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Plan for this talk

1. A game of Who Wants to be a Millionaire?

Selecting the contestant

Playing the game

How should you play the game?

2. Optimisation by Dynamic Programming

3. Relation to Sequential Clinical Trials
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1. Selecting the contestant

The Countdown Numbers Game

Once you have solved the puzzle:

Shout “Got it” and raise your hand.

You will have to come down to the board to show your working.

We shall wait for 4 people to shout “Got it”, so there are some
reserves.

Over to Rachel . . .
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The Millionaire Game

When you see the question, you must decide whether to answer
the question or take the current prize.

Prizes

£100 £2,000 £64,000

£200 £4,000 £125,000

£300 £8,000 £250,000

£500 £16,000 £500,000

£1,000 £32,000 £1 million

Answer correctly: Proceed to the next question

Answer wrongly: Leave with £0, £1,000 or £32,000.

Lifelines

50/50 Ask the audience Phone a friend
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The Millionaire Game

Question 1 for £100

What is the square root of 169 ?

A 11

B 22

C 13

D π2
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The Millionaire Game

Question 1 for £100

What is the square root of 169 ?

C 13

D π2
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The Millionaire Game

Question 1 for £100

What is the square root of 169 ?

C 13

Chris Jennison BUMS Pub Lecture



The Millionaire Game

Question 2 for £200

The ancient Greeks had a method for finding prime numbers
known as:

A The sieve of Eratosthenes

B The whisk of Aristotle

C The blender of Pythagoras

D Zenos microwave
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Question 2 for £200

The ancient Greeks had a method for finding prime numbers
known as:

A The sieve of Eratosthenes

C The blender of Pythagoras
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The Millionaire Game

Question 2 for £200

The ancient Greeks had a method for finding prime numbers
known as:

A The sieve of Eratosthenes

Chris Jennison BUMS Pub Lecture



The Millionaire Game

Question 3 for £300

Baths Centre for Doctoral Training in Statistical Applied Maths is
known as:

A TANGo

B RUMBa

C SAMBa

D FANdango
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The Millionaire Game

Question 3 for £300

Baths Centre for Doctoral Training in Statistical Applied Maths is
known as:

A TANGo

C SAMBa
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The Millionaire Game

Question 3 for £300

Baths Centre for Doctoral Training in Statistical Applied Maths is
known as:

C SAMBa
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The Millionaire Game

Question 4 for £500

There are n people in a room. In order for there to be a probability
of a half that there are two people who share the same birthday, n
must be at least:

A 365

B 183

C 23

D 5
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The Millionaire Game

Question 4 for £500

There are n people in a room. In order for there to be a probability
of a half that there are two people who share the same birthday, n
must be at least:

B 183

C 23
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The Millionaire Game

Question 4 for £500

There are n people in a room. In order for there to be a probability
of a half that there are two people who share the same birthday, n
must be at least:

C 23
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The Millionaire Game

Question 5 for £1,000

The best social event of 2025 will be:

A My birthday party

B Your birthday party

C The Kings garden party

D The BUMS Ball
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Question 5 for £1,000

The best social event of 2025 will be:

A My birthday party

D The BUMS Ball
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The Millionaire Game

Question 5 for £1,000

The best social event of 2025 will be:

D The BUMS Ball
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The Millionaire Game

Question 6 for £2,000

The set of positive prime numbers is:

A Empty

B Finite

C Countably infinite

D Uncountably infinite
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The Millionaire Game

Question 6 for £2,000

The set of positive prime numbers is:

C Countably infinite

D Uncountably infinite
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The Millionaire Game

Question 6 for £2,000

The set of positive prime numbers is:

C Countably infinite
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The Millionaire Game

Question 7 for £4,000

According to Alan Turings theory of morphogenesis, which of the
following can an animal NOT have?

A A striped body and a striped tail

B A striped body and a spotty tail

C A spotty body and a striped tail

D A spotty body and a spotty tail
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The Millionaire Game

Question 7 for £4,000

According to Alan Turings theory of morphogenesis, which of the
following can an animal NOT have?

