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Motivation: Phase 3 clinical trials

Phase Il trials are conducted as the last stage in the drug
development process.

Regulators customarily require a hypothesis test to reach
significance at the one-sided 2.5% level.

Studies may recruit hundreds, or even thousands, of subjects at a
cost of as much as € 10k to €50k per patient.

The time taken to reach a conclusion eats into the limited patent
lifetime remaining to the company developing the drug.

Thus, there are strong incentives to reach an early conclusion for
either a positive or negative decision.

However, the overall type | error rate must be protected.

Stopping a trial as soon as a conclusion can be reached is also
desirable in early phase studies.
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Plan of the course

1.1. Introduction

1.2. Sequential distribution theory

1.3. Computations for group sequential tests
1.4. Benefits of group sequential testing

1.5. Error spending tests

2.1. Motivation for adaptive designs

2.2. Combination tests

2.3. Sample size re-estimation for a response variance
2.4. Sample size re-assessment in response to )

Critique of the “promising zone" approach
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1.1 Group sequential tests: Introduction

Suppose a new treatment (Treatment A) is to be compared to a
placebo or positive control (Treatment B) in a Phase IlI trial.

The treatment effect 6 for the primary endpoint represents the
advantage of Treatment A over Treatment B.

If 0 > 0, Treatment A is more effective.

We wish to test the null hypothesis Hyp: 8 < 0 against 6 > 0 with
Py_o{Reject Hy} = a,

Py_s{Reject Hy} =1 - p.

In a group sequential trial, data are examined on a number of
occasions to see if an early decision may be possible.
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Group sequential tests

A typical boundary for a one-sided test, expressed in terms of

standardised test statistics Z1, ... , Zk, has the form:
Zy, .
r—. Reject Hyp
—.
=
/

T T / T T T Vk

. ~ Accept H

/

Crossing the upper boundary leads to early stopping for a positive
outcome, rejecting Hy in favour of 6 > 0.

Crossing the lower boundary implies stopping for “futility” with
acceptance of H.
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Benefits of group sequential testing

Earlier decisions

Group sequential testing can speed up the process to
introduce an effective new treatment.

Fewer patients recruited

Expected sample sizes for group sequential designs are,
typically, around 60 to 70% of the fixed sample size for
a trial with the same type | error rate and power.
Stopping failing trials early

Early stopping “for futility” can release resources to
continue the development of other promising treatments.
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1.2 Joint distribution of parameter estimates

Reference: Ch. 11 of Group Sequential Methods with Applications
to Clinical Trials, Jennison & Turnbull, 2000 (hereafter, JT).

Let ), denote the estimate of 0 based on data at analysis k.
The information for 8 at analysis k is

T = {Var(@,)} ', k=1,... K.

Canonical joint distribution of 51, . ,éK
In many situations, 51, e ,6A?K are approximately multivariate
normal,

0~ NO, Y, k=1,...,K,
and
Cov(ékl,%) = Var(ékz) = Ik;l for k1 < ko.
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Sequential distribution theory

The joint distribution of 81, ...,0x can be derived directly for:

f a single normal mean,

0 = pa — pp, comparing two normal means.

The canonical distribution also applies when 6 is a parameter in:
a general normal linear model,

a general model fitted by maximum likelihood (large sample
theory).

Thus, theory supports general comparisons, including:
crossover studies,
analysis of longitudinal data,

comparisons adjusted for covariates.
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Canonical joint distribution of Z-statistics

In testing Hp: 6 = 0, the standardised statistic at analysis k is

7, = LA = Op/Ts.
Var(6y,)

For these statistics,

(Z1,...,ZK) is multivariate normal,
N0V, 1), k=1,...,K,

COV ka Zk2 \/Ikl/z]€2 for ki < ko.
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Canonical joint distribution of score statistics

The score statistics, Sy, = Zy+\/Zy, are also multivariate normal
with

Sy ~NOTp, ), k=1,...,K.

)

The score statistics possess the “independent increments”
property,

COV(Sk — Sk_l, Sk’ — Sk/il) =0 fork 7é K.

