
Optimising Sequential and Adaptive Designs:

The Power of Dynamic Programming

Christopher Jennison

Department of Mathematical Sciences,

University of Bath, UK

http://people.bath.ac.uk/mascj

Bath

March 2024

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

Outline of talk

1. Dynamic Programming

General description

2. Optimising a group sequential stopping rule

Problem formulation and optimisation

What we learn from this

Related problems

3. Optimising dose allocation in a First in Human trial

Problem formulation and optimisation

Optimising a trial with safety and efficacy endpoints

Some computational short cuts

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

1. Dynamic Programming (Bellman, PNAS, 1953)

Dynamic Programming is a computationally efficient method for
solving a sequential decision problem.

In a problem with n stages, denote the “State” in stage k by Xk

and the “Action” applied by Ak.

●

X1

A1

 . . . Xk

Ak

Xk+1

Ak+1

 . . . Xn

An

State Xk+1 depends on Xk and Ak, and may be random.

The aim is to choose the actions A1, . . . , An so as to maximise the
expected value of a gain or utility function

U(X1, A1, . . . , Xn, An),

or to minimise the expected value of a loss function

L(X1, A1, . . . , Xn, An).

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

Dynamic Programming

I first met Dynamic Programming in an undergraduate course.

The problems we were able to solve were discrete, for example, the
“car parking” problem:

We start a distance N parking places from our destination.
As we cruise along, we can see only one parking place at a
time. If a place is empty and we park there, then our loss
is the distance we walk. Clearly, once past our destination
we park in the first available place. Empty spaces occur
independently with probability p = 1 − q. Show that the
optimal policy is to wait until we are N0 places from our
destination and then park in the first available space, where
N0 is the largest integer r > 0 with qr ≥ 1/2.

Problems with a continuous state space did not have “nice”
solutions and we were not shown the numerical methods that
might be applied to solve them.

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

Dynamic Programming

Dynamic Programming works backwards from the final stage.

Suppose we are minimising a loss function L(X1, A1, . . . , Xn, An).

At stage n

We consider each possibility for the current state Xn and the
preceding history X1, A1, . . . , Xn−1, An−1.

We determine the action A∗n that minimises the conditional
expected loss given X1, A1, . . . , Xn and we define

β(n)(X1, A1, . . . , Xn)

to be this conditional expected loss for the optimal action, A∗n.

We store the optimal action A∗n and conditional expected loss
β(n)(X1, A1, . . . , Xn) for every possible sequence X1, A1, . . . , Xn.

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

Dynamic Programming

At stage n− 1

For each state Xn−1 and previous history X1, A1, . . . , Xn−2, An−2,
we determine the action A∗n−1 that minimises the conditional
expected loss, assuming we shall act optimally at stage n.

In doing this, we use the function β(n)(X1, A1, . . . , Xn) that we
calculated previously.

We define
β(n−1)(X1, A1, . . . , Xn−1)

to be the conditional expected loss when taking the action A∗n−1
and continuing to proceed optimally thereafter.

We store the optimal action A∗n−1 and conditional expected loss

β(n−1)(X1, A1, . . . , Xn−1) for every sequence X1, A1, . . . , Xn−1.

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

Dynamic Programming

Continuing backwards . . .

We find the optimal actions for each possible state at stage n− 2,
stage n− 3, . . . , stage 1.

At each stage k

We use the function β(k+1)(X1, A1, . . . , Xk+1) that we calculated
previously and store values of the function β(k)(X1, A1, . . . , Xk)
for future use.

Carrying out the computations

The complexity of the above calculations depends on the nature of
the states X1, . . . , Xn, the process that determines successive
states, and the form of the loss function being minimised.

In the following examples we shall see it can be surprisingly easy to
solve difficult problems — and there are ways to tackle apparently
impossible problems.

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

2. Optimising a group sequential clinical trial

Reference: Jennison & Turnbull, Kuwait Journal of Science, 2013.

Consider a Phase 3 clinical trial comparing a new treatment
against a standard.

