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Reference

I presented this material at the Interface Conference at the
University of Michigan in 1990.

My paper

“Bootstrap Confidence Intervals for a Hazard Ratio when the
Number of Observed Failure is Small, with Applications to Group
Sequential Survival Studies”

appears in pages 89–97 of

Computing Science and Statistics: Statistics of Many Parameters:
Curves, Images, Spatial Models (1992), eds C Page and R LePage.

If a large survival trial is conducted group sequentially, one may
expect small numbers of failures at early analyses, so small sample
methods become important.
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Conducting a trial with a survival endpoint

Consider a Phase III trial comparing a new treatment and a control.
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Key

• death time observed

◦ censored observation

Subjects are randomised to a treatment as they enter the study.

Survival is measured from entry to the study.
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Interim analyses

-
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1
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2
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3
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At an interim analysis, subjects are censored if they are still alive.

Information on such patients continues to accrue at later analyses.
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Interim analysis 1
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Survival
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◦

We analyse data on survival from time of randomisation.

Survival times start at zero and “analysis time” censoring occurs
for subjects surviving past this first analysis.
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Interim analysis 2
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•
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At interim analysis 2, there is further follow-up of subjects who
were censored at analysis 1.

In addition, there is initial information on the survival times of
subjects entering the trial since analysis 1.
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The proportional hazards model for survival data

The hazard rate at time t is defined as

h(t) = lim
δt→0

1

δt
Pr{Fail in [t, t+ δt) | Survive up to time t}.

In the proportional hazards model

Treatment A: hazard rate = h(t)

Treatment B: hazard rate = λh(t)

We aim to test sequentially H0: λ = λ0 against λ 6= λ0, with
type I error probability α/2 in each tail.

This could be

A simple test of H0: λ = λ0,

To construct a sequence of Repeated Confidence Intervals for λ,

To compute a Confidence Interval for λ after a sequential test.
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The logrank statistic for testing H0: λ = 1

At stage k, the observed number of deaths is dk.

Elapsed times between entry to the study and these deaths are

τ1,k < τ2,k < . . . < τdk,k (assuming no ties).

Define variables at analysis k

riA,k and riB,k Numbers at risk on Trts A and B at τi,k−

rik = riA,k + riB,k Total number at risk at τi,k−

Ok Observed number of deaths on Trt B

Ek =
∑dk

i=1 riB,k/rik “Expected” number of deaths on Trt B

Vk =
∑dk

1 riA,kriB,k/r
2
ik “Variance” of Ok

Zk = (Ok − Ek)/
√
Vk Standardised logrank statistic
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The score statistic for testing H0: λ = λ0

This generalisation of the logrank statistic is obtained by
differentiating the logarithm of the partial likelihood, as
defined by Cox (Biometrika, 1975).

The (unstandardised) score statistic at analysis k is

Lk(λ0) =

dk∑
i=1

(
δi,k −

λ0 riB,k
riA,k + λ0 riB,k

)
where δi,k is the indicator that failure i at analysis k is on
Treatment B.

Thus

Lk(λ0) = Observed number of failures on Treatment B

− “Expected” number of failures if λ = λ0.
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Large sample distribution of Lk(λ0)

Define the information for λ0 at analysis k as

Ik =

dk∑
i=1

λ0 riA,k riB,k
(riA,k + λ0 riB,k)2

.

Then asymptotically, if λ = λ0,

Lk(λ0)√
Ik

D−→ N(0, 1)

as the number of observations and the number of observed failures
at analysis k tend to infinity.

Furthermore, the asymptotic joint distribution of the sequence
{L1, . . . , LK} is multivariate normal with independent increments:
see Jennison & Turnbull (JASA, 1997) and references therein.
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An error spending sequential test of H0: λ = λ0

With a maximum of K analyses, specify π1, . . . , πK where

K∑
k=1

πk = α.

Here πk represents the error probability “spent” at analysis k.

Compute c1, . . . , cK such that

Prλ=λ0{|L1(λ0)| < c1, . . . , |Lk−1(λ0)| < ck−1, |Lk(λ0)| ≥ ck} = πk,

assuming the asymptotic normal distribution of {L1, . . . , LK}.

Then, reject H0: λ = λ0 at analysis k if |L1(λ0)| ≥ ck.

The values of π1, . . . , πK may be fixed in advance (Slud & Wei,
JASA, 1982) or functions of the observed information, I1, . . . , IK
(Lan & DeMets, Biometrika, 1983).

Chris Jennison Bootstrap Confidence Intervals for a Hazard Ratio



Accuracy of the normal approximation

In a non-sequential test

In a single sample test, the normal approximation for Lk(λ0) is
accurate when the number of failures is large.

It is less accurate if the number of failures is as low as 20 or 30.

With few failures, the distribution of Lk(λ0) is skew for λ0 6= 1.

In a group sequential test

We find error rates in a group sequential test are accurate if the
normal approximation to the distribution of each Lk(λ0) is good.

Experience with other response variables suggests that, when the
numbers of failures are low, it will suffice to improve the accuracy
of the marginal distribution for each Lk(λ0).

Then we shall reject H0: λ = λ0 at analysis k if H0 is rejected in a
two-sided test with significance level 2{1− Φ(ck/

√
Ik)}.
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Small sample approximation

We approximate the conditional distribution of L(λ0) given the
order of exact and censored survival times.

-

Time

C: Censored observation

•
C

t1
•
C
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•
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. . .
•
C

•
C

•
C

•
C

E: Exact observation

x
t3

E
x
E

x
E

x
E

Generate group membership for events at times t1, t2, . . . in order.

Start with n1 in group A and n2 in group B.