It can be helpful to know that the score statistics behave as
Brownian motion with drift 6 observed at times Z1,...,Zx.
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Survival data

The canonical joint distributions also arise for

a) estimates of a parameter in Cox's proportional hazards
regression model,

b) log-rank statistics for comparing two survival curves.

For survival data, observed information is roughly proportional to
the number of failures.

The “error spending” approach can be used to define group
sequential tests that can handle unpredictable and unevenly spaced

information levels.

Reference: “Group-sequential analysis incorporating covariate
information”, Jennison & Turnbull (JASA, 1997).
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1.3 Computations for group sequential tests (GSTs)

Zk i Reject H
~
¢ — .7/'23
./.Zz °
/Z1 _—

- Accept H

_—

Y

/

In order to find Py{Reject Hp}, etc., we need to calculate the
probabilities of basic events such as

a1 < Zy < by, (l2<Z2<b2, Z3 > bs.
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Computations for group sequential tests

Zy, i Reject H,
" Zy
/21 . /
— T —
. -~ Accept Hy
/

Probabilities such as Pyp{a1 < Z1 < by, ay < Zy < by, Z3 > b3}
can be computed by repeated numerical integration (JT, Ch. 19).

Combining these probabilities yields type | error rate, power,
expected sample size, etc., of a group sequential design.

Constants and group sizes can be chosen to define a test with a
specific type | error probability and power.
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One-sided tests: The Pampallona & Tsiatis family

To test Hy: 0 < 0 against the one-sided alternative 8 > 0 with
type | error probability o and power 1 — 3 at 0 = .

Reject Hy

°
>

> T,

Accept Hy

For the P & T test with parameter A, boundaries on the score
statistic scale are

ap = Iké - CQIkA, bk = Cl IkA.
The computational methods described above can be used to find
C, Cy and Zg such that the test has the specified error rates.
Reference: Pampallona & Tsiatis (JSPI, 1994).
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1.4 Benefits of group sequential testing

In order to test Hy: 6 < 0 against # > 0 with type | error
probability o and power 1 — 3 at 6§ = §, a fixed sample size study
needs information

{o'1-a)+ 0711 - )}
62 ’
where ® is the standard normal CDF.

Ifia: =

Information is (roughly) proportional to sample size in many
clinical trial settings.

A GST with K analyses will need to be able to continue to a
maximum information level Ty, greater than Zy;,.

On average, the GST can stop earlier than this and expected
information on termination, Ey(Z), will be considerably less than
Ty¢i., especially under extreme values of 6.

We call R=Tk /Zyi, the inflation factor of a group sequential test.
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Benefits of group sequential testing

One-sided GSTs with binding futility boundaries, minimising
{Eo(Z) + Es(Z)}/2 for K equally sized groups, o = 0.025,
1-8=0.9 and Zy0r = Ry

Minimum values of {Eo(Z) + Es(Z)}/2, as a percentage of Zy;,

R Minimum
K 1.01 105 1.1 1.2 1.3 over R
2 80.8 747 73.2 737 758 73.0 at R=1.13
3 762 693 66.6 65.1 652 65.0 at R=1.23
5 722 652 622 59.8 59.0 58.8 at R=1.38
10 69.2 622 59.0 56.3 55.1 54.2 at R=1.6
20 67.8 60.6 575 546 53.3 51.7 at R=1.8

Note: E(Z) N\, as K  but with diminishing returns,
E(Z) N\, as R 7 up to a point.
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1.5 Error spending tests (JT Ch. 7)

When the sequence 77, Zo, ... is unpredictable, a group
sequential design must adapt to observed information levels.

Lan & DeMets (Biometrika, 1983) introduced “error spending”
tests of Hp: 8 = 0 against 6 # 0.

Maximum information design with spending function f(Z/Zyax)

F(Z)Tmax)

(67

>
T >

Imax I

The boundary at analysis k is set to give cumulative type | error
probability f(Zx/Zmax)-

If Zrnax is reached without rejecting Hy, then Hy, is accepted.