Let θ denote the “effect size”, a measure of the improvement in
the new treatment over the standard.

We shall test the null hypothesis H0: θ ≤ 0 against θ > 0.

Rejecting H0 allows us to conclude the new treatment is superior.

We allow type I error probability α for rejecting H0 when it is true.

We specify power 1− β as the probability of rejecting H0 when
θ = δ. Here δ is, typically, the minimal clinically significant
treatment difference.

The trial design, including the method of analysis and stopping
rule, must be set up to attain these error rates.

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

Sequential distribution theory

Let θ̂k denote the estimate of the treatment effect θ at analysis k.

Information for θ at analysis k is Ik = {Var(θ̂k)}−1, k = 1, . . . ,K.

Canonical joint distribution of θ̂1, . . . , θ̂K

In many situations, in the absence of early stopping, θ̂1, . . . , θ̂K are
approximately multivariate normal,

θ̂k ∼ N(θ, {Ik}−1), k = 1, . . . ,K,

and

Cov(θ̂k1 , θ̂k2) = Var(θ̂k2) = {Ik2}−1 for k1 < k2.

References:

Jennison & Turnbull, JASA, 1997,

Scharfstein et al, JASA, 1997.

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

An optimal stopping problem

Consider a trial designed to test H0: θ ≤ 0 vs θ > 0, with:

Type I error rate α,

Power 1− β at θ = δ,

Up to K analyses.

A fixed sample test needs information

Ifix = {Φ−1(α) + Φ−1(β)}2/δ2.

We set the maximum information to be

Imax = R Ifix,

where R > 1, with equal increments between analyses.

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

Optimal group sequential tests

The error rates impose two constraints on the 2K − 1 boundary
points — leaving a high dimensional space of possible boundaries.

-
k

6
Zk

•
•

•
• •

•

•

•

•

•

PP
XX

`̀
hh

��

��

""

��
!!

Reject H0

Accept H0

We shall look for a boundary that minimises

{E0(I) + Eδ(I)}/2.

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

Computations for group sequential tests

-
k

6
Zk

•
•

•
• •

•

•

•

•

•

"
""
· ·

#
##
·b1

b2

a1

a2

Z1

Z2

Z3

PP
XX

`̀
hh

��

��

""

��
!!

Reject H0

Accept H0

We need to be able to calculate the probabilities of basic events
such as

a1 < Z1 < b1, a2 < Z2 < b2, Z3 > b3.

Combining such probabilities gives key properties, such as

Prθ{Reject H0} and Eθ(I).

l

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

Numerical integration

We can write probabilities as nested integrals, e.g.,

Pr{a1 < Z1 < b1, a2 < Z2 < b2, Z3 > b3} =

∫ b1

a1

∫ b2

a2

∫ ∞
b3

f1(z1) f2(z2|z1) f3(z3|z2) dz3 dz2 dz1.

Applying numerical integration, we replace each integral by a sum
of the form ∫ b

a
f(z) dz =

n∑
i=1

w(i) f(z(i)),

where z(1), . . . , z(n) is a grid of points from a to b.

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

Numerical integration

Thus, we have

Pr{a1 < Z1 < b1, a2 < Z2 < b2, Z3 > b3} ≈
n1∑
i1=1

n2∑
i2=1

n3∑
i3=1

w1(i1) f1(z1(i1)) w2(i2)f2(z2(i2)|z1(i1))

w3(i3) f3(z3(i3)|z2(i2)).

Multiple integrations and summations will arise, e.g., for an
outcome at analysis k,

n1∑
i1=1

. . .

nk∑
ik=1

w1(i1) f1(z1(i1)) w2(i2)f2(z2(i2)|z1(i1))

. . . wk(ik) fk(zk(ik)|zk−1(ik−1)).

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

Numerical integration

In the multiple summation

n1∑
i1=1

n2∑
i2=1

. . .

nk∑
ik=1

w1(i1) f1(z1(i1)) w2(i2)f2(z2(i2)|z1(i1))

. . . wk(ik) fk(zk(ik)|zk−1(ik−1)),

the structure of the k nested summations is such that the
computation required is of the order of k − 1 double summations.

