Optimising Group Sequential Designs: Where Frequentist meets Bayes

Christopher Jennison

Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj

Improving the Efficiency of Clinical Trials From Methods to Practice

Bath

June 2025

I shall consider :

Frequentist and Bayesian designs for a group sequential trial

What we would like to do

What we can do

Convergence of approaches

Problem formulation

Consider a Phase III clinical trial comparing a new treatment against a control.

We denote the treatment effect by θ .

Examples: θ could be the difference in mean response or, in a time-to-event study, θ could be the log hazard ratio.

We wish to decide whether $\theta > 0$, in which case the new treatment is superior.

The trial will have K analyses.

The information for θ at analysis k will be \mathcal{I}_k .

Marginally,

$$\widehat{\theta}_k \sim N(\theta, \mathcal{I}_k^{-1})$$

and the score statistics, $S_k = \widehat{\theta}_k \mathcal{I}_k$, have independent increments.

Decision theoretic formulation: Berry & Ho (Bmcs, 1988)

Prior distribution $\pi(\theta)$.

Possible decisions

- d_1 : Do not pursue drug approval,
- d_2 : Pursue drug approval.

Loss function for taking decision d_1 or d_2 when the true value of the treatment effect is θ

$$\begin{split} L(\theta, d_1) &= 0 & \text{for all } \theta, \\ L(\theta, d_2) &= \begin{cases} -K\theta & \text{if } \theta > 0, \\ L & \text{if } \theta \leq 0. \end{cases} \end{split}$$

Sampling cost: 1 per subject in the trial, N in total, say. Aim: minimise the expected loss

$$\int \pi(\theta) \int f(x \mid \theta) \left\{ L(\theta, d(x)) + N(x) \right\} dx d\theta$$

Decision theoretic formulation: Berry & Ho (Bmcs, 1988)

Aim: minimise the expected loss

$$\int \pi(\theta) \, \int \, f(x \,|\, \theta) \left\{ L(\theta, \, d(x)) + N(x) \right\} \, \mathrm{d}x \, \mathrm{d}\theta$$

Berry & Ho found the optimal stopping rule and decision rule by dynamic programming.

They presented examples with priors

$$\theta \sim N(-1,2), \quad \theta \sim N(0,2), \quad \theta \sim N(1,2),$$

K = 5,000 and L = 2,000,

and showed results for designs with 2 and 3 analyses.

Lorden (*Ann. Statistics*, 1976) had applied the numerical optimisation scheme described by Lai (*Ann. Statistics*, 1973) to solve similar problems in a frequentist setting.

A frequentist problem: Barber & Jennison (Bmka, 2002)

Test H_0 : $\theta \leq 0$ against $\theta > 0$.

Specify type I and type II error rates

 $Pr_{\theta=0}\{ \text{Reject } H_0 \} \leq \alpha, \quad Pr_{\theta=\delta}\{ \text{Reject } H_0 \} \geq 1-\beta.$

So, a fixed sample size test requires information

$$\mathcal{I}_{fix} = \{\Phi^{-1}(1-\alpha) + \Phi^{-1}(1-\beta)\}^2 / \delta^2.$$

Aim: in a group sequential test with K analyses, minimise

$$\int f(heta) \, \mathbb{E}(\mathcal{I}_T) \, \mathsf{d} heta$$

where $f(\theta)$ is a $N(\delta/2, (\delta/2)^2)$ density and \mathcal{I}_T is the observed information on termination.

Barber & Jennison found optimal stopping and decision rules by dynamic programming.

A frequentist problem: Barber & Jennison (Bmka, 2002)

Minimum possible values of $\int f(\theta) E_{\theta}(\mathcal{I}_T) d\theta$, where $f(\theta)$ is the density of a $N(\delta, \delta^2/4)$ distribution, for group sequential tests with K equally sized groups, $\mathcal{I}_{max} = R \mathcal{I}_{fix}$, type I error probability $\alpha = 0.025$, power 0.9 at $\theta = \delta$.

Minimum values of $\int f(\theta) E_{\theta}(\mathcal{I}_T) \, d\theta$, as a percentage of \mathcal{I}_{fix}

			Minimum			
K	1.01	1.05	1.1	1.2	1.3	over R
2	79.3	74.7	73.8	74.8	77.1	73.8 at $R{=}1.11$
3	74.8	69.0	67.0	66.1	66.6	66.1 at $R{=}1.20$
5	71.1	65.1	62.7	60.9	60.5	60.5 at $R{=}1.32$
10	68.2	62.1	59.5	57.5	56.7	56.4 at $R{=}1.46$
20	66.8	60.6	58.0	55.8	54.8	54.2 at $R{=}1.59$

Recommend: K = 5, R = 1.05 or 1.1.