One-sided error spending tests

For a one-sided test of Hy: 6 < 0 against 6 > 0 with
Type | error probability a at 8 = 0,
Type Il error probability 3 at 6 = 6,

we need two error spending functions.

F(Z/ Imax) 9(Z/Tmax)
o B

> >
> >

Tnax T Tmax I

Type | error probability « is spent according to the function
f(Z/Znax), and type Il error probability 8 according to ¢(Z/Zax)-
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One-sided error-spending tests

Analysis 1:
Observed information 7.
Reject Hy if Z1 > b1, where
Po—o{Z1 > b1} = f(Z1/Tinax)-
Accept Hy if Z1 < a1, where
Py—s{Z1 < a1} = 9(Z1/Limax)

A
k b

7, 7

ay
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One-sided error-spending tests

Analysis 2: QObserved information Z»
Reject Hy if Z5 > by, where
Po—olar < Z1 <b1,Z2 > ba} = f(Z2/TImax) — f(Z1/Lmax)
— note that, for now, we assume the futility boundary is binding.
Accept Hy if Zy < ag, where

Py_s{ar < Zy < b1, Z2 < az} = 9(Ta/Imax) — 9(Z1/Limax)-

T D1 by

‘ T, I, I

. a2
ay

Christopher Jennison Group Sequential Designs and Sample Size Re-estimation



One-sided error-spending tests

Analysis k: Observed information Zy,
Find a; and b to satisfy
szo{al < Zl <bl, a1 < Zk,1 <bk,1, Zk > bk}

= f(Ik/Imax) - f(Zk—l/Imax)a
and

Py_s{a1<Z1<bi,...,ap_1 < Zp_1<bp_1,Zy < ap}
= g(Ik/Imax) - Q(Ik—l/zmax)-
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Remarks on error spending tests

1. Computation of (ag, bx) does not depend on future
information levels, Zyy1, Zyy2, ... .

2. A “maximum information design” continues until a
boundary is crossed or an analysis with Zj > Z,,.x is reached.

If necessary, patient accrual can be extended to reach Zax.

Imax
| s
T 1> Is 14 Is Ts Information

3. If a maximum of K analyses is specified, the study
terminates at analysis K with f(Zx /Znax) defined to be .

4. If the trial ends with Zx > Zpax, we set f(Zx /Imax) = .

Then, by is chosen to give cumulative type | error probability
« and we set axg = bg.
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Remarks on error spending tests

5. The value of Z,,.x can be chosen so that boundaries
converge at the final analysis when, say,

T = (k/K) Tymax, k=1,..., K.

6. In a one-sided test with p-family error spending function,
type | error probability is spent as

F T/ Tm) = @ min {1, (Z/Tmax)”}
and type |l error probability as
9(Z/Imax) = B min {1, (Z/Zmax)"}-
The value of p determines the inflation factor R = Zynax/Zyiy.

Barber & Jennison (Biometrika, 2002) show the p-family
provides tests with excellent efficiency for a given number of
analyses K and inflation factor R.
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1. Which of the following reasons motivate the use of group
sequential designs?

A. Reducing the number of patients in a trial,
B. Making an effective treatment available sooner,
C. Stopping a negative trial early,

D. All of the above.

Correct answer: D.
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2. Which of the following statements are true?

A. A sequential trial needs a much higher maximum sample
size than a fixed sample trial with the same power.

B. A group sequential trial can reduce average sample
size by 30% compared to a fixed sample size trial.

C. Error spending designs provide efficient stopping
rules.

D. It is not possible to apply group sequential methods to
survival endpoints.

True statements: B and D.
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2.1 Adaptive clinical trials: Motivation

Wall Street Journal, July 2006:

FDA Signals it’s Open to Drug Trials that Shift Midcourse
Adaptive designs may allow trials to be adjusted:

e Route more patients to the treatment that seems to work best

e Drop treatments that don't seem to be effective

e Add more of the type of patients ... reacting best to a
particular treatment

e Merge two different phases of drug development into one trial

With views from:
Bob O'Neill , FDA Michael Krams, Wyeth
Paul Gallo, Novartis Don Berry, M. D. Anderson Cancer Center

Tom Fleming, Univ. Washington  Bruce Turnbull, Cornell University
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2.2 Combination tests

Suppose we run a clinical trial adaptively in two stages:

Set the design of Stage 1, then conduct this part of the trial,
Analyse results from Stage 1,

Consider external information, if appropriate.