Using Simpson’s rule with 100 to 200 grid points per integral can
give accuracy to 5 or 6 decimal places.

For details of efficient sets of grid points, see Ch. 19 of Group
Sequential Methods with Applications to Clinical Trials by
Jennison and Turnbull (2000).

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

Finding optimal group sequential tests

Recall, we want a group sequential test of H0: θ ≤ 0 vs θ > 0 with

Prθ=0{Reject H0} = α,

Prθ=δ{Accept H0} = β,

Analyses at Ik = (k/K) Imax, k = 1, . . . ,K,

Minimum possible value of {E0(I) + Eδ(I)}/2.

We deal with constraints on error rates by introducing Lagrangian
multipliers to create the unconstrained problem of minimising

{E0(I) + Eδ(I)}/2 + λ1Prθ=0{Reject H0}+ λ2 Prθ=δ{Accept H0}.

We shall find a pair of multipliers (λ1, λ2) such that the solution
has type I and II error rates α and β, then this design will solve the
constrained problem too.

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

Bayesian interpretation of the Lagrangian approach

Suppose we put a prior on θ with Pr{θ = 0} = Pr{θ = δ} = 0.5
and specify costs of

1 per unit of information observed,

2λ1 for rejecting H0 when θ = 0,

2λ2 for accepting H0 when θ = δ.

Then, the total Bayes risk is

{E0(I)+Eδ(I)}/2+λ1 Prθ=0{Reject H0}+λ2 Prθ=δ{Accept H0},

just as in the Lagrangian problem.

An advantage of the Bayes interpretation is that it can give insight
into solving the problem by using “Dynamic Programming” or
“Backwards Induction”.

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

Solution by Dynamic Programming

Denote the posterior distribution of θ given Zk = zk at analysis k
by

p(k)(θ|zk), θ = 0, δ.

At the final analysis, K

There is no further sampling cost, so compare decisions

Reject H0: E(Cost) = 2λ1 p
(K)(0|zK),

Accept H0: E(Cost) = 2λ2 p
(K)(δ|zK).

The boundary point aK is the value of zK where these expected
losses are equal.

The optimum decision rule is to reject H0 for ZK > aK .

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

Dynamic Programming

At analysis K − 1

-

IIK−1 IK

6
zk

•aK×
zK−1

If the trial stops at this analysis, there is no further cost of
sampling and the expected additional cost is

Reject H0: 2λ1 p
(K−1)(0|zK−1),

Accept H0: 2λ2 p
(K−1)(δ|zK−1).

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

At analysis K − 1

If the trial continues to analysis K, the expected additional cost is

1× (IK − IK−1)

+ 2λ1 p
(K−1)(0|zK−1)Prθ=0{ZK > aK |ZK−1 = zK−1}

+ 2λ2 p
(K−1)(δ|zK−1)Prθ=δ{ZK < aK |ZK−1 = zK−1}.

We can now define the optimal boundary points:

Set bK−1 to be the value of zK−1 where

E(Cost of continuing) = E(Cost of stopping to reject H0).

Set aK−1 to be the value of zK−1 where

E(Cost of continuing) = E(Cost of stopping to accept H0).

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

At analysis K − 1

-

IIK

6
zk

•aK
×
bK−1

×
aK−1

Before leaving analysis K − 1, we set up a grid of points for use in
numerical integration over the range aK−1 to bK−1.

For each point, we sum over the posterior distribution of θ to
calculate

β(K−1)(zK−1) = E(Additional cost when continuing |ZK−1 = zK−1).

We are now ready to move back to analysis K − 2.

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

Analyses 1 to K − 2

We work back through analyses k = K − 2, K − 3, . . . , 1.

-

I

6
z

Ik

×
zk ×

bk+1

×
ak+1

•

•

•
•

•

At each analysis, we find the optimal stopping boundary using
knowledge of the optimal stopping rule at future analyses.

