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1. Industrial Quality Control: Sequential Sampling Plans

“Sequential sampling” originated in the early 20th century.

Dodge & Romig (Bell System Technical Journal, 1929) presented a
formulation for two-stage acceptance sampling plans.

    A Dodge and Romig 2−stage acceptance sampling plan
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Industrial Quality Control: Sequential Sampling Schemes

Sequential methods were developed during World War 2 for quality
control in the manufacture of munitions and for comparing the
effectiveness of different operational strategies.

In the USA, Abraham Wald developed the Sequential Probability
Ratio Test (JASA, 1945).

In the UK, George Barnard developed similar methods in the SR17
unit in the Ministry of Supply, publishing some of these methods in
the paper “Sequential tests in industrial statistics” (Barnard,
JRSS, Supplement, 1946).

Peter Armitage started the Mathematical Tripos at Cambridge in
1941, but interrupted his studies to join the SR17 unit in 1943.
He worked with George Barnard and would have seen sequential
methods during this time. He returned to Cambridge in 1945 to
complete his degree in Mathematics.
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Randomised Clinical Trials

Randomised clinical trials first appeared in the UK in the 1940s.

In 1943-44, the Medical Research Council (MRC) UK conducted a
trial of patulin treatment for the common cold. This trial used an
alternation procedure, rather than randomisation, to allocate
subjects to study groups.

Sir Austin Bradford Hill was the statistician for the 1946 trial of
streptomycin as a treatment for pulmonary tuberculosis. Patients
were allocate to treatment groups randomly and, after this trial,
randomisation became standard practice in clinical trials.

After the war, Peter Armitage worked at the Medical Research
Council’s Statistical Research Unit in the London School of
Hygiene and Tropical Medicine. One part of his research activity
was to bring sequential methods into the domain of clinical trials.
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Sequential Clinical Trials

Wald’s Sequential Probability Ratio Test has an elegant
construction — only a simple calculation is needed to create a test
with specified type I and type II error rates.

Suppose observations Xi ∼ N(µ, σ2), i = 1, 2, . . . , are to be
observed and we wish to test H0: µ = 0 against µ 6= 0.

A two−armed Sequential Probability Ratio Test
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The SPRT is an “open” test with no upper limit on sample size.
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2. Sequential Clinical Trials

In a medical trial one would wish to have both a small average
sample size and a small maximum sample size.

Armitage (Biometrika, 1957) proposed “Restricted Sequential
Procedures” to achieve this goal.

With a normally distributed response, some neat mathematics was
needed to make calculations feasible.

Suppose observations Xi ∼ N(µ, σ2), i = 1, 2, . . . , are to be
observed.

We wish to test H0: µ = 0 against µ 6= 0 with two-sided type I
error probability 2α and power 1− β at µ = ±µ1.

Here, each observation could be the difference in responses for a
pair of subjects on two treatment arms.

In fact, the test is applicable for unpaired data.

Chris Jennison 21st Armitage Lecture



Armitage’s Restricted Sequential Procedure

A Restricted Sequential Procedure has upper and lower boundaries
n∑
i=1

Xi = a+ b n and
n∑
i=1

Xi = −a− b n

and truncation at n = N .

    A Restricted sequential procedure
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Armitage’s Restricted Sequential Procedure

Armitage was able to define a Restricted Sequential Procedure with
two-sided type I error probability 2α and power 1− β at µ = ±µ1.

To achieve this, he applied a result for diffusion processes proved by
Maurice Bartlett (1946) and a likelihood ratio argument similar to
that used by Wald to define the Sequential Probability Ratio Test.

Armitage set

a =
σ2

µ1
log

(
1− β
α

)
, b =

µ1
2

and found N satisfying

β = Φ

(
a

σ
√
N
− b
√
N

σ

)
−
(

1− β
α

)
Φ

(
−a
σ
√
N
− b
√
N

σ

)
.

Note: Modest calculation is required, using tables of the standard
normal CDF Φ.
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Calculating machines

The Braunsviga
Calculating Machine

 

Cambridge research students
used to spend time each
week doing the calculations
needed to produce statistical
tables.
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Armitage’s Restricted Sequential Procedure

Schneiderman & Armitage (Biometrika, 1962) inserted a “wedge”
in the continuation region to facilitate early stopping for µ ≈ 0.