For practical application:

Error spending tests with type I and type II error spending functions of the form

$$f(\mathcal{I}) = \alpha (\mathcal{I}/\mathcal{I}_{\max})^{\rho}, \quad g(\mathcal{I}) = \beta (\mathcal{I}/\mathcal{I}_{\max})^{\rho}$$

are almost optimal.

Error spending designs adapt to observed information levels, controlling the type I error rate and maintaining efficiency.

Rho-family designs with $\rho=2$ have a sample size "inflation factor" around R=1.1.

Designs with $\rho = 3$ have an "inflation factor" around R = 1.05.

Derivation of optimal tests

The problem is to minimise

$$\int f(\theta) \, E_{\theta}(\mathcal{I}_T) \, \mathsf{d}\theta,$$

subject to

 $Pr_{\theta=0}\{\text{Reject } H_0\} \leq \alpha, \quad Pr_{\theta=\delta}\{\text{Reject } H_0\} \geq 1-\beta.$ (1)

Following the Lagrangian approach, we use dynamic programming to minimise

 $\int f(\theta) E_{\theta}(\mathcal{I}_T) \, \mathrm{d}\theta + \lambda_1 \operatorname{Pr}_{\theta=0} \{ \operatorname{Reject} H_0 \} + \lambda_2 \operatorname{Pr}_{\theta=\delta} \{ \operatorname{Accept} H_0 \}.$

Then we search for values λ_1 and λ_2 so that (1) is satisfied — and we have the solution to the problem with error rate constraints.

In minimising

 $\int f(\theta) E_{\theta}(\mathcal{I}_T) d\theta + \lambda_1 Pr_{\theta=0} \{ \text{Reject } H_0 \} + \lambda_2 Pr_{\theta=\delta} \{ \text{Accept } H_0 \},\$

we have solved a Bayes decision problem with prior

$\theta = 0$	with probability $1/3$
$\theta = \delta$	with probability $1/3$
$\theta \sim N(\delta/2, \delta^2/4)$	with probability $1/3$

and a cost of sampling \mathcal{I}_T when $\theta \sim N(\delta/2, \delta^2/4)$.

This is a Bayes optimal procedure — but for a rather odd looking problem.

Back to Bayesian proposals

Spiegelhalter, Freedman & Parmar (1994) proposed the following sequential procedure. Given a prior $\pi(\theta)$,

The trial stops early if the $1-2\epsilon$ credible interval for θ does not contain zero.

The credible interval is not affected by the fact that earlier analyses have been conducted.

Bayesian proposals: Spiegelhalter et al. (1994)

However, the frequentist properties of the Bayes procedure **are** affected by the number of analyses conducted.

Probability of declaring $\theta > 0$ for procedures with prior $\theta \sim N(0.5, 0.5)$, $\epsilon = 0.025$, and 1, 2, 5 and 20 analyses:

Chris Jennison Optimising Group Sequential and Adaptive Designs

Bayesian proposals: Calibrated procedures

Spiegelhalter et al. (1994) proposed use of a "handicap prior", chosen so that the procedure has a particular type I error rate.

If the number of analyses is K and maximum information is \mathcal{I}_K , the handicap prior is

$$\theta \sim N(0, (h\mathcal{I}_K)^{-1}).$$

The "handicap" h depends on the number of analyses. Here are values for $\alpha=0.025.$

Number of analyses	Handicap
<i>K</i>	h
1	0.000
2	0.163
5	0.271
20	0.382

Chris Jennison Optimising Group Sequential and Adaptive Designs

Bayesian proposals: Calibrated procedures

We can choose \mathcal{I}_K so that the procedure with a handicap prior has a specific power if the treatment effect is $\theta = \delta$.

Power functions of designs with $Pr\{\text{Reject } H_0 \,|\, \theta = 1\} = 0.9$

Note: When power curves are matched at $\theta = 0$ and $\theta = 1$, they are just about indistinguishable everywhere.

Bayesian proposals: Ventz & Trippa (2015)

Ventz & Trippa proposed optimising and calibrating at the same time. Their problem formulation has:

Possible decisions

- d_1 : Do not pursue drug approval,
- d_2 : Pursue drug approval.