Then, for a grid of values of zk, compute

β(k)(zk) = E(Additional cost when continuing |Zk = zk)

to use in evaluating the option of continuing at analysis k − 1.

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

Solving the original problem

For any given (λ1, λ2) we can find the Bayes optimal design and
compute its type I and II error rates.

We now search for a pair (λ1, λ2) for which type I and type II error
rates of the optimal design equal α and β, respectively.

The resulting design will be the optimal group sequential test, with
the specified frequentist error rates, for our original problem.

Notes

1. The method of solving the overall problem demonstrates
explicitly that good frequentist procedures should be similar to
Bayes procedures.

2. The prior and costs in the final Bayes problem are a means to
an end, rather than “true” costs of type I and type II errors, or
costs of treating patients in the trial.

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

Properties of optimal designs

Tests with α = 0.025, 1− β = 0.9, K analyses, Imax = R Ifix,

and equal group sizes, that minimise {E0(I) + Eδ(I)}/2.

Minimum values of {E0(I) + Eδ(I)}/2, as a percentage of Ifix
R Minimum

K 1.01 1.05 1.1 1.2 1.3 over R

2 80.8 74.7 73.2 73.7 75.8 73.0 at R=1.13

5 72.2 65.2 62.2 59.8 59.0 58.8 at R=1.38

10 69.2 62.2 59.0 56.3 55.1 54.2 at R=1.6

20 67.8 60.6 57.5 54.6 53.3 51.7 at R=1.8

Observe: E(I)↘ as K ↗ but with diminishing returns,

E(I)↘ as R↗ up to a point.

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

Optimisation problems we have addressed

One-sided and two-sided group sequential tests

Eales & Jennison, Biometrika, 1992

Eales & Jennison, Sequential Analysis, 1995

Barber & Jennison, Biometrika, 2002

Group sequential tests with data dependent group sizes

Jennison & Turnbull, Biometrika, 2006

Group sequential tests of superiority and non-inferiority

Öhrn & Jennison, Statistics in Medicine, 2010

Group sequential tests for delayed responses

Hampson & Jennison, JRSS, B, 2013

Optimising gain functions from financial models

Robbie Peck, University of Bath, PhD thesis, 2020

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

3. Optimising dose allocation in a First in Human trial

Reference: Lizzi Pitt, University of Bath, PhD thesis, 2021.

Phase I, First in Human, trials are conducted to investigate the
safety of a new molecule and find the maximum tolerated dose.

Patients are treated a few at a time, e.g., in cohorts of 3.

The dose escalation scheme only moves on to a higher dose when
lower doses have been shown to be safe.

d−3 −2 −1 0 1 2 3

pT(d)

0.2

0.4

0.6

0.8

1

The aim is to determine the Maximum Tolerated Dose (MTD), at
which the probability of a Dose Limiting Event (DLE) is, say, 0.3.

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

Dose response function (O’Quigley, et al. 1990, Bmcs)

We assume a dose response function of the form

pT (d, a) =

(
tanh(d) + 1

2

)a
=

(
1

1 + e−2d

)a
,

where pT (d, a) is the probability of a DLE at dose level d, on some
transformed scale (e.g., logarithmic).

d−3 −2 −1 0 1 2 3

pT(d)

0.2

0.4

0.6

0.8

1

a=0.25
a=0.5
a=1
a=2
a=4

The parameter a determines the likelihood of a DLE.

As a increases, pT (d, a) decreases.

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

Problem formulation and loss function

Suppose a maximum of J cohorts of nc subjects are to be treated
with doses selected from the set D = {d1, . . . , dm}.
At the end of the study, with data xJ , a dose d∗ ∈ D will be
selected as the estimate of the maximum tolerated dose.

We define the loss function

L(d∗, a, xJ) = |pT (d∗, a)− 0.3|+ δ nT ,

where nT is the number of DLEs that occur in the trial.

We place a prior π(a) on the dose response model parameter a.