    Restricted sequential procedure with a 'wedge'
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The boundary for the “wedge” was derived analytically but this
still required significant computation.

Average sample sizes were computed by Monte Carlo simulation
with 100 replicates

Calculations were carried out using the NIH’s IBM 650 computer.
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IBM 650 computer

 

 

The IBM 650’s
Magnetic memory drum

“The average time for accessing data or programming was 2.4
milliseconds, less than the time it takes a fruit fly to flap its wings”

Compare current terminology: A petaflop is one quadrillion (1015)
floating-point operations per second.
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Repeated Significance Tests

There had been debate on whether it was appropriate to analyse
accumulating data repeatedly without making an “adjustment” for
the repeated analyses.

Armitage, McPherson & Rowe (JRSS, A, 1969) made precise
calculations of the probability of a type I error if one conducts a
sequence of K two-sided significance tests, each at level 2α.

Suppose Xi ∼ N(µ, 1), i = 1, 2, . . . , are observed,

Sn =

n∑
i=1

Xi, n = 1, . . . ,K,

and the null hypothesis H0: µ = 0 is rejected after observation n if

|Sn| ≥
√
nΦ−1(1− α).

How does the overall probability of a type I error grow with n?
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Repeated Significance Tests

Consider the sequential test which stops to reject H0 after
observation n if

|Sn| ≥ cn =
√
n Φ−1(1− α).

Let fn(sn) be the probability density function of Sn.

Armitage, McPherson & Rowe noted that, under H0: µ = 0, f1 is
the standard normal density and fn is related to fn−1 by the
recursive formula

fn(sn) =


∫ cn−1

−cn−1
fn−1(u) 1√

2π
exp{−(sn−u)

2

2 } du, −cn ≤ sn ≤ cn

0 otherwise

They applied numerical integration to calculate the probabilities
P (|Sn| > cn) for n = 1, . . . ,K.

Computations were made on the Institute of Computer Science’s
Atlas computer and University College London’s IBM 360/65.
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Repeated Significance Tests

Suppose a test of H0 is carried out at two-sided significance level
α = 0.05 on K occasions during the course of the trial.

Armitage, McPherson & Rowe found the overall type I error rate:

Number of Overall Number of Overall
tests, K error rate tests, K error rate

1 0.050 10 0.193

2 0.083 20 0.248

3 0.107 100 0.374

4 0.126 200 0.424

5 0.142 ∞ 1.000

They also reported results from Monte Carlo simulations but
observed that the recursive formulae for the densities fn(sn)
combined with numerical integration gave more accurate answers.
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Repeated Significance Tests

Armitage, McPherson & Rowe noted that, when a fixed number of
tests is specified, these can be conducted at a level α′ chosen so
that the overall type I error probability is a desired value α.

Values of α′ to achieve α = 0.05 are:

Number of Critical value Nominal two-sided
tests, K for each Zn significance level, α′

1 1.960 0.0500

5 2.413 0.0158

10 2.555 0.0106

20 2.672 0.0075

50 2.797 0.0052

100 2.875 0.0040

200 2.941 0.0033

Chris Jennison 21st Armitage Lecture



Repeated Significance Tests

Armitage published the book “Sequential Medical Trials” in 1960.

 

This was followed by a second edition in 1975 which placed a
greater emphasis on repeated significance tests.
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Repeated Significance Tests

The methods developed by Armitage were applied.

In the Annual Review of Medicine (1969), Armitage wrote:

Sequential trials have been reported in over 50 papers . . . .
The branches of medicine and surgery involved are varied
. . . cardiovascular or cerebrovascular disease . . . respiratory
disease . . . the nervous system . . . tetanus.

Gehan & Schneiderman (Statistics in Medicine, 1990) summarised
the outcome of a trial comparing treatments for childhood
leukemia:

The minimum number of pairs of patients was 9 and
the maximum number was 66. The trial reached a
sequential boundary favouring 6MP after 18 preferences
had occurred, 15 for 6MP and 3 for placebo.
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3. Anscombe on Armitage’s “Sequential Medical Trials”

In 1963, Frank Anscombe wrote an article in JASA which he
described as “statistical polemic thinly disguised as a book
review”. In the summary, Anscombe states

“Sequential analysis is a hoax”

Nevertheless, he starts by saying

“Before any adverse criticisms . . . it is proper to make two
observations in defense of the book. First, its net effect
on medical research will almost certainly be good . . . ”

In his reply (JASA, 1963) Armitage wrote

“The present note could be regarded as a reply thinly
disguised as statistical polemic, for I certainly do not wish
to strike an aggressive attitude.”

