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Group Sequential Designs
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Group sequential designs allow a clinical trial to be terminated

For efficacy:

When there is overwhelming evidence that the
new treatment is effective,

For futility:

When it is clear the trial is unlikely to reach a
positive conclusion.

In retrospective analyses of 72 ECOG cancer studies, Rosner &
Tsiatis (Statist. in Med., 1989) found that, had group sequential
stopping rules been applied, early stopping (mostly to accept H0)
would have occurred in around 80% of cases.

Many clinical trials have a formal stopping rule for efficacy but
informal guidelines for futility stopping. Why should these issues
be treated differently — and is this a good idea?
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Outline of talk
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1. Defining an efficacy stopping rule through an error
spending function.

2. Using conditional power and predictive power to guide
stopping for futility.

3. Error spending designs with an efficacy boundary and a
non-binding futility boundary.
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1. Defining a stopping rule for efficacy
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Consider a Phase 3 clinical trial comparing a new treatment
against a standard.

Let θ denote the “effect size”, a measure of the improvement in
the new treatment over the standard.

We shall test the null hypothesis H0: θ ≤ 0 against θ > 0.

Rejecting H0 allows us to conclude the new treatment is superior.

We allow type I error probability α for rejecting H0 when it is true.

We specify power 1− β as the probability that H0 should be
rejected when θ = δ.

Here δ is, typically, the minimal clinically significant treatment
difference.
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Joint distribution of parameter estimates
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Reference: Ch. 11 of Group Sequential Methods with Applications
to Clinical Trials, Jennison & Turnbull, 2000.

Let θ̂k denote the estimate of θ based on data at analysis k.

The information for θ at analysis k is

Ik = {Var(θ̂k)}−1, k = 1, . . . ,K.

Canonical joint distribution of θ̂1, . . . , θ̂K

In many situations, θ̂1, . . . , θ̂K are approximately multivariate
normal,

θ̂k ∼ N(θ, I−1
k ), k = 1, . . . ,K,

and

Cov(θ̂k1 , θ̂k2) = Var(θ̂k2) = I
−1
k2

for k1 < k2.
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Error spending tests (Jennison & Turnbull, Ch. 7)
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When the sequence I1, I2, . . . is unpredictable, a group
sequential design must adapt to observed information levels.

Lan & DeMets (Biometrika, 1983) introduced “error spending”
tests of H0: θ = 0 against θ 6= 0.

Maximum information design with error spending function f(I)
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The boundary at analysis k is set to give cumulative type I error
probability (under θ = 0) equal to f(Ik).
If the target information level, Imax, is reached without rejection
of H0, then H0, is accepted.
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Example: A trial design with an efficacy boundary only
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A test with 5 planned analyses, type I error probability α = 0.025,
power 0.9 if θ = δ = 1, and type I error spending function

f(I) = min{(I/Imax)
2, 1}α.
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2. Using conditional power to guide stopping for futility
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Suppose the trial has reached analysis 3, θ̂3 = 0.3 and Z3 = 0.78.
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One may ask

“How likely is it that the trial’s final outcome will be positive?”
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Using conditional power to guide stopping for futility
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We can compute the “conditional power function”,

Pθ{H0 will be rejected at analysis 4 or 5 | Z3 = 0.78}.
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However, we do not know the true value of θ.
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Using conditional power to guide stopping for futility
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One may focus on the conditional power assuming θ is equal to the
current estimate, θ̂3 = 0.3.

Or, one may focus on conditional power assuming θ = δ = 1, the
value used in the power calculation.
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Power at θ = θ̂ is 0.10
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Using conditional power to guide stopping for futility
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It is important to remember that the estimate of θ at an interim
analysis has a high variance.
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Adopting a Bayesian approach, one can integrate conditional
power over a posterior distribution to obtain a “predictive power”.
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Using predictive power to guide stopping for futility
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A common practice is to assume a flat (improper) prior for θ in
calculating predictive power.
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Predictive power = 0.15

In this case the posterior distribution of θ is N(0.3, 0.392).
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Using predictive power to guide stopping for futility
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Given the high variance of the interim estimate θ̂3, the choice of
prior can have a significant impact on the predictive power.
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Under the prior θ ∼ N(0.7, 0.32), the posterior distribution of θ is
θ | θ̂3 ∼ N(0.55, 0.242), and predictive power rises to 0.22.
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Using predictive power to guide stopping for futility
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Once you have calculated your chosen conditional power or
predictive power, the question remains:

How high should the conditional probability of success

be to justify continuation of the trial?

Here, one needs to balance

The benefits from saving resources in this study and moving
on to conduct trials for other promising therapies,

The risk of stopping the current trial prematurely when it
would have gone on to produce a positive result.