Set the design of Stage 2, informed by Stage 1 results and
external information,

Conduct Stage 2,

Analyse the results from Stage 2.

How can we test a null hypothesis with proper protection of the
type | error rate?
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Combination tests

Before the trial commences, define the null hypothesis.

Let 0 denote the treatment effect vs control for a specified form of
the treatment, patient population and endpoint.

We test Hy: 6 < 0 against 6 > 0, with type | error rate o at 8 = 0.

Define one-sided P-values P(Y) and P2 from hypothesis tests of
Hy based on Stage 1 data and Stage 2 data, respectively.

Under 6 =0
PO~ U(0,1).
Conditionally on all Stage 1 data and the Stage 2 design,
P® ~U(0,1).

Hence, if # = 0, P and P®) are independent U(0,1)
variates.
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The inverse x? combination test

Reference Bauer & Kdhne (Biometrics, 1994).
Initial design
Define Hy and specify the inverse x? combination test.
Design Stage 1, fixing the sample size and test statistic.
Stage 1
Observe the one-sided P-value, P(!), based on Stage 1 data.
Design Stage 2 in the light of Stage 1 data.
Stage 2
Observe the P-value, P(?), based on only Stage 2 data.
NB: Under § =0, PN ~ U(0,1), P® ~ U(0,1), independent.



Bauer & Kohne's inverse 2 combination test

Bauer & Kohne's test rejects Hy for low values of P(1) P(2),
If P~U(0,1), then
“In(P) ~ Exp(1) = 5
Thus, under 8 = 0,
_ (P PO %xi-

Combining the two P-values in an overall test, we reject Hy if

—In(PY PRy > %xi,m.

If < 0, then P(") and P are stochastically larger than U(0, 1)
random variables and the type | error rate is less than «.

This y? test was originally proposed for combining results of
several studies by R. A. Fisher in 1932,
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The inverse normal combination test

Initial design

Specify the inverse normal combination test for null
hypothesis Hy, with weights wy and wo where w? + w3 = 1.

Design Stage 1, fixing sample size and test statistic.

Stage 1
Observe the one-sided P-value, P("), based on Stage 1 data.
Compute Z1) = d~1(1 — p(V).
Design Stage 2 in the light of Stage 1 data.

Stage 2
Observe the P-value, P(?), based only on Stage 2 data.
Compute Z(?) = &~1(1 — P?).

NB Under § =0, ZM ~ N(0,1), Z® ~ N(0,1), independent.



The inverse normal combination test

The combination test is based on the statistic w; Z(!) + wyZ(2).
Under 8 =0, Z() and Z® are independent N(0,1) so, with
wi+wi =1,

w1 ZW 4wy Z?) ~ N(0,1).

Hence, for an overall one-sided test with type | error rate «, we
reject Hy if
wi ZW 4wy Z2? > 711 - a).

If § < 0, then Z(1) and Z?) are stochastically smaller than N(0,1)
random variables and the type | error rate is less than «.

If wy and wo are proportional to the square roots of the Stage 1
and Stage 2 sample sizes then w Z1) + wyZ3) is the standard
Z-statistic based on the data at the end of Stage 2.

However, it is essential that w; and woy are pre-specified and not
changed in response to observed data.
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2.3 Sample size re-estimation for a response variance

A combination test can be used to protect the type | error rate
when a trial's sample size is changed.

Consider a two-treatment comparison in which observations on
Treatments A and B, respectively, are distributed as

Xa; ~ N(pa, 0®) and Xp; ~ N(ug, o°).
Objective

It is desired to test Hy: 0 = ua — pp < 0 against 8 > 0 with
type | error rate o and power 1 — 5 at 6 = 4.