Armitage and Anscombe had been friends since working together
at the SR17 unit during the war.
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Anscombe on Armitage’s book “Sequential Medical Trials”

Anscombe criticised Armitage’s focus on frequentist error rates and
advocated a Bayesian approach to optimise the treatment of
patients within the trial and external to it.

He formulated a “horizon” problem in which it is assumed N
patients with a disease are to receive one of two treatments; see
also Colton (JASA, 1963).

After the trial involving 2n of
the N individuals, the remaining
N − 2n patients will receive the
treatment selected as the better at
the conclusion of the trial.

Anscombe compared the sequential
stopping boundaries for such a trial
with those proposed by Armitage.
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Anscombe on Armitage’s book “Sequential Medical Trials”

In his reply, Armitage challenged the practicality of Anscombe’s
methods. He also questioned the ethics of optimising treatment
of future patients at the expense of current patients.

I would note that now, in order to satisfy regulators in a New Drug
Application, the role of a typical Phase III trial is one of testing
rather than treatment selection.

The “horizon problem” formulation became an attractive setting
for Response Adaptive Randomisation rules — but issues of
practicality remained. See, for example, John Anderson’s
comments on Bather’s read paper (JRSS, B, 1981)

In a clinical trial for a rare disease, the participants in a clinical
trial may comprise a large part of the patient population.

In such cases, regulators may be willing to consider treatment
selection, as opposed to testing with a stringent requirement on
the P -value.
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4. What next: Group Sequential Tests

In June 1965, a group of statisticians experienced in clinical trials
gathered at an NIH seminar to discuss the role of hypothesis
testing in clinical trials; see Cutler at al. (Journal of Chronic
Diseases, 1965).

In the discussion, Lawrence Shaw (Veterans Administration)
proposed conducting a small number of interim analyses, using
the term “block sequential analysis”.

Over a decade later the papers by Pocock (Biometrika, 1977) and
O’Brien & Fleming (Biometrics, 1979) prompted the widespread
adoption of group sequential tests.

Group sequential methods were well-suited to a multi-centre trial
with an Independent Data Monitoring Committee and a separate
party (e.g., a Clinical Research Organisation) cleaning and
analysing the accruing data.
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Group Sequential Tests

Stuart Pocock (a research student of Armitage) suggested applying
a repeated significance test with a small number of analyses

● ● ● ● ●

Pocock group sequential test
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He used the numerical methods of Armitage, McPherson & Rowe.

He showed how to choose group sizes to achieve a specified power.

He demonstrated protection of the overall type I error rate for a
variety of response distributions and test statistics.
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Group Sequential Tests

O’Brien & Fleming suggested a different group sequential test.

Their boundary is wide early on and the final critical value for the
Z-statistic is only slightly higher than of a fixed sample size test.

●

●
● ● ●

O'Brien & Fleming group sequential test
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They used simulation with 10,000 replicates to define their
boundaries and reported properties based on 1,000 simulations.
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One-sided Group Sequential Tests

DeMets & Ware (Biometrika, 1980, 1982) noted that in a
comparison of a new treatment to a control, the hypothesis testing
formulation should be one-sided.

If θ is the improvement from using the new treatment (the
“treatment effect”), we should test H0: θ ≤ 0 against θ > 0.

If θ ≤ 0, it would be unethical to randomise patients in order to
learn whether θ = 0 or θ < 0.

DeMets & Ware proposed one-sided group sequential tests.

●

●
● ● ●

DeMets & Ware one−sided group sequential test
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Joint Distribution Theory

The primary endpoint in a clinical rial may be binary, normal,
time-to-event, or follow some other parametric model.

In many cases, large sample theory tells us that, approximately,

θ̂ ∼ N(θ, I−1)
where I is the “Fisher information” for θ.

In a trial with K analyses, let θ̂k be the estimate of θ at analysis k.