If the next event is censored

With probability n1/(n1 + n2),

allocate the event to group A, reduce n1 by 1.

With probability n2/(n1 + n2),

allocate the event to group B, reduce n2 by 1.
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Small sample approximation

-

Time

C: Censored observation

•
C

t1
•
C

t2
•
C

. . .
•
C

•
C

•
C

•
C

E: Exact observation

x
t3

E
x
E

x
E

x
E

If the next event is exact

With probability n1/(n1 + λ0 n2),

allocate the event to group A, reduce n1 by 1.

With probability λ0 n2/(n1 + λ0 n2),

allocate the event to group B, reduce n2 by 1.

After allocating all the events, evaluate

Lk(λ0) =

dk∑
i=1

(
δi,k −

λ0 riB,k
riA,k + λ0 riB,k

)
.
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Small sample approximation: Validity & implementation

Allocations of events to treatment groups follow the proportional
hazards model exactly if there is no censoring or if λ = 1.

The scheme produces the correct asymptotic distribution as the
sample size and number of events tend to infinity.

We can use Monte Carlo or “bootstrap” sampling to test H0.

For a 2-sided, level α test of H0: λ = λ0:

Generate N − 1 “bootstrap” values of L(λ0).

If the observed value is one of the Nα/2 smallest or Nα/2
largest values in the set of N observations, reject H0.

If the bootstrap is sampling the correct distribution, the error rate
of this procedure is exactly α.

To minimise simulation noise, a very large of N should be used.

Chris Jennison Bootstrap Confidence Intervals for a Hazard Ratio



Calculating a 100(1− α)% confidence interval for λ

Use the normal approximation to find initial estimates of the
endpoints of the confidence interval for λ.

Let

p(λ) = Pr{Bootstrap L(λ) > observed L(λ)}.

Simulate under values of λ in the neighbourhood of each endpoint
and model the function p(λ) in these regions, e.g., by logistic
regression.

Solve the equations
p(λ) = α/2

and
p(λ) = 1− α/2

to find the endpoints of the confidence interval for λ.
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Assessing the small sample approximation

We shall simulate M data sets under λ = λ0.

For each data set, we generate N bootstrap samples and use these
to decide whether or not to reject H0: λ = λ0.

We can compare the error rate in these M simulated data sets to
the target value α.

In 1990, I aspired to simulate M = 20, 000 data sets, giving an
estimate of a type I error rate ≈ 0.05 with standard error 0.0015.

These days, I would expect to use M = 1, 000, 000, to give an
estimated error rate with standard error 0.0002.

With a high value of M and N = 1, 000, say, the computation
time is considerable.

However, for each data set, we only need to know whether or not
H0 is rejected.
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Curtailing the bootstrap test

Let X be the number of bootstrap simulations giving a value of
L(λ0) greater than our observed value, L∗(λ0).

With c = Nα/2, we reject H0 if

X < c or X > N − 1− c (1)

and we accept H0 if

c ≤ X ≤ N − 1− c. (2)

Deterministic curtailment

If we already have c bootstrap values greater than L∗(λ0) and c
less than L∗(λ0), we know X will satisfy (2), so we can stop now.

Stochastic curtailment

We can stop if the final decision is almost inevitable given the
bootstrap results so far.

I allowed a maximum probability of 10−5 to make an error here.
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Curtailing the bootstrap test

n

Number of

bootstrap values

> observed value

c

0

N−c

N−1

N−1

n = number of bootstrap values so far

Deterministic curtailment

Stochastic cutailment

Average number of bootstraps required

N = 100 N = 1, 000 N = 10, 000

α/2 = 0.05 29 82 688

α/2 = 0.01 9 84 295
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Results: Single sample test

Survival times ∼ Exponential with median ≈ 1.

Censoring times ∼ Uniform(0, 1).

60 observations, average number of failures = 17.

Empirical error rates for test of H0: λ = λ0.

α/2 = 0.05 α/2 = 0.01

λ > λ0 λ < λ0 λ > λ0 λ < λ0

λ0 = 2 Normal approx. 0.045 0.056 0.0067 0.0134

Bootstrap 0.050 0.050 0.0094 0.0101

λ0 = 3 Normal approx. 0.042 0.061 0.0055 0.0144

Bootstrap 0.049 0.052 0.0111 0.0094

Standard error 0.0015 0.0007

Based on M = 20, 000 replicates, N = 1, 000 bootstrap samples.
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Results: Group sequential test

5 year study, accrual for 2 years then follow-up, 10 analyses.

Median survival ∼ 2.5 years.

Target error rate α/2 = 0.0.

Average failures at analyses 1, 2, 3, . . . = 3.5, 13, 17 . . . .

Empirical error rates for test of H0: λ = λ0.

λ > λ0 λ < λ0

λ0 = 2 Normal approx. 0.036 0.060

Bootstrap 0.049 0.051

λ0 = 3 Normal approx. 0.032 0.067

Bootstrap 0.049 0.051

Standard error 0.0015

Based on M = 20, 000 replicates, N = 1, 000 bootstrap samples.
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Conclusions

The normal approximation for logrank statistics can be
poor when the number of failures is small.

Our small sample approximation is effective and can be
used both in fixed sample and group sequential tests.

The bootstrap tests are based on an accurate method
for simulating under a hypothesised parameter value.

Stochastic curtailment of bootstrap tests can reduce
computation time by a factor as high as 30, making a
proper assessment of error rates feasible.

Bootstrap hypothesis tests are generally applicable.

See, for example, Barber & Jennison (Biometrics, 1999),
“Symmetric tests and confidence intervals for survival
probabilities and quantiles of censored survival data”.
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