B A striped body and a spotty tail
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The Millionaire Game

Question 8 for £8,000

The number 1729 is interesting because it is:

A The number of students in the Maths Department at Bath

B The number of pints of beer that Bath Maths students drank
last week

C The number of minutes in a day and a quarter

D The smallest number that can be expressed as the sum of two
cubes in two different ways

Chris Jennison BUMS Pub Lecture



The Millionaire Game

Question 8 for £8,000

The number 1729 is interesting because it is:

B The number of pints of beer that Bath Maths students drank
last week

D The smallest number that can be expressed as the sum of two
cubes in two different ways
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The Millionaire Game

Question 8 for £8,000

The number 1729 is interesting because it is:

D The smallest number that can be expressed as the sum
of two cubes in two different ways
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The Millionaire Game

Question 9 for £16,000

What is eiπ?

A i+ 1

B ∞

C As small as a number can be without actually being zero

D −1
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The Millionaire Game

Question 9 for £16,000

What is eiπ?

A i+ 1

D −1
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The Millionaire Game

Question 9 for £16,000

What is eiπ?

D −1
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The Millionaire Game

Question 10 for £32,000

Consider the statement

If x is the sum of two squares (of integers), then 2x is also
the sum of two squares (of integers)

Is this statement:

A Always true

B Sometimes (but not always) true

C True, but only on Mondays

D It may always be true but it is not possible to decide whether
that is definitely the case
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A Always true
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The Millionaire Game

Question 10 for £32,000

Consider the statement

If x is the sum of two squares (of integers), then 2x is also
the sum of two squares (of integers)

Is this statement:

A Always true
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The Millionaire Game

Question 11 for £64,000

What is the limit of (1− 1/n)2n as n→∞

A 1

B π

C 1/e2

D sin(π/3)
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The Millionaire Game

Question 11 for £64,000

What is the limit of (1− 1/n)2n as n→∞

A 1

C 1/e2
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The Millionaire Game

Question 11 for £64,000

What is the limit of (1− 1/n)2n as n→∞

C 1/e2
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The Millionaire Game

Question 12 for £125,000

The random variables X and Y have correlation zero.

Which statement is true?

A X and Y are definitely independent

B X and Y are definitely not independent

C X and Y may or may not be independent

D None of the above
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The random variables X and Y have correlation zero.

Which statement is true?

A X and Y are definitely independent

C X and Y may or may not be independent
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The Millionaire Game

Question 12 for £125,000

The random variables X and Y have correlation zero.

Which statement is true?

C X and Y may or may not be independent
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The Millionaire Game

Question 13 for £250,000

What is ∫ 1

−1
−x sin(1/x) dx

A π

B 2

C −1

D 0
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The Millionaire Game

Question 13 for £250,000

What is ∫ 1

−1
−x sin(1/x) dx

A π

D 0
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The Millionaire Game

Question 13 for £250,000

What is ∫ 1

−1
−x sin(1/x) dx

D 0
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The Millionaire Game

Question 14 for £500,000

Which of the following is not a computer language

A Python

B Adder

C Cobra

D Actually, they are all computer languages
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The Millionaire Game

Question 14 for £500,000

Which of the following is not a computer language

C Adder

D Actually, they are all computer languages
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The Millionaire Game

Question 14 for £500,000

Which of the following is not a computer language

D Actually, they are all computer languages
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The Millionaire Game

Question 15 for £ 1 million

Fermats Last Theorem, stated by Fermat around 1637, was finally
proved in

A 1990

B 1994

C 1998

D 2002
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The Millionaire Game

Question 15 for £ 1 million

Fermats Last Theorem, stated by Fermat around 1637, was finally
proved in

B 1994
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2. Millionaire Game: Optimal Strategy

Suppose you have reached £16k, you see the next question, and
you have no idea which answer is correct.

You use your 50/50 lifeline, so you have two answers to choose
from and, as far as you know, both are equally likely to be correct.