In many cases, θ̂1, . . . , θ̂K are approximately multivariate normal,

θ̂k ∼ N(θ, I−1k ), k = 1, . . . ,K,

and
Cov(θ̂k1 , θ̂k2) = Var(θ̂k2) = I−1k2 for k1 < k2.

This “canonical joint distribution” was proved in considerable
generality by Jennison & Turnbull (JASA, 1997) and Scharfstein,
Tsiatis & Robins (JASA, 1997).
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Survival Data

Time-to-event data pose particular problems for sequential analysis.
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Subjects are randomised to a treatment as they enter the study.

Survival is measured from entry to the study.

At an interim analysis, subjects are censored if they are still alive.

Information at a specific calendar time is unpredictable.
Chris Jennison 21st Armitage Lecture



Error Spending Tests

When the sequence I1, I2, . . . is unpredictable, a group
sequential design must adapt to observed information levels.

Lan & DeMets (Biometrika, 1983) introduced “error spending”
tests of H0: θ = 0 against θ 6= 0.

Maximum information design with spending function f(I/Imax)

-

IImax

6
f(I/Imax)

α

  !!
""
##
""
!!
  

The boundary at analysis k is set to give cumulative type I error
probability f(Ik/Imax).

If Imax is reached without rejecting H0, then H0 is accepted.
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Error Spending Tests

For a one-sided test of H0: θ ≤ 0 against θ > 0 with

Type I error probability α at θ = 0,

Type II error probability β at θ = δ,

we need two error spending functions.
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Type I error probability α is spent according to the function
f(I/Imax), and type II error probability β according to g(I/Imax).
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Error Spending Tests

Analysis k: Observed information Ik

Find ak and bk to satisfy

Pθ=0{a1<Z1<b1, . . . , ak−1<Zk−1<bk−1, Zk > bk}

= f(Ik/Imax)− f(Ik−1/Imax),

and

Pθ=δ{a1<Z1<b1, . . . , ak−1<Zk−1<bk−1, Zk < ak}

= g(Ik/Imax)− g(Ik−1/Imax).

-
Ik I
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Optimal Stopping Boundaries

One can ask

What is the best choice of stopping boundary?

What is the best choice of error spending function?

What is needed for these questions to be well-posed?

Consider a test of H0: θ ≤ 0 against θ > 0 with type I error
probability α and power 1− β at θ = δ.

A fixed sample size study needs information

Ifix =
{Φ−1(1− α) + Φ−1(1− β)}2

δ2
,

where Φ is the standard normal CDF.

We shall describe methods and results in terms of information,
noting that this is (roughly) proportional to sample size in many
clinical trial settings.
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Optimal Stopping Boundaries

A group sequential test (GST) with K analyses will require a
maximum information possible level IK , greater than Ifix.

We call R=IK/Ifix the inflation factor of a group sequential test.

We can seek a GST that minimises expected information Eθ(I)
under certain values of the treatment effect, θ, with a given
number of analyses K and inflation factor R.

We may aim to minimise ∑
i

wi Eθi(I)

for selected treatment effects θi and weights wi.

Alternatively, we may minimise∫
f(θ)Eθ(I) dθ,

where f is, say, a normal density.
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Computing Optimal Group Sequential Tests

In optimising a GST, Eales & Jennison (Biometrika, 1992) and
Barber & Jennison (Biometrika, 2002) create a Bayes sequential
decision problem, placing a prior on θ and defining costs for
sampling and for making incorrect decisions.

Such a problem can be solved rapidly using the numerical
integration methods of Armitage, McPherson & Rowe, combined
with dynamic programming.

One then searches for the combination of prior and costs such that
the solution to the (unconstrained) Bayes decision problem has the
specified frequentist error rates α at θ = 0 and β at θ = δ.

The resulting design solves both the Bayes decision problem and
the original frequentist problem.

Although the Bayes decision problem is formed as a computational
device, this derivation demonstrates that an efficient frequentist
design should be a good Bayesian procedure, and vice versa.
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Benefits of Group Sequential Testing

One-sided GSTs with binding futility boundaries, minimising

{E0(I) + Eδ(I)}/2 for K equally sized groups, α = 0.025,

1− β = 0.9 and Imax = R Ifix.

