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Plan for this talk

I shall consider :

Frequentist and Bayesian designs for a group sequential trial

What we would like to do

What we can do

Convergence of approaches

Chris Jennison Optimising Group Sequential and Adaptive Designs



Problem formulation

Consider a Phase III clinical trial comparing a new treatment
against a control.

We denote the treatment effect by θ.

Examples: θ could be the difference in mean response or, in a
time-to-event study, θ could be the log hazard ratio.

We wish to decide whether θ > 0, in which case the new treatment
is superior.

The trial will have K analyses.

The information for θ at analysis k will be Ik.

Marginally,
θ̂k ∼ N(θ, I−1k )

and the score statistics, Sk = θ̂k Ik, have independent increments.
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Decision theoretic formulation: Berry & Ho (Bmcs, 1988)

Prior distribution π(θ).

Possible decisions

d1 : Do not pursue drug approval,

d2 : Pursue drug approval.

Loss function for taking decision d1 or d2 when the true value of
the treatment effect is θ

L(θ, d1) = 0 for all θ,

L(θ, d2) =

{
−Kθ if θ > 0,

L if θ ≤ 0.

Sampling cost: 1 per subject in the trial, N in total, say.

Aim: minimise the expected loss∫
π(θ)

∫
f(x | θ) {L(θ, d(x)) +N(x)} dx dθ
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Decision theoretic formulation: Berry & Ho (Bmcs, 1988)

Aim: minimise the expected loss∫
π(θ)

∫
f(x | θ) {L(θ, d(x)) +N(x)} dx dθ

Berry & Ho found the optimal stopping rule and decision rule by
dynamic programming.

They presented examples with priors

θ ∼ N(−1, 2), θ ∼ N(0, 2), θ ∼ N(1, 2),

K = 5, 000 and L = 2, 000,

and showed results for designs with 2 and 3 analyses.

Lorden (Ann. Statistics, 1976) had applied the numerical
optimisation scheme described by Lai (Ann. Statistics, 1973) to
solve similar problems in a frequentist setting.
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A frequentist problem: Barber & Jennison (Bmka, 2002)

Test H0: θ ≤ 0 against θ > 0.

Specify type I and type II error rates

Prθ=0{Reject H0} ≤ α, Prθ=δ{Reject H0} ≥ 1− β.

So, a fixed sample size test requires information

Ifix = {Φ−1(1− α) + Φ−1(1− β)}2/δ2.

Aim: in a group sequential test with K analyses, minimise∫
f(θ)E(IT ) dθ

where f(θ) is a N(δ/2, (δ/2)2) density and IT is the observed
information on termination.

Barber & Jennison found optimal stopping and decision rules by
dynamic programming.
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A frequentist problem: Barber & Jennison (Bmka, 2002)

Minimum possible values of
∫
f(θ)Eθ(IT ) dθ, where f(θ) is

the density of a N(δ, δ2/4) distribution, for group sequential

tests with K equally sized groups, Imax = R Ifix,

type I error probability α = 0.025, power 0.9 at θ = δ.

Minimum values of
∫
f(θ)Eθ(IT ) dθ, as a percentage of Ifix

R Minimum
K 1.01 1.05 1.1 1.2 1.3 over R

2 79.3 74.7 73.8 74.8 77.1 73.8 at R=1.11

3 74.8 69.0 67.0 66.1 66.6 66.1 at R=1.20

5 71.1 65.1 62.7 60.9 60.5 60.5 at R=1.32

10 68.2 62.1 59.5 57.5 56.7 56.4 at R=1.46

20 66.8 60.6 58.0 55.8 54.8 54.2 at R=1.59

Recommend: K = 5, R = 1.05 or 1.1.
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A frequentist problem: Barber & Jennison (Bmka, 2002)

For practical application:

Error spending tests with type I and type II error spending
functions of the form

f(I) = α (I/Imax)ρ, g(I) = β (I/Imax)ρ

are almost optimal.

Error spending designs adapt to observed information levels,
controlling the type I error rate and maintaining efficiency.

Rho-family designs with ρ = 2 have a sample size “inflation factor”
around R = 1.1.

Designs with ρ = 3 have an “inflation factor” around R = 1.05.
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Derivation of optimal tests

The problem is to minimise∫
f(θ)Eθ(IT ) dθ,

subject to

Prθ=0{Reject H0} ≤ α, Prθ=δ{Reject H0} ≥ 1− β. (1)

Following the Lagrangian approach, we use dynamic programming
to minimise∫
f(θ)Eθ(IT ) dθ + λ1 Prθ=0{Reject H0} + λ2 Prθ=δ{Accept H0}.

Then we search for values λ1 and λ2 so that (1) is satisfied — and
we have the solution to the problem with error rate constraints.
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Derivation of optimal tests

In minimising∫
f(θ)Eθ(IT ) dθ + λ1 Prθ=0{Reject H0} + λ2 Prθ=δ{Accept H0},

we have solved a Bayes decision problem with prior

θ = 0 with probability 1/3

θ = δ with probability 1/3

θ ∼ N(δ/2, δ2/4) with probability 1/3

and a cost of sampling IT when θ ∼ N(δ/2, δ2/4).

This is a Bayes optimal procedure — but for a rather odd looking
problem.
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Back to Bayesian proposals

Spiegelhalter, Freedman & Parmar (1994) proposed the following
sequential procedure. Given a prior π(θ),

At each analysis k = 1, . . . ,K − 1

if Pr{θ > 0 | data} > 1− ε stop, declare θ > 0

if Pr{θ < 0 | data} > 1− ε stop, declare θ ≤ 0

otherwise continue to group k + 1,

after group K

if Pr{θ > 0 | data} > 1− ε stop, declare θ > 0

otherwise stop, do not declare θ > 0.