Our aim is to minimise the expected loss∫
(E{|pT (d∗, a)− 0.3|}+ δ nT)π(a) da.

over possible final decision rules and dose allocation rules that
satisfy specified constraints on dose escalation.

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

Optimising by Dynamic Programming

The state variable

After j cohorts of nc have been observed, the data so far comprise

{U1, Y1, . . . , Uj , Yj},

where Uj ∈ {1, . . . ,m} is the index of the dose chosen for cohort j
and Yj the number of DLEs observed in cohort j.

It is (usually) sufficient to summarise these data by the state
variable

Xj = (N1,j , . . . , Nm,j , V1,j , . . . , Vm,j)

where Ni,j is the total number of cohorts allocated dose di and
Vi,j the total number of DLEs observed at that dose.

With 10 cohorts of 3 and 6 doses, there are 16 million possible
states at the final analysis and 25 million over the whole trial.

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

Optimising dose allocation in a First in Human trial

The posterior distribution of a

For data xj = (n1,j , . . . , nm,j , v1,j , . . . , vm,j), the likelihood is

l(a, xj) =

m∏
i=1

(
ni,j
vi,j

)
pi(a)vi,j {1− pi(a)}(ni,j−vi,j),

where

pi(a) =

(
tanh(di) + 1

2

)a
, i = 1, . . . ,m,

are the probabilities of a safety event at each dose di under model
parameter a.

The posterior distribution of a has density

πA|Xj
(a|xj) ∝ π(a) l(a, xj).

This formula does not simplify but, with an exponential prior for a,
we find the posterior distributions resemble Gamma distributions.

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

Dynamic Programming

After cohort J : Estimating the Maximum Tolerated Dose

In order to minimise the overall expected loss, we must minimise
the conditional expected loss∫

(|pT (d∗, a)− 0.3|+ δ nT)πA|XJ
(a|xJ) da.

If we say the MTD is di, the conditional expected loss is

ωJ, i(xJ) =

∫
(|pT (di, a)− 0.3|+ δ nT)πA|XJ

(a|xJ) da.

So, we choose the dose d∗J(xJ) with the smallest value of ωJ, i(xJ).

Finally, we note that the minimum possible conditional expected
loss when in state xJ is

β(J)(xJ) = min
i∈{1,...,m}

ωJ, i(xJ).

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

Dynamic Programming

After cohort j: Selecting the dose for cohort j + 1

If the current state is xj and dose di is allocated to cohort j, we
denote the probability of moving to state xj+1 under dose response
model parameter a by

q(xj+1 |xj , di, a).

The conditional expected loss from state xj when dose di allocated
to cohort j is

ωj,i(xj) =

∫ ∑
xj+1

q(xj+1 |xj , di, a)β(j+1)(xj+1)

πA|Xj
(a|xj) da.

The optimal dose in state xj is that with the smallest ωj,i(xj).

The minimum conditional expected loss when in state xj is

β(j)(xj) = min
i∈{1,...,m}

ωj,i(xj).

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

Dynamic Programming: Implementation

Data storage

At stage j, the possible dose allocations, (n1,j , . . . , nm,j), can be
described using “stars and bars” notation (Feller, 1968), e.g.,

∗ ∗ | ∗ ∗|| ∗ | ∗ | ∗ for n1,j = n2,j = 2, n4,j = n5,j = n6,j = 1.

We enumerate the (
j +m− 1

m− 1

)
vectors (n1,j , . . . , nm,j) according to the positions of the “bars”.

For each vector (n1,j , . . . , nm,j), we list the
m∏
i=1

(ni,j nc + 1)

possibilities for the vector of DLE counts (v1,j , . . . , vm,j).

In R, we store the set of possible states as a nested list.

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

Dynamic Programming: Implementation

Numerical integration

Calculations involve integration over the posterior density of a for
each state xj and each possible dose di for cohort j + 1.

To do this efficiently, we use Simpson’s rule on a pre-prepared grid
that is suitable for all posterior distributions .

