,K,

and

Cov(θ̂k1 , θ̂k2) = Var(θ̂k2) = {Ik2}−1 for k1 < k2.

References:

Jennison & Turnbull, JASA, 1997,

Scharfstein et al, JASA, 1997.
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An optimal stopping problem

Consider a trial designed to test H0: θ ≤ 0 vs θ > 0, with:

Type I error rate α,

Power 1− β at θ = δ,

Up to K analyses.

A fixed sample test needs information

Ifix = {Φ−1(α) + Φ−1(β)}2/δ2.

We set the maximum information to be

Imax = R Ifix,

where R > 1, with equal increments between analyses.
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Optimal group sequential tests

The error rates impose two constraints on the 2K − 1 boundary
points — leaving a high dimensional space of possible boundaries.
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We shall look for a boundary that minimises

{E0(I) + Eδ(I)}/2.
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Computations for group sequential tests
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We need to be able to calculate the probabilities of basic events
such as

a1 < Z1 < b1, a2 < Z2 < b2, Z3 > b3.

Combining such probabilities gives key properties, such as

Prθ{Reject H0} and Eθ(I).

l
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Numerical integration

We can write probabilities as nested integrals, e.g.,

Pr{a1 < Z1 < b1, a2 < Z2 < b2, Z3 > b3} =

∫ b1

a1

∫ b2

a2

∫ ∞
b3

f1(z1) f2(z2|z1) f3(z3|z2) dz3 dz2 dz1.

Applying numerical integration, we replace each integral by a sum
of the form ∫ b

a
f(z) dz =

n∑
i=1

w(i) f(z(i)),

where z(1), . . . , z(n) is a grid of points from a to b.
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Numerical integration

Thus, we have

Pr{a1 < Z1 < b1, a2 < Z2 < b2, Z3 > b3} ≈
n1∑
i1=1

n2∑
i2=1

n3∑
i3=1

w1(i1) f1(z1(i1)) w2(i2)f2(z2(i2)|z1(i1))

w3(i3) f3(z3(i3)|z2(i2)).

Multiple integrations and summations will arise, e.g., for an
outcome at analysis k,

n1∑
i1=1

. . .

nk∑
ik=1

w1(i1) f1(z1(i1)) w2(i2)f2(z2(i2)|z1(i1))

. . . wk(ik) fk(zk(ik)|zk−1(ik−1)).
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Numerical integration

In the multiple summation

n1∑
i1=1

n2∑
i2=1

. . .

nk∑
ik=1

w1(i1) f1(z1(i1)) w2(i2)f2(z2(i2)|z1(i1))

. . . wk(ik) fk(zk(ik)|zk−1(ik−1)),

the structure of the k nested summations is such that the
computation required is of the order of k − 1 double summations.

Using Simpson’s rule with 100 to 200 grid points per integral can
give accuracy to 5 or 6 decimal places.

For details of efficient sets of grid points, see Ch. 19 of Group
Sequential Methods with Applications to Clinical Trials by
Jennison and Turnbull (2000).
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Finding optimal group sequential tests

Recall, we want a group sequential test of H0: θ ≤ 0 vs θ > 0 with

Prθ=0{Reject H0} = α,

Prθ=δ{Accept H0} = β,

Analyses at Ik = (k/K) Imax, k = 1, . . . ,K,

Minimum possible value of {E0(I) + Eδ(I)}/2.

We deal with constraints on error rates by introducing Lagrangian
multipliers to create the unconstrained problem of minimising

{E0(I) + Eδ(I)}/2 + λ1Prθ=0{Reject H0}+ λ2 Prθ=δ{Accept H0}.

We shall find a pair of multipliers (λ1, λ2) such that the solution
has type I and II error rates α and β, then this design will solve the
constrained problem too.
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Bayesian interpretation of the Lagrangian approach

Suppose we put a prior on θ with Pr{θ = 0} = Pr{θ = δ} = 0.5
and specify costs of

1 per unit of information observed,

2λ1 for rejecting H0 when θ = 0,

2λ2 for accepting H0 when θ = δ.

Then, the total Bayes risk is

{E0(I)+Eδ(I)}/2+λ1 Prθ=0{Reject H0}+λ2 Prθ=δ{Accept H0},

just as in the Lagrangian problem.

An advantage of the Bayes interpretation is that it can give insight
into solving the problem by using “Dynamic Programming” or
“Backwards Induction”.
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Solution by Dynamic Programming

Denote the posterior distribution of θ given Zk = zk at analysis k
by

p(k)(θ|zk), θ = 0, δ.

At the final analysis, K

There is no further sampling cost, so compare decisions

Reject H0: E(Cost) = 2λ1 p
(K)(0|zK),

Accept H0: E(Cost) = 2λ2 p
(K)(δ|zK).

The boundary point aK is the value of zK where these expected
losses are equal.