In the case of known variance, the sample size formula

11 _ o —1/7 _ 2 9,2
SR U R R, i )

gives the required value of n, the sample size per treatment.

However, in practice, only an estimate of o2 is usually available.
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Sample size re-estimation for a response variance

We can follow an adaptive approach, using an estimate of o2 from
early trial data to modify the initial choice of sample size.

Initial design

Specify a two-stage adaptive design, using the inverse y?
combination rule to test Hy: 8 < 0 against 8 > 0.

Use an initial estimate o2 in the sample size formula (1) to
obtain a sample size of ngy per treatment.

Stage 1

Conduct Stage 1 with ny = ng/2 subjects per treatment.

Observe estimates 51, é}% and the t-statistic ¢; for testing H.
Convert t; to a one-sided P-value, P(1) = Po—o{Ton,—2 > t1}.
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Sample size re-estimation for a response variance

After Stage 1

Calculate a new Stage 2 sample size of ny per treatment arm.

Here, na may be obtained simply by using the new variance
estimate 67 in the original sample size formula.

Or, na might be chosen to give conditional power 1 — 3

given P assuming 0 = 51 and 0? = 62

Stage 2

Calculate the t-statistic to for testing Hy based on Stage 2 data
alone, and obtain the P-value P(?) = Py_o{Top,—2 > ta}.

The inverse x? combination test, which rejects Hy if
1
71D(P(1) P(Q)) > EXZ,I—(X

has type | error rate exactly equal to .
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Sample size re-estimation for a response variance

The above approach adds to the variety of methods for dealing
with an unknown parameter, ¢, that affects sample size.

Internal pilot:

Wittes & Brittain (Statistics in Medicine, 1990) proposed a simple
“plug in" of the current estimate ¢ to update sample size. Bias in
the final ¢ tends to cause a small inflation of the type | error rate.

Blinded variance estimation:

Friede & Miller (Applied Statistics, 2012) show that, for normally
distributed data, sample size modification based on a blinded
estimate of o2 leads to almost zero type | error rate inflation.

Information monitoring:

Mehta & Tsiatis (Drug Information Journal, 2001) “plug in”
estimated information in an error spending group sequential design.
Typically, this leads to a small inflation of the type I error rate.

Christopher Jennison Group Sequential Designs and Sample Size Re-estimation



2.4 Sample size re-assessment in response to 6

In the early 2000s, the possibility of adaptive design prompted
interest in procedures that increase sample size in response to a
low interim estimate of the treatment effect.

The objective here is to increase power, recognising that the effect
size used in the original power calculation was over-optimistic.

The resulting procedures have an overall maximum possible sample
size but, depending on the observed data, the actual sample size
can be smaller than this — just like a GST.

Such designs can be viewed as group sequential tests in which
group sizes are chosen based on the data observed so far.

The decision rule to reject or accept Hy must take account of the
data-dependent group sizes in order to protect the type | error rate.

Norbert Schmitz (1993) had proposed similar designs, which he
called “Sequentially planned sequential decision procedures”.
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~

Sample size re-assessment in response to 6

JT (Statistics in Medicine, 2003 and 2006) discussed proposals for
adaptive designs that incorporate sample size re-assessment.

They claimed one could usually do better by
e Thinking carefully about power when designing the trial,
e Planning a maximum sample size to achieve this power,

e Using a GST to stop early when possible.

Proposals for adaptive designs with sample size re-assessment
continued to appear.

JT (Biometrika, 2006) computed properties of optimal adaptive
GSTs (“Schmitz” designs) and optimal GSTs.

They showed that familiar group sequential designs provide almost
all the available efficiency gains — whereas some proposals for
adaptive designs can be quite inefficient.
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Mehta & Pocock’s “Promising zone” design

Mehta & Pocock (Statistics in Medicine, 2011) published the paper

"Adaptive increase in sample size when interim results
are promising: a practical guide with examples”.

Mehta & Pocock (MP) refer to the work of JT, saying

“These results are of great theoretical interest but of
limited practical value for sponsors of industry trials.”

Jennison & Turnbull (Statistics in Medicine, 2015) discussed the
MP designs and demonstrated various inefficiencies.