Parts of the calculation that are used repeatedly, e.g., in assessing
different doses for cohort j + 1 when in state xj , should be carried
out only once.

Parallel processing

When finding the optimal dose for cohort j + 1, calculations for
different states xj can be distributed across processors.

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

Example

Consider a trial with 9 cohorts of 3 subjects, and 6 dose levels.

Suppose the aim is to select the dose at which the probability of a
DLE is as close as possible to 0.3.

Dose levels d1, . . . , d6 are chosen so that, if a = 1, the probabilities
of a DLE are 0.05, 0.1, 0.2, 0.3, 0.5 and 0.7.

The prior distribution for the dose response model parameter is

a ∼ Exp(1).

We consider two loss functions which involve the dose d∗ selected
at the end of the trial and nT , the number of DLEs during the trial.

Standard loss function:

LSL(d∗, a, xJ) = |pT (d∗, a)− 0.3|

Penalised loss function:

LP (d∗, a, xJ) = |pT (d∗, a)− 0.3|+ 0.004nT .

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

Example: Three designs

Dynamic Programming with standard loss: DP-SL

The design, found by Dynamic Programming, that minimises

E{LSL(d∗, a, xJ)} = E{|pT (d∗, a)− 0.3|}

Dynamic Programming with penalised loss: DP-P

The design, found by Dynamic Programming, that minimises

E{LP (d∗, a, xJ)} = E{|pT (d∗, a)− 0.3|+ 0.004nT}

O’Quigley et al’s Continuous Reassessment Method: CRM

When in state xj , the next cohort of patients is allocated the dose
which minimises the expected value of |pT (di, a)− 0.3| under the
posterior distribution of a,∫

|pT (di, a)− 0.3|πA|Xj
(a|xj) da.

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

Example

CRM DP−SL DP−P

a =
 0.4

a =
 1

a =
 3.4

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

0
20
40
60
80

0
20
40
60
80

0
20
40
60
80

Dose Level

P
er

ce
nt

ag
e

Not True MTD
True MTD

Percentage of simulated trials in which each dose was recommended as MTD

E(Loss) = 0.154 E(Loss) = 0.153 E(Loss) = 0.155

Here “Loss” is the Standard Loss, E{|pT (d∗, a)− 0.3|}, and expectation

is over the prior distribution a ∼ Exp(1).

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

Example

CRM DP−SL DP−P

a =
 0.4

a =
 1

a =
 3.4

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

0

25

50

75

0

25

50

75

0

25

50

75

Dose Level

P
er

ce
nt

ag
e

Not True MTD
True MTD

Percentage of allocation to each dose level over simulated trials

E(Number of DLEs) = 10.0 E(Number of DLEs) = 7.5

E(Loss) = 0.195 E(Loss) = 0.185

Here “Loss” is the Penalised Loss, E{|pT (d∗, a)− 0.3|+ 0.004nT}, and

expectation is over the prior distribution a ∼ Exp(1).

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

Example: Comments

With the Standard Loss function:

O’Quigley et al’s CRM is close to optimal.

But the optimised design allocates more cohorts to lower doses.

With the Penalised Loss function:

The optimised design allocates more cohorts to lower doses,
reducing the number of dose limiting events.

This has little effect on the accuracy of the final decision.

Adding constraints:

It is just as easy to find the optimal design with constraints, e.g.,

The dose may increase by at most one level between cohorts,

The selected dose must have been observed during the trial.

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

First in Human trials with safety and efficacy endpoints

Alun Bedding had posed the problem of optimising the design of a
trial with safety and efficacy endpoints.

Suppose an efficacy biomarker is represented by a binary variable.