Do you take the £16k you have, or do you guess an answer?

Expected gain

Stick:
£16, 000

Guess:

0.5×£1, 000 + 0.5×£32, 000 = £16, 500

Or is the “Guess strategy” worth more than this?
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Millionaire Game: Optimal Strategy

Suppose you are at £16k but have already used your 50/50 lifeline.

You see the next question, there are have four answers to choose
from, and all seem equally likely to be correct.

Do you take the £16k, or do you guess an answer?

Expected gain

Stick: £16, 000

Guess: 0.75×£1, 000 + 0.25×£ ??? = £ ???

If you guess correctly, your £32k becomes your insurance prize.

Even if you have to guess next, the “value” of being at £32k is

0.75×£32, 000 + 0.25×£64, 000 = £40, 000

and the previous formula becomes

0.75×£1, 000 + 0.25×£40, 000 = £10, 750

— but maybe you know the answer to the £64, 000 question . . .
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Millionaire Game: Optimal Strategy

When deciding whether it is advantageous to guess an answer, we
need to know the “value” of being at the next stage.

This means we should start at the end and work backwards.

Let’s do this — but I shall simplify the game to make this easier
(for now).

A simplified model for the game

For each new question,

with probability p you know the answer

with probability 1− p all answers appear equally likely

There is a 50/50 lifeline (but no other lifelines).

The goal

To maximise the expected value of the amount we win.
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Millionaire Game: Optimal Strategy

Notation

Define the “state” x = (n, y) where n ∈ {1, . . . , 16}, y ∈ {0, 1}

x = (Number of questions answered so far) + 1

y =

{
1 if the 50/50 lifeline is still available
0 if not

The value of state x = (n, y)

Define the “value” of the current state x = (n, y) (in pounds) as

β(x) = E(Final prize money | Currently at x and play optimally)

The Bellman Equation

“Bellman’s equation” relates β(n, y) to β(n+ 1, 1) and β(n+ 1, 0).
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Millionaire Game: Optimal Strategy

Case 1

If you have just answered the final question correctly, so n = 16:

β(16, 1) = β(16, 0) = 1, 000, 000

Case 2

At the last step with no 50/50 lifeline, so x = (15, 0):

β(15, 0) = p× 1, 000, 000

+(1− p) max{500, 000, 0.75×32, 000 + 0.25×β(16, 0)}

= p× 1, 000, 000 + (1− p)× 500, 000

Optimal strategy

When x = (15, 0): Don’t guess.
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Millionaire Game: Optimal Strategy

Case 3

At the last step with a 50/50 lifeline, so x = (15, 1):

β(15, 1) = p× 1, 000, 000

+(1− p) max{500, 000, 0.5×32, 000 + 0.5×β(16, 0)}

= p× 1, 000, 000 + (1− p)× 516, 000

Optimal strategy

When x = (15, 1): Use the lifeline, then guess.

Dynamic Programming

And we can carry on working backwards to compute

β(14, 0), β(14, 1), . . . , β(2, 0), β(2, 1), β(1, 1).
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Millionaire Game: Optimal Strategy

Demonstration

R code for the simplified game

Possible extensions

Add the other lifelines

Refine the probability model

Re-define the goal?
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Millionaire Game: Optimal Strategy

A general sequential decision problem

 

 

X1

A1

R1

 . . . Xk

Ak

R2

Xk+1

Ak+1

Rk+1

 . . . Xn

An

Rn

Xk     State at stage k

Ak     Action at stage k

Rk     Reward at stage k

The Bellman equation

β(Xk) = max
Ak

{E[Rk + β(Xk+1) | Xk, Ak]}
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3. Peter Armitage 1924–2024

Last week I gave the “Armitage Lecture” in Cambridge

Peter Armitage introduced the idea of “sequential analysis” to
clinical trials.

In my lecture, I described Peter’s work and subsequent research in
this area, including some of my own work.
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A Randomised Clinical Trial

Suppose a clinical trial is run to compare two treatments A and B.