The optimum decision rule is to reject H0 for ZK > aK .
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Dynamic Programming

At analysis K − 1

-

IIK−1 IK

6
zk

•aK×
zK−1

If the trial stops at this analysis, there is no further cost of
sampling and the expected additional cost is

Reject H0: 2λ1 p
(K−1)(0|zK−1),

Accept H0: 2λ2 p
(K−1)(δ|zK−1).
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At analysis K − 1

If the trial continues to analysis K, the expected additional cost is

1× (IK − IK−1)

+ 2λ1 p
(K−1)(0|zK−1)Prθ=0{ZK > aK |ZK−1 = zK−1}

+ 2λ2 p
(K−1)(δ|zK−1)Prθ=δ{ZK < aK |ZK−1 = zK−1}.

We can now define the optimal boundary points:

Set bK−1 to be the value of zK−1 where

E(Cost of continuing) = E(Cost of stopping to reject H0).

Set aK−1 to be the value of zK−1 where

E(Cost of continuing) = E(Cost of stopping to accept H0).
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At analysis K − 1

-

IIK

6
zk
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×
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×
aK−1

Before leaving analysis K − 1, we set up a grid of points for use in
numerical integration over the range aK−1 to bK−1.

For each point, we sum over the posterior distribution of θ to
calculate

β(K−1)(zK−1) = E(Additional cost when continuing |ZK−1 = zK−1).

We are now ready to move back to analysis K − 2.
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Analyses 1 to K − 2

We work back through analyses k = K − 2, K − 3, . . . , 1.
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At each analysis, we find the optimal stopping boundary using
knowledge of the optimal stopping rule at future analyses.

Then, for a grid of values of zk, compute

β(k)(zk) = E(Additional cost when continuing |Zk = zk)

to use in evaluating the option of continuing at analysis k − 1.
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Solving the original problem

For any given (λ1, λ2) we can find the Bayes optimal design and
compute its type I and II error rates.

We now search for a pair (λ1, λ2) for which type I and type II error
rates of the optimal design equal α and β, respectively.

The resulting design will be the optimal group sequential test, with
the specified frequentist error rates, for our original problem.

Notes

1. The method of solving the overall problem demonstrates
explicitly that good frequentist procedures should be similar to
Bayes procedures.

2. The prior and costs in the final Bayes problem are a means to
an end, rather than “true” costs of type I and type II errors, or
costs of treating patients in the trial.
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Properties of optimal designs

Tests with α = 0.025, 1− β = 0.9, K analyses, Imax = R Ifix,

and equal group sizes, that minimise {E0(I) + Eδ(I)}/2.

Minimum values of {E0(I) + Eδ(I)}/2, as a percentage of Ifix

R Minimum

K 1.01 1.05 1.1 1.2 1.3 over R

2 80.8 74.7 73.2 73.7 75.8 73.0 at R=1.13

5 72.2 65.2 62.2 59.8 59.0 58.8 at R=1.38

10 69.2 62.2 59.0 56.3 55.1 54.2 at R=1.6

20 67.8 60.6 57.5 54.6 53.3 51.7 at R=1.8

Observe: E(I)↘ as K ↗ but with diminishing returns,

E(I)↘ as R↗ up to a point.
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Optimisation problems we have addressed

One-sided and two-sided group sequential tests

Eales & Jennison, Biometrika, 1992

Eales & Jennison, Sequential Analysis, 1995

Barber & Jennison, Biometrika, 2002

Group sequential tests with data dependent group sizes

Jennison & Turnbull, Biometrika, 2006

Group sequential tests of superiority and non-inferiority

Öhrn & Jennison, Statistics in Medicine, 2010

Group sequential tests for delayed responses

Hampson & Jennison, JRSS, B, 2013

Optimising gain functions from financial models

Robbie Peck, University of Bath, PhD thesis, 2020
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Optimal frequentist and Bayes designs coincide

We have seen that computationally, we can find an optimal
frequentist group sequential design by solving a Bayes sequential
decision problem.

This demonstrates the results of Complete Class Theorems which
state that

The class of admissible frequentist designs =

The class of Bayes optimal designs

See Brown, Cohen & Strawderman (Annals of Statistics, 1980).

Following a Bayes approach but calibrating the problem so the
resulting procedure has specified type I and type II error
probabilities should lead to the optimal frequentist group
sequential design with these error probabilities that minimises the
same function of expected sample size.
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3. ICH E20: Adaptive Designs for Clinical Trials

The International Conference on Harmonisation (ICH) brings
together statisticians from regulatory bodies and pharmaceutical
companies to develop guidelines for the drug development process.

The draft ICH E20 Guideline on Adaptive Designs for Clinical
Trials was published in June 2025. It lays down general principles,
rather than specifying particular designs.

Examples of adaptive designs include

Group sequential tests stopping for efficacy or futility,

Adaptive trials with sample size re-assessment,

Adaptive trials testing multiple hypotheses:

Seamless Phase 2-3 trials with treatment selection,

Multi-arm multi-stage (MAMS) designs,

Enrichment designs.
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ICH E20: General principles

The Guideline defines five principles.

1. Adequacy within the development program:

Justifying the selected dose, etc.

2. Adequacy of trial planning:

Pre-planned, as simple as possible, some flexibility.

3. Limiting the chances of erroneous conclusions:

Type I error control.

4. Reliability of estimation:

Estimates and confidence intervals for cost-benefit decisions.