They proposed new, decision theoretic rules for sample size
re-assessment and a different final hypothesis test.

Hsiao, Liu & Mehta (Biometrical Journal, 2019) wrote the paper
“Optimal promising zone designs’. They refer to JT's proposals as
the “gold standard” and propose variations on these methods.
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Mehta & Pocock’s “Promising zone” design

The following slides summarise the content of JT (SiM, 2015)

"Adaptive sample size modification in clinical trials:
start small then ask for more?”

JT compare adaptive trial designs that

Start with a fixed sample size design,

Examine interim data,

Add observations to increase power when appropriate
with group sequential designs that

Specify the desired power function,

Set the maximum sample size appropriately,

Stop at an interim analysis if data support an early conclusion.
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Mehta & Pocock’s “Promising zone” design

JT note that the “unconditional” properties of a trial design are
important.

Suppose the treatment effect is denoted by 6 and a trial is
conducted to test Hy: 8 <0 vs 6 > 0.

Common power curve Ey(N) curves

Power
Eqo(N)
0

] : ]
If two designs have the same power curve, then the design with the
lower expected sample size function is to be preferred.
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MP’'s Example 1: Phase 3 trial of schizophrenia treatments

A new drug is to be tested against an active comparator.

The efficacy endpoint is improvement in the Negative Symptoms
Assessment score from baseline to week 26.

The initial plan is for a total of 442 patients (221 per treatment)
which gives power 0.61 if § = 1.6 — but power 0.8 is desired.

An interim analysis is planned after observing n; = 208 responses
(104 on each treatment).

With staggered accrual and the 26-week time to response, another
208 pipeline subjects will have been randomised but followed up for
less than 26 weeks by the interim analysis time.

At the interim analysis, the total sample size will be revised to a
value no, where ng is in the range 442 to 884.

The choice of ny will be based on the conditional power under the
current estimate of 6.
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MP's Example 1: Protecting the type | error probability

Chen, DeMets & Lan (Statistics in Medicine, 2004) consider a trial
testing Hp: 0 < 0 vs 8 > 0 with type | error probability «.

Suppose an interim analysis is performed after a certain fraction of
the total sample size has been observed.

Define the conditional power under treatment effect 0 as

CP(6) = Pro{Hy will be rejected | Interim estimate = 6; }.
Chen, DeMets & Lan (CDL) show that if
CP(6,) > 0.5,
The sample size is increased,

A standard fixed sample analysis is carried out,

then the type | error probability will be no greater than «a.
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MP’s Example 1: The “Promising zone" design

MP control the type | error rate using an extension of the CDL
result, due to Gao, Ware & Mehta (Biopharm. Statistics, 2008).

The total sample size, ng, is a function of C'P(6;), the conditional
power under the current treatment effect estimate .

In MP's Example 1, the sample size rule is
Favorable CP(§1) > 0.8 Continue to ny = 442,
Promising 0.365 < C’P(§1) < 0.8 Increase ng,
Unfavorable C’P(gl) < 0.365 Continue to ng = 442.

The "Promising zone” is simply the region where CP(OAl) <0.8
and the Gao et al. extension of the CDL result can be employed.

In this zone, ny is increased to give CP(al) = 0.8, subject to a
cap of no = 884.
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MP’s Example 1: The “Promising zone" design

The sample size re-assessment rule for MP's “Promising zone"
design is shown below.

A
04

Note that the region in which changes to the sample size occur is
small when compared to the distribution of 6.

The estimate 51 has a double role in CP(@\l): it is both the current
data and the value of 6 at which conditional power is calculated.

This helps explain the high sensitivity of ny to 51.
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MP’s Example 1: The “Promising zone" design

We can compare the overall, “unconditional” properties of the MP
design with those of the fixed sample size design with N = 442.

Power curves Ey(N) curves

Power
Eo(N)

Although it is stated that power 0.8 at § = 1.6 would be desirable,

power at this effect size has only risen from 0.61 to 0.66.

The cost of this increase in power is a considerably higher expected
sample size function.
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MP’s Example 1: What might we do instead?