We can define a dose response model with parameter a for safety,
and a model with parameter b for efficacy.

d−3 −2 −1 0 1 2 3

p(d)

0.2

0.4

0.6

0.8

1

{d: pE(d) > 0.5 and pT(d) < 0.3}

pE(d)
pT(d)

Aiming for pE(d) > 0.5 and pT (d) < 0.3, define the gain function

G(d, a, b) = I{pE(d) > 0.5, pT (d) < 0.3} {(pE(d)−0.5) + (0.3−pT (d))}
Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

Optimising by Dynamic Programming

The state variable

After observing j cohorts, the data are summarised by

Xj = (N1,j , . . . , Nm,j , V1,j , . . . , Vm,j , W1,j , . . . ,Wm,j),

where the additional variables Wi,j are the numbers of positive
efficacy outcomes observed at dose i.

Prior and posterior distributions of a and b

We assume independent priors

a ∼ Exp(1) and b ∼ Exp(1)

and we suppose safety and efficacy events occur independently.

Optimising the design

In principle, Dynamic Programming can be applied to find the dose
allocation rule that maximises the expected gain.

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

Approximate Dynamic Programming

Computational complexity

With two response variables, the computational demands increase
dramatically.

Dynamic Programming is feasible for up to 4 cohorts of 3 —
beyond that, we need a way to speed up the calculations.

The important property of any state xj is the resulting posterior
distribution of the model parameters a and b.

Thus, we shall replace the state space {xj} by the set of posterior
distributions for (a, b).

Our assumptions imply that the posterior distributions of a and b
are independent.

Making the approximation that these are Gamma distributions, a
state xj is replaced by the four parameters (λT , kT , λE, kE) and the
set of posterior distributions for (a, b) is a subset of R4.

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

Approximate Dynamic Programming

We find the optimal decision after cohort J or the optimal dose
allocation after cohort j < J for a given “state” (λT , kT , λE, kE).

Working through stages j = J, J − 1, . . . , 1, we find approximate
conditional expected gain functions β̃(j)(λT , kT , λE, kE).

After cohort J

For a sample of states xJ :

For i = 1, . . . ,m, compute ωJ, i(xJ), the conditional expected
gain when choosing di.

Approximate the posterior distributions of a and b given xJ as

a ∼ Gamma(λT , kT) and b ∼ Gamma(λE, kE).

Fit Generalised Additive Models to the ωJ, i(xJ), giving

ω̃J, i(λT , kT , λE, kE), i = 1, . . . ,m.

Set β̃(J)(λT , kT , λE, kE) = max i∈{1,...,m} ω̃J, i(λT , kT , λE, kE).

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

Approximate Dynamic Programming

We work backwards through stages j = J − 1, . . . , 1.

After cohort j

For a sample of states xj :

For i = 1, . . . ,m, compute ωj,i(xj), using the previously
computed function β̃(j+1).

Approximate the posterior distributions of a and b given xj as

a ∼ Gamma(λT , kT) and b ∼ Gamma(λE, kE).

Fit Generalised Additive Models to the ωj,i(xj), giving

ω̃j,i(λT , kT , λE, kE), i = 1, . . . ,m.

Set β̃(j)(λT , kT , λE, kE) = max i∈{1,...,m} ω̃j,i(λT , kT , λE, kE).

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

First in Human trials with safety and efficacy endpoints

Lizzi has successfully implemented the approximate Dynamic
Programming method for trials with 10, 12, 14 and 16 cohorts of 3.

The scale of these problems is noteworthy: with 14 cohorts of 3,
the number of possible data sets is 2.8× 1013.

In discussion with investigators who have conducted such trials, we
have found there to be significant challenges in defining trial
objectives and, hence, formulating an optimisation problem.

The choice of loss or gain function can have a substantial impact
on the resulting design.

So, we need to ask:

What is the goal of a Phase I trial?

How do you measure the success of such a trial?

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

Conclusions

Dynamic Programming is a powerful and versatile technique.

It can produce optimal designs that:

Serve as a benchmark to assess other designs — which
may have other desirable properties

Help assess the usefulness of certain types of trial design.

Having the ability to find an optimal design given certain
assumptions and objectives can reveal the need to clarify the
assumptions and objectives of a proposed study.

Chris Jennison Sequential and Adaptive Designs: Dynamic Programming