Patients are treated in pairs, with one randomly allocated to
Treatment A and the other to Treatment B.

Let Xi denote the difference in observed responses for pair i, where
Xi > 0 if the patient on Treatment A has the better response.

Suppose Xi ∼ N(θ, σ2), i = 1, 2, . . . .

We shall test H0: θ = 0 against θ 6= 0.

If H0 is rejected with θ̂ > 0 we conclude Treatment A is superior.

If H0 is rejected with θ̂ < 0 we conclude Treatment B is superior.

We design the trial to have two-sided type I error probability 2α
and power 1− β at θ = ±θ1.

In a sequential design, the trial can be stopped at any point.
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Armitage’s Restricted Sequential Procedure

In a medical trial one would wish to have both a small average
sample size and a small maximum sample size.

To achieve this, Armitage (Biometrika, 1957) proposed “Restricted
Sequential Procedures” with upper and lower stopping boundaries

n∑
i=1

Xi = a+ b n and
n∑
i=1

Xi = −a− b n

and truncation at n = N .

    A Restricted sequential procedure

 

 

N n

∑
i=1

n
Xi

Reject H0: µ = 0

Reject H0: µ = 0

Accept 
H0: µ = 0
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Armitage’s Restricted Sequential Procedure

With a normally distributed response, some neat mathematics was
needed to make calculations feasible.

Armitage applied a result proved by Bartlett (1946) for diffusion
processes and a likelihood ratio argument similar to that used by
Wald (1945) to define the “Sequential Probability Ratio Test”.

Armitage set

a =
σ2

θ1
log

(
1− β
α

)
, b =

θ1
2

and found N satisfying

β = Φ

(
a

σ
√
N
− b
√
N

σ

)
−
(

1− β
α

)
Φ

(
−a
σ
√
N
− b
√
N

σ

)
.

Calculation is needed, using tables of the standard normal CDF Φ.
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Calculating machines

The Braunsviga
Calculating Machine

 

Cambridge research students
used to spend time each
week doing the calculations
needed to produce statistical
tables.
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Armitage’s Restricted Sequential Procedure

Schneiderman & Armitage (Biometrika, 1962) inserted a “wedge”
in the continuation region to facilitate early stopping for θ ≈ 0.

    Restricted sequential procedure with a 'wedge'

 

 

1 2 3 6 7 8 9 10 11 12 n

8

6

4

2

0

−2

−4

−6

−8

∑
i=1

n
Xi

Reject H0: µ = 0

Reject H0: µ = 0

Accept 
H0: µ = 0

The boundary for the “wedge” was derived analytically but this
still required significant computation.

Average sample sizes were computed by Monte Carlo simulation
with 100 replicates

Calculations were carried out using the NIH’s IBM 650 computer.
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IBM 650 computer

 

 

The IBM 650’s
Magnetic memory drum

“The average time for accessing data or programming was 2.4
milliseconds, less than the time it takes a fruit fly to flap its wings”

Compare current terminology: A petaflop is one quadrillion (1015)
floating-point operations per second.
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Group Sequential Tests

Interest moved on to designs with a small number of analyses.

These “Group Sequential” methods suited a multi-centre trial with
an Independent Data Monitoring Committee and a separate party
(e.g., a Clinical Research Organisation) cleaning and analysing the
accruing data.

In a comparison of a new treatment to a control, it was noted that
the hypothesis testing formulation should be one-sided.

If θ is the improvement from using the new treatment (the
“treatment effect”), we should test H0: θ ≤ 0 against θ > 0.

If θ ≤ 0, it would be unethical to randomise patients in order to
learn whether θ = 0 or θ < 0.

“Error Spending” designs were proposed to handle unequal group
sizes or, more generally, unequal increments in information.
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Optimal Stopping Boundaries

One can ask

What is the best choice of stopping boundary?

What is the best choice of error spending function?

What is needed for these questions to be well-posed?

Consider a test of H0: θ ≤ 0 against θ > 0 with type I error
probability α and power 1− β at θ = δ.