A "gain function" or "utility" comprising

$$\begin{array}{rcl} G(\theta,d_1) &=& 0 & \mbox{ for all } \theta, \\ \\ G(\theta,d_2) &=& \left\{ \begin{array}{cc} K(\theta) & \mbox{ if } \theta > 0, \\ \\ -L(\theta) & \mbox{ if } \theta \leq 0, \end{array} \right. \end{array}$$

plus a term

 $B(\theta, d_i, T)$

denoting the additional benefit from reaching decision d_i at analysis T minus the cost of treating patients in the trial.

Assuming a prior distribution $\pi(\theta),$ Ventz & Trippa seek to minimise the expected gain

$$-\int_{-\infty}^{0} L(\theta) \Pr(D = d_2 \mid \theta) \pi(\theta) d\theta + \int_{0}^{\infty} K(\theta) \Pr(D = d_2 \mid \theta) \pi(\theta) d\theta + \int_{-\infty}^{\infty} E\{B(\theta, d_i, T)\} \pi(\theta) d\theta.$$

subject to error rate constraints

$$Pr(D = d_2 | \theta = 0) = \alpha$$
 and $Pr(D = d_1 | \theta = \delta) = \beta$

for a specified value of δ .

Note that type I and type II errors feature twice, in different guises.

On Slide 14, we saw an example of how, to a high degree of accuracy, power belong to a two parameter family.

Thus, the constraints

 $Pr(D = d_2 | \theta = 0) = \alpha$ and $Pr(D = d_1 | \theta = \delta) = \beta$

are essentially equivalent to

$$\int_{-\infty}^{0} L(\theta) \operatorname{Pr}(D = d_2 | \theta) \pi(\theta) d\theta = p_1$$

and

$$\int_0^\infty K(\theta) \Pr(D = d_2 | \theta) \pi(\theta) d\theta = p_2$$

for certain values of p_1 and p_2 .

Thus, when Ventz & Trippa minimise

$$-\int_{-\infty}^{0} L(\theta) \Pr(D = d_2 \mid \theta) \pi(\theta) \, d\theta + \int_{0}^{\infty} K(\theta) \Pr(D = d_2 \mid \theta) \pi(\theta) \, d\theta$$
$$+ \int_{-\infty}^{\infty} E\{B(\theta, d_i, T)\} \pi(\theta) \, d\theta$$

subject to

$$Pr(D = d_2 | \theta = 0) = \alpha$$
 and $Pr(D = d_1 | \theta = \delta) = \beta$.

they are effectively minimising

$$\int_{-\infty}^{\infty} E\{B(\theta, d_i, T)\} \, \pi(\theta) \, d\theta.$$

subject to

$$\int_{-\infty}^{0} L(\theta) \Pr(D = d_2 \mid \theta) \, \pi(\theta) \, d\theta = p_1 \text{ and } \int_{0}^{\infty} K(\theta) \Pr(D = d_2 \mid \theta) \, \pi(\theta) \, d\theta = p_2.$$

Given the equivalence of the two types of constraint on the power function, they are also minimising

$$\int_{-\infty}^{\infty} E\{B(\theta, d_i, T)\} \, \pi(\theta) \, d\theta.$$

subject to

$$Pr(D = d_2 | \theta = 0) = \alpha$$
 and $Pr(D = d_1 | \theta = \delta) = \beta$.

This is exactly the type of problem that Jennison and others have tackled from a frequentist perspective.

A remark on the frequentist designs we saw earlier

I noted that the designs produced by Barber & Jennison were Bayes procedures for rather strange looking priors.

However, we can replace the constraint

 $Pr(D = d_2 | \theta = 0) = \alpha$ and $Pr(D = d_1 | \theta = \delta) = \beta$

by an (almost) equivalent constraint of the form

 $\int_{-\infty}^{0} \Pr(D = d_2 \mid \theta) f(\theta) \, d\theta = p_1 \text{ and } \int_{0}^{\infty} \Pr(D = d_2 \mid \theta) f(\theta) \, d\theta = p_2,$

where $f(\theta)$ is a $N(\delta/2, (\delta/2)^2)$ density.

Then, we will obtain essentially the same optimal design by solving a more reasonable looking Bayesian problem.

CONVERGENCE!

Theoretical underpinnings

The convergence between frequentist and calibrated Bayes procedures demonstrates the "complete class theorems" of Brown, Cohen & Strawderman (*Ann. Statistics*, 1980) which state

{The set of admissible frequentist procedures}

= {The set of Bayes optimal procedures}.

Practical consequences

Both schools can learn from each other — we are (or should be) solving the same problems.