Minimum values of {E0(I) + Eδ(I)}/2, as a percentage of Ifix
R Minimum

K 1.01 1.05 1.1 1.2 1.3 over R

2 80.8 74.7 73.2 73.7 75.8 73.0 at R=1.13

3 76.2 69.3 66.6 65.1 65.2 65.0 at R=1.23

5 72.2 65.2 62.2 59.8 59.0 58.8 at R=1.38

10 69.2 62.2 59.0 56.3 55.1 54.2 at R=1.6

20 67.8 60.6 57.5 54.6 53.3 51.7 at R=1.8

Note: E(I)↘ as K ↗ but with diminishing returns,

E(I)↘ as R↗ up to a point.
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Efficient Error Spending GSTs

In their book, Group Sequential Methods with Applications to
Clinical Trials, Jennison & Turnbull (1999) suggest using the
“ρ-family” of one-sided error spending tests.

A target information level Imax is specified and the type I and
type II error probabilities “spent” up to analysis k are, respectively,

f(I) = min{(I/Imax)2, 1}α and g(I) = min{(I/Imax)2, 1}β.

The value of ρ governs the rate at which error probability is spent,
with ρ = 1 producing Pocock-type boundaries and ρ = 3 producing
O’Brien & Fleming-type boundaries.

The choice of ρ determines the inflation factor R and Imax is R
times the information needed for a fixed sample test.

Barber & Jennison (2003) show this family yields tests that are
close to optimal for a variety of measures of Eθ(I).
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Efficient Error Spending GSTs

Plots of
∫
f(θ)Eθ(IT )dθ as a percentage of fixed sample Ifix vs

inflation factor R for tests with 5 analyses, α = 0.025 and β = 0.1.
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Here, f(θ) is the density of a N(δ, δ2/4) distribution and Ifix the
information required for a fixed sample size test.

The ∆ family of parametric boundaries is that proposed by Wang
& Tsiatis (Biometrics, 1987).

The Gamma family of error spending functions is as described by
Hwang, Shih & De Cani (Statistics in Medicine, 1990).

Chris Jennison 21st Armitage Lecture



Efficient Error Spending GSTs

A test with 5 planned analyses, type I error probability α = 0.025,
power 0.9 if θ = δ = 1, and type I and II error spending functions

f(I) = min{(I/Imax)2, 1}α, g(I) = min{(I/Imax)2, 1}β.

●

●

●
●

●

Error spending test, ρ=2

 

 

●

●

●

●

Zk

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0

−0.5

−1.0

−1.5

Information Ik

Reject H0

Accept H0 R = 1.132.

Chris Jennison 21st Armitage Lecture



Efficient Error Spending GSTs

Similar methods can be used to

Optimise timing of analyses,

Allow data dependent group sizes (Jennison & Turnbull,
Biometrika, 2006).

However, there is little to be gained from these embellishments.

Other applications of this method of optimisation include:

Group sequential tests of superiority and non-inferiority (Öhrn &
Jennison, Statistics in Medicine, 2010),

Group sequential tests that can deal with “pipeline data”
(Hampson & Jennison, JRSS, B, 2013),

Optimising gain functions from financial models (Robbie Peck,
University of Bath, PhD thesis, 2020).
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More topics

If time allowed, we could delve further into:

Inference after a GST (see Armitage, Biometrika, 1958)

Pipeline data

Testing multiple endpoints

Comparing multiple treatments

Flexible designs (including Repeated Confidence Intervals)

Adaptive designs

Sample size re-estimation

Seamless Phase 2/3 trials

Enrichment designs

Multi-arm multi-stage studies (Basket, Umbrella, . . . )
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Promotion of sequential methods

Books:
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Promotion of sequential methods

Software

PEST (Whitehead)

East (Cytel)

gsDesign (Andersen)

Addplan (Wassmer/ICON/Berry Consultants)

RPACT (Wassmer & Pahlke)

Engagement with practitioners

Collaboration

Consultancy

Societies

Statisticians in the Pharmaceutical Industry (PSI)

Society for Clinical Trials

International Society for Clinical Biostatistics, . . .
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Peter Armitage 1924–2024

Peter built the foundations for sequential analysis of medical trials.

He was a statistician, a scholar and teacher.

His kind approach is a lesson to us all.

Thank you, Peter.
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