A fixed sample size study needs information

Ifix =
{Φ−1(1− α) + Φ−1(1− β)}2

δ2
,

where Φ is the standard normal CDF.

Here, “Information” is the reciprocal of the variance of θ̂ and is
(roughly) proportional to sample size in many clinical trial settings.
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Optimal Stopping Boundaries

A group sequential test (GST) with K analyses will require a
maximum information possible level IK , greater than Ifix.

We call R=IK/Ifix the inflation factor of a group sequential test.

We can seek a GST that minimises expected information Eθ(I)
under certain values of the treatment effect, θ, with a given
number of analyses K and inflation factor R.

We may aim to minimise ∑
i

wi Eθi(I)

for selected treatment effects θi and weights wi.

Alternatively, we may minimise∫
f(θ)Eθ(I) dθ,

where f is, say, a normal density.
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Computing Optimal Group Sequential Tests

In optimising a GST, Eales & Jennison (Biometrika, 1992) and
Barber & Jennison (Biometrika, 2002) create a Bayes sequential
decision problem, placing a prior on θ and defining costs for
sampling and for making incorrect decisions.

Such a problem can be solved rapidly using the numerical
integration methods of Armitage, McPherson & Rowe (1969),
combined with Dynamic Programming.

One then searches for the combination of prior and costs such that
the solution to the (unconstrained) Bayes decision problem has the
specified frequentist error rates α at θ = 0 and β at θ = δ.

The resulting design solves both the Bayes decision problem and
the original frequentist problem.
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Benefits of Group Sequential Testing

One-sided GSTs with binding futility boundaries, minimising

{E0(I) + Eδ(I)}/2 for K equally sized groups, α = 0.025,

1− β = 0.9 and Imax = R Ifix.

Minimum values of {E0(I) + Eδ(I)}/2, as a percentage of Ifix
R Minimum

K 1.01 1.05 1.1 1.2 1.3 over R

2 80.8 74.7 73.2 73.7 75.8 73.0 at R=1.13

3 76.2 69.3 66.6 65.1 65.2 65.0 at R=1.23

5 72.2 65.2 62.2 59.8 59.0 58.8 at R=1.38

10 69.2 62.2 59.0 56.3 55.1 54.2 at R=1.6

20 67.8 60.6 57.5 54.6 53.3 51.7 at R=1.8

Note: E(I)↘ as K ↗ but with diminishing returns,

E(I)↘ as R↗ up to a point.
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Efficient Error Spending GSTs

In their book, Group Sequential Methods with Applications to
Clinical Trials, Jennison & Turnbull (1999) suggest using the
“ρ-family” of one-sided error spending tests.

A target information level Imax is specified and the type I and
type II error probabilities “spent” up to analysis k are, respectively,

f(I) = min{(I/Imax)2, 1}α and g(I) = min{(I/Imax)2, 1}β.

The value of ρ governs the rate at which error probability is spent,
with ρ = 1 producing Pocock-type boundaries and ρ = 3 producing
O’Brien & Fleming-type boundaries.

The choice of ρ determines the inflation factor R and Imax is R
times the information needed for a fixed sample test.

Barber & Jennison (2003) show this family yields tests that are
close to optimal for a variety of measures of Eθ(I).
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Efficient Error Spending GSTs

Plots of
∫
f(θ)Eθ(IT )dθ as a percentage of fixed sample Ifix vs

inflation factor R for tests with 5 analyses, α = 0.025 and β = 0.1.

 

 

Average Eθ(I)

R

60

65

70

75

80

1.0 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45

∆−family tests

ρ−family tests

γ−family tests

Optimal tests

Here, f(θ) is the density of a N(δ, δ2/4) distribution and Ifix the
information required for a fixed sample size test.

The ∆ family of parametric boundaries is that proposed by Wang
& Tsiatis (Biometrics, 1987).