We could opt for:
(i) A fixed sample design with N = 490.

(ii) A group sequential design with n; = 208 and stopping rule:

At analysis 1
If Z1 > 2.54 Stop, reject Hy
If Z1 <0.12 Stop, accept Hy

If 0.12 < Z1 < 2.54 Continue to ny = 514

At analysis 2 Error spending GST,
If Zo > 2.00 Reject Hy Rho-family, p = 2,
If Zy < 2.00 Accept Hp. Power 0.8 at § = 1.9.

If the trial stops at analysis 1, “pipeline subjects” are not used in
hypothesis testing, but they will contribute to Ey(N).
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MP’s Example 1: What might we do instead?

Sample size rules for
Mehta & Pocock design (MP),
Fixed sample size trial (N = 490),
Group sequential design (GSD).

g -- GSDR-105

Two black lines show n1 = 208, the number of observations, and
nj = 416, the number of patients enrolled at analysis 1.
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MP’s Example 1: Properties of three trial designs

Power curves Ey(N) curves

Power
Eg(N)
0

- - GSDR-105

By construction, the fixed sample design and GSD have power
curves matching that of the MP design.

The fixed sample size design is more efficient than the MP design
at important values of 6 between 1 and 2.

Despite the “pipeline” patients, the GSD is more efficient than the
MP design at all values of 6.
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MP’s Example 1: Refining the “Promising zone” design

Jennison & Turnbull (2015) discuss how to modify Mehta &
Pocock’s design to improve its efficiency.

They recommend dropping the CDL methodology.

Instead, they propose using an inverse normal combination test to
combine data from before and after sample size re-assessment.

JT derive a sample size rule in which ns is chosen to maximise a
combined objective

Pro_1 ¢{Reject Hy|01,n2} — ~v(na — 442).

Here, the tuning parameter v > 0 represents a “rate of exchange”
between conditional power and sample size.

JT prove that this sample size rule achieves the minimum possible
Ey—16(N) among rules that achieve the same power when 6 = 1.6.
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MP’s Example 1: Refining the “Promising zone” design

Sample size rules Ey(N) curves

500

— MP adapiive design
-~ CTMnE(N)at 8=16 minn;=416

480

* Densityof §, (8-16)

800 1000 1200

n;
600
Eg(N)
P
N

0

40
420

— P adapiive design
- CTMnEN)at 8=16,minn;=416
-+ GSDR-1.05

200
400

o

380

A
61 ]

JT's refined design has the same power curve as the MP design.

It increases ny by a smaller amount of a wider range of 6.

In the refined design, there is no stopping at the interim analysis.

Responses of “pipeline” patients are included in the final analysis.

The refined design reduces Ey(N) over a wide range of # values.
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Sample size re-assessment in response to #: Conclusions

Group sequential designs
GSDs offer an excellent way to adapt sample size to observed data.

Efficient error spending designs are available.

Designs with sample size re-assessment

Designs with SSR offer a little extra efficiency, but many proposed
SSR designs do not achieve this efficiency.

If you want an SSR design, consider the approach of JT (2015).

Can you start small and ask for more?

Both GSDs and SSR designs require a commitment to obtain their
implied maximum sample size, should this be needed.

Dealing with pipeline data:

See "Group sequential tests for delayed responses” by Hampson &
Jennison (JRSS, B, 2013).
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3. Which of the following reasons motivate the use of adaptive
trial designs?

A. Updating initial estimates of nuisance parameters,
B. Reacting to information external to the trial,

C. Gaining efficiency by dropping treatment arms in a
multi-arm trial,

D. All of the above.

Correct answer: D.
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4. Which of the following statements are true?

A. There is no need to worry about inflating the type | error
rate in an adaptive trial.

B. Including an internal pilot stage in which the response
variance is estimated gives a type of adaptive trial.

C. A trial with sample size re-estimation needs a much
higher maximum sample size than a fixed sample trial
with the same power.

D. When an adaptive trial design is proposed, it is wise
to run simulations to assess the design’s properties.

True statements: B and D.
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