Decision making is hard when conditional power is low but there is
still a non-negligible chance the trial may still succeed.
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3. Error spending tests with efficacy and futility boundaries
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For a one-sided test of H0: θ ≤ 0 against θ > 0 with

Type I error probability α at θ = 0,

Type II error probability β at θ = δ,

we need two error spending functions.
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Type I error probability α is spent according to the function f(I),
and type II error probability β (under θ = δ) according to g(I).
Treating the futility boundary as “non-binding”, we calculate
Type I error probabilities ignoring the futility boundary.
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Error spending tests with efficacy and futility boundaries
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Recall, we want a group sequential test of H0: θ ≤ 0 vs θ > 0 with

Pθ=0{Reject H0} = α,

Pθ=δ{Accept H0} = β,

Analyses at Ik = (k/K) Imax, k = 1, . . . ,K.

If we specify α, β, δ, K and Imax, we can find the stopping rule
that minimises a criterion such as∑

i

wiEθi(I) or

∫
w(θ)Eθ(I) dθ.

See:

Barber & Jennison (Biometrika, 2002),

Öhrn (PhD thesis, University of Bath, 2011),

Jennison & Turnbull (Kuwait J. Science, 2013).
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Error spending tests with efficacy and futility boundaries
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Barber & Jennison (2002) and Öhrn (2011) observe that group
sequential tests with error spending functions of the form

f(I) = min{(I/Imax)
ρ1 , 1}α (type I error)

and
g(I) = min{(I/Imax)

ρ2 , 1}β (type II error)

have high efficiency for a variety of optimality criteria.

The values of ρ1 and ρ2 determine Imax and, hence, the trial’s
maximum sample size.

The resulting designs are efficient for this value of Imax.

The monitoring committee can treat the (non-binding) futility
boundary as a guideline, allowing them to consider safety data or
secondary endpoints in deciding whether to stop for futility.
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An efficacy boundary and non-binding futility boundary
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A test with 5 planned analyses, type I error probability α = 0.025,
power 0.9 if θ = δ = 1, and type I and II error spending functions

f(I) = min{(I/Imax)
2, 1}α, g(I) = min{(I/Imax)

2, 1}β.
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An efficacy boundary and non-binding futility boundary
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Contrast: A test with type I and type II error spending functions

f(I) = min{(I/Imax)
2, 1}α, g(I) = min{(I/Imax)

3, 1}β.
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Resources saved by early stopping
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Tests with α = 0.025, 1− β = 0.9 and 5 equally spaced analyses.

Values of Imax and Eθ(I), expressed as a percentage of Ifix.

Eθ(I)

Design Imax θ=0 θ=0.5 θ=1.0 θ=1.5

E: ρ1 = 2 only 106 105.2 96.7 70.5 46.8

E: ρ1 = 2, F: ρ2 = 2 113 59.2 80.9 70.6 48.2

E: ρ1 = 2, F: ρ2 = 3 109 64.1 83.0 70.1 47.5

E: Efficacy boundary, F: Non-binding futility boundary

With ρ2 = 3, the maximum sample size is smaller and expected
sample size at low values of θ is larger.

The number of analyses and design parameters ρ1 and ρ2 can be
chosen to give acceptable values of Imax and Eθ(I).
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Conclusions

21

1. It is common practice for trials to take an informal approach to
stopping for futility.

Decision making is often guided by conditional power calculations.

Just how one should use “conditional power” or “predictive power”
in deciding whether to stop a trial is not very clear.

2. We can create a group sequential design with a non-binding
futility boundary.

The ρ-family of error spending designs provides a simple way to
define efficient procedures.

The monitoring committee should be guided by this futility
boundary — but they can still use their discretion in deciding
whether to stop the trial.
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Resources saved by early stopping: Designs with 2 analyses
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Tests with α = 0.025, 1− β = 0.9 and 2 equally spaced analyses.

Values of Imax and Eθ(I), expressed as a percentage of Ifix.

Eθ(I)
Design Imax θ=0 θ=0.5 θ=1.0 θ=1.5

E: ρ1 = 2 only 103 102.2 97.9 80.5 59.6

E: ρ1 = 2, F: ρ2 = 2 106 70.7 89.2 80.8 60.7

E: ρ1 = 2, F: ρ2 = 3 104 75.5 91.5 80.4 60.0

E: Efficacy boundary, F: Non-binding futility boundary
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Resources saved by early stopping: Designs with 3 analyses
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Tests with α = 0.025, 1− β = 0.9 and 3 equally spaced analyses.

Values of Imax and Eθ(I), expressed as a percentage of Ifix.

Eθ(I)
Design Imax θ=0 θ=0.5 θ=1.0 θ=1.5

E: ρ1 = 2 only 104 103.6 97.1 75.0 52.3

E: ρ1 = 2, F: ρ2 = 2 109 64.4 84.8 75.3 53.5

E: ρ1 = 2, F: ρ2 = 3 106 69.5 86.9 74.8 52.8

E: Efficacy boundary, F: Non-binding futility boundary
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