5. Maintenance of trial integrity:

Blinding, avoiding information leakage, role of IDMCs.
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Emerging topics: Inference on termination

Inference on termination

Methods are available for some, but not all, cases.

Treatment effect Confidence interval,

Type of design estimate with median unbiased

negligible bias estimate

Group sequential test (GST) X X

GST + sample size re-assessment (fixed) X X

GST + sample size re-assessment (flexible) ∼ X ∼ X

Phase 2/3 with treatment selection,
always selecting 1 treatment for Phase 3

X X

Phase 2/3 with treatment selection,
selecting 1 or more treatments for Phase 3

X X?

Multi-arm multi-stage design (fixed) X X?

Multi-arm multi-stage design (flexible) ? ?

Enrichment design (flexible) X X?

Chris Jennison Group Sequential and Adaptive Clinical Trial Designs



Emerging topics: Inference on termination

Two common difficulties arise.

(i) Flexible designs

Since the sample space is not completely known, frequentist
properties, such as the expected value of an estimate, cannot be
calculated.

(ii) Confidence intervals in multiple testing problems

A confidence interval for a parameter is the result of testing a
family of hypotheses concerning all possible parameter values.

A multiple testing procedure may “exhaust” the type I error
probability α, leaving nothing to test non-null parameter values.

This can lead to the situation where H0: θ ≤ 0 is rejected but the
upper confidence interval for θ is (0,∞) — an uninformative
confidence interval

Chris Jennison Group Sequential and Adaptive Clinical Trial Designs



Emerging topics: Inference on termination

Point estimates

ICH E20 refers to estimates that are unbiased or have small bias.

While being exactly unbiased may seem desirable, estimators that
achieve this can have some strange properties.

Consider a group sequential test with two analyses.

●

●

 

 

●

●

θ̂

0.5

1.0

1.5

2.0

Z=0.70

Z=2.74

Z=1.93

Analysis1 2

Reject H0

Accept H0

The test of H0: θ ≤ 0
against θ > 0 has
power 0.8 for θ = 1.
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Emerging topics: Point estimates on termination

The bias of several estimates:

θ−1 0 1 2 3

Bias

−0.2

−0.1

0.0

0.1

0.2

MLE

Adjusted MLE

UMVUE

We denote the maximum
likelihood estimate (MLE)
on termination by θ̂.

The Adjusted MLE is
formed by subtracting the
bias when θ = θ̂ from θ̂.

(Whitehead, Bmka, 1986)

The Uniform Minimum Variance Unbiased Estimate (UMVUE)
uses the fact that θ̂1, the MLE at analysis 1, is unbiased for θ.

Applying “Rao-Blackwellization”, the UMVUE is the conditional
expectation of θ̂1, given the final data.
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Emerging topics: Point estimates on termination

The root mean square error of several estimates:

θ−1 0 1 2 3

Root mean
square error

0.2

0.4

0.6

0.8

MLE

Adjusted MLE

UMVUE

The UMVUE has a higher variance than the Adjusted MLE, and
this results in a higher mean square error.
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Emerging topics: Point estimates on termination

Estimates on termination at analysis 1 

●●●●●●●●●●●●●●●

●●
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●
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●
●
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●

MLE of  θ

0.0 0.5 1.0 1.5 2.0

−0.5

0.0

0.5

1.0

1.5

2.0
●

MLE

Adjusted MLE

UMVUE

Marginal density

of MLE for θ=1

When stopping at analysis 1, the UMVUE is θ̂1, the MLE of θ.

So there is no “adjustment for bias” in the UMVUE !
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Emerging topics: Point estimates on termination

Estimates on termination at analysis 2 

MLE of  θ

0.0 0.5 1.0 1.5 2.0

−0.5

0.0

0.5

1.0

1.5

2.0 MLE

Adjusted MLE

UMVUE

Marginal density

of MLE for θ=1

When stopping at analysis 2, the UMVUE can be substantially
lower than the MLE.

If the MLE is θ̂2 = 1.5, the UMVUE is only 1.12 — but the bias in
the MLE is at most 0.09 for any value of θ.
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Emerging topics: Point estimates on termination

In more complex adaptive designs, bias may arise

(i) from selecting a treatment arm or patient sub-population
based on promising early results,

(ii) from early stopping on a “random high”.

Some of the methods proposed for estimation after such trials also
use Rao-Blackwellization to find UMVUE or Uniform Minimum
Variance Conditionally Unbiased Estimates.

Given the behaviour of the UMVUE estimate in our simple
example of a two-stage group single trial with a single parameter
to estimate, we should look more closely at how these estimates
may behave.

Adjusted estimates with a small bias may well be preferable.
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4. Concluding remarks: Thank you, Cornell

I benefitted tremendously from the training I received as a Cornell
student, many subsequent research visits, and my long and
productive collaboration with Bruce Turnbull.

In welcoming students from around the world, Cornell promotes
learning, instigates path-breaking research, and nurtures
international collaboration.

In return, Cornell reaps the rewards of a vibrant and dynamic
research community.

Today’s environment is not an easy one.

I trust Cornell will ride the current wave of adversity and prosper
again under a more enlightened administration.
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