The Gamma family of error spending functions is as described by
Hwang, Shih & De Cani (Statistics in Medicine, 1990).
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Efficient Error Spending GSTs

A test with 5 planned analyses, type I error probability α = 0.025,
power 0.9 if θ = δ = 1, and type I and II error spending functions

f(I) = min{(I/Imax)2, 1}α, g(I) = min{(I/Imax)2, 1}β.

●

●

●
●

●

Error spending test, ρ=2

 

 

●

●

●

●

Zk

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0

−0.5

−1.0

−1.5

Information Ik

Reject H0

Accept H0 R = 1.132.
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Efficient Error Spending GSTs

This stopping boundary makes a nice book cover.
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Finding optimal GSTs by Dynamic Programming

Similar methods can be used to

Optimise timing of analyses,

Allow data dependent group sizes (Jennison & Turnbull,
Biometrika, 2006).

However, there is little to be gained from these embellishments.

Other applications of this method of optimisation include:

Group sequential tests of superiority and non-inferiority (Öhrn &
Jennison, Statistics in Medicine, 2010),

Group sequential tests that can deal with “pipeline data”
(Hampson & Jennison, JRSS, B, 2013),

Optimising gain functions from financial models (Robbie Peck,
University of Bath, PhD thesis, 2020).
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Optimising dose allocation in a First in Human trial

Reference: Lizzi Pitt, University of Bath, PhD thesis, 2021.

Phase I, First in Human, trials are conducted to investigate the
safety of a new molecule and find the maximum tolerated dose.

Patients are treated a few at a time, e.g., in cohorts of 3.

The dose escalation scheme only moves on to a higher dose when
lower doses have been shown to be safe.

d−3 −2 −1 0 1 2 3

pT(d)

0.2

0.4

0.6

0.8

1

The aim is to determine the Maximum Tolerated Dose (MTD), at
which the probability of a Dose Limiting Event (DLE) is, say, 0.3.
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Dose response function (O’Quigley, et al. 1990, Bmcs)

We assume a dose response function of the form

pT (d, a) =

(
tanh(d) + 1

2

)a
=

(
1

1 + e−2d

)a
,

where pT (d, a) is the probability of a DLE at dose level d, on some
transformed scale (e.g., logarithmic).

d−3 −2 −1 0 1 2 3

pT(d)

0.2

0.4

0.6

0.8

1

a=0.25
a=0.5
a=1
a=2
a=4

The parameter a determines the likelihood of a DLE.

As a increases, pT (d, a) decreases.

Chris Jennison BUMS Pub Lecture



Problem formulation and loss function

Suppose a maximum of J cohorts of nc subjects are to be treated
with doses selected from the set D = {d1, . . . , dm}.
At the end of the study, with data xJ , a dose d∗ ∈ D will be
selected as the estimate of the maximum tolerated dose.

We define the loss function

L(d∗, a, xJ) = |pT (d∗, a)− 0.3|+ δ nT ,

where nT is the number of DLEs that occur in the trial.

We place a prior π(a) on the dose response model parameter a.

Our aim is to minimise the expected loss∫
(E{|pT (d∗, a)− 0.3|}+ δ nT )π(a) da.

over possible final decision rules and dose allocation rules that
satisfy specified constraints on dose escalation.
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Optimising by Dynamic Programming

The state variable

After j cohorts of nc have been observed, the data so far comprise

{U1, Y1, . . . , Uj , Yj},
where Uj ∈ {1, . . . ,m} is the index of the dose chosen for cohort j
and Yj the number of DLEs observed in cohort j.

It is (usually) sufficient to summarise by the state variable

Xj = (N1,j , . . . , Nm,j , V1,j , . . . , Vm,j)

where Ni,j is the total number of cohorts allocated dose di and
Vi,j the total number of DLEs observed at that dose.

With 10 cohorts of 3 and 6 doses, there are 16 million possible
states at the final analysis and 25 million over the whole trial.

Solution by Dynamic Programming

Lizzi showed this can be done!
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Conclusions

We now know how to play Who Wants to be a Millionaire?

We have seen the method of Dynamic Programming

Time for the “Pub” part of this Pub Lecture
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