The trial stops early if the 1− 2ε credible interval for θ does not
contain zero.

The credible interval is not affected by the fact that earlier
analyses have been conducted.
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Bayesian proposals: Spiegelhalter et al. (1994)

However, the frequentist properties of the Bayes procedure are
affected by the number of analyses conducted.

Probability of declaring θ > 0 for procedures with prior
θ ∼ N(0.5, 0.5), ε = 0.025, and 1, 2, 5 and 20 analyses:
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Bayesian proposals: Calibrated procedures

Spiegelhalter et al. (1994) proposed use of a “handicap prior”,
chosen so that the procedure has a particular type I error rate.

If the number of analyses is K and maximum information is IK ,
the handicap prior is

θ ∼ N(0, (hIK)−1).

The “handicap” h depends on the number of analyses. Here are
values for α = 0.025.

Number of analyses Handicap

K h

1 0.000
2 0.163
5 0.271

20 0.382
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Bayesian proposals: Calibrated procedures

We can choose IK so that the procedure with a handicap prior has
a specific power if the treatment effect is θ = δ.

Power functions of designs with Pr{Reject H0 | θ = 1} = 0.9
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Note: When power curves are matched at θ = 0 and θ = 1, they
are just about indistinguishable everywhere.
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Bayesian proposals: Ventz & Trippa (2015)

Ventz & Trippa proposed optimising and calibrating at the same
time. Their problem formulation has:

Possible decisions

d1 : Do not pursue drug approval,

d2 : Pursue drug approval.

A “gain function” or “utility” comprising

G(θ, d1) = 0 for all θ,

G(θ, d2) =

{
K(θ) if θ > 0,

−L(θ) if θ ≤ 0,

plus a term
B(θ, di, T )

denoting the additional benefit from reaching decision di at
analysis T minus the cost of treating patients in the trial.
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Bayesian proposals: V&T Calibrated Bayes procedure

Assuming a prior distribution π(θ), Ventz & Trippa seek to
minimise the expected gain

−
∫ 0

−∞
L(θ)Pr(D = d2 | θ)π(θ) dθ +

∫ ∞
0
K(θ)Pr(D = d2 | θ)π(θ) dθ

+

∫ ∞
−∞

E{B(θ, di, T )}π(θ) dθ.

subject to error rate constraints

Pr(D = d2 | θ = 0) = α and Pr(D = d1 | θ = δ) = β

for a specified value of δ.

Note that type I and type II errors feature twice, in different guises.
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Bayesian proposals: V&T Calibrated Bayes procedure

On Slide 14, we saw an example of how, to a high degree of
accuracy, power belong to a two parameter family.

Thus, the constraints

Pr(D = d2 | θ = 0) = α and Pr(D = d1 | θ = δ) = β

are essentially equivalent to∫ 0

−∞
L(θ)Pr(D = d2 | θ)π(θ) dθ = p1

and ∫ ∞
0
K(θ)Pr(D = d2 | θ)π(θ) dθ = p2

for certain values of p1 and p2.
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Bayesian proposals: V&T Calibrated Bayes procedure

Thus, when Ventz & Trippa minimise

−
∫ 0

−∞
L(θ)Pr(D = d2 | θ)π(θ) dθ +

∫ ∞
0

K(θ)Pr(D = d2 | θ)π(θ) dθ

+

∫ ∞
−∞

E{B(θ, di, T )}π(θ) dθ

subject to

Pr(D = d2 | θ = 0) = α and Pr(D = d1 | θ = δ) = β.

they are effectively minimising∫ ∞
−∞

E{B(θ, di, T )}π(θ) dθ.

subject to∫ 0

−∞
L(θ)Pr(D = d2 | θ)π(θ) dθ = p1 and

∫ ∞
0

K(θ)Pr(D = d2 | θ)π(θ) dθ = p2.
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Bayesian proposals: V&T Calibrated Bayes procedure

Given the equivalence of the two types of constraint on the power
function, they are also minimising∫ ∞

−∞
E{B(θ, di, T )}π(θ) dθ.

subject to

Pr(D = d2 | θ = 0) = α and Pr(D = d1 | θ = δ) = β.

This is exactly the type of problem that Jennison and others have
tackled from a frequentist perspective.
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A remark on the frequentist designs we saw earlier

I noted that the designs produced by Barber & Jennison were
Bayes procedures for rather strange looking priors.

However, we can replace the constraint

Pr(D = d2 | θ = 0) = α and Pr(D = d1 | θ = δ) = β

by an (almost) equivalent constraint of the form

∫ 0

−∞
Pr(D = d2 | θ) f(θ) dθ = p1 and

∫ ∞
0

Pr(D = d2 | θ) f(θ) dθ = p2,

where f(θ) is a N(δ/2, (δ/2)2) density.

Then, we will obtain essentially the same optimal design by solving
a more reasonable looking Bayesian problem.

CONVERGENCE!
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Conclusions

Theoretical underpinnings

The convergence between frequentist and calibrated Bayes
procedures demonstrates the “complete class theorems” of Brown,
Cohen & Strawderman (Ann. Statistics, 1980) which state

{The set of admissible frequentist procedures}

= {The set of Bayes optimal procedures}.

Practical consequences

Both schools can learn from each other — we are (or should be)
solving the same problems.
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