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Group Sequential and Adaptive Designs

Group sequential and adaptive clinical trial designs have been
proposed for a number of important applications:

Early stopping for efficacy or futility,

Sample size modification,

Treatment selection and testing (seamless Phase 2/3 trials),

Population selection and testing (enrichment designs),

Multi-arm Multi-stage trials

There are usually options to choose from within such a design.

How should one make such choices and assess the end result?
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Choosing a group sequential or adaptive design

A Phase 3 trial must protect the type I error rate.

This can be a complex problem when testing multiple null
hypotheses — type I error rate must be controlled over a
high-dimensional region.

We wish to be efficient, gaining high power with low sample size.

How should we make decisions:

At interim analyses?

At the final analysis?

Type I error rate is a frequentist property.

But Bayesian methods have advantages when optimising a design.
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Outline of talk

1. Monitoring clinical trials

Group sequential stopping rules,

Optimising the stopping boundary.

2. Seamless Phase 2/3 designs

Designs that protect family-wise error rate,

Optimising decision rules and sample size allocation.

3. Enrichment designs

Adaptive enrichment in response to interim data,

Optimising the decision rule for when to enrich.
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1. A group sequential clinical trial

Consider a Phase 3 clinical trial comparing a new treatment
against a standard.

Let θ denote the “effect size”, a measure of the improvement in
the new treatment over the standard.

We shall test the null hypothesis H0: θ ≤ 0 against θ > 0.

Rejecting H0 allows us to conclude the new treatment is superior.

We allow type I error probability α for rejecting H0 when it is true.

We specify power 1− β as the probability of rejecting H0 when
θ = δ. Here δ is, typically, the minimal clinically significant
treatment difference.

The trial design, including the method of analysis and stopping
rule, must be set up to attain these error rates.
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An early example: The BHAT trial

DeMets et al. (Cont. Clin. Trials, 1984) report on the Beta-Blocker
Heart Attack Trial, that compared propanolol with placebo.

An “O’Brien and Fleming” stopping boundary was defined with
overall type I error probability 0.025.
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The trial stopped after the 6th of 7 planned analyses.
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Group sequential tests: Stopping for futility

Adding a lower boundary allows stopping when there is little
chance of a positive conclusion.
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Rosner & Tsiatis (Statistics in Medicine, 1989) carried out
retrospective analyses of 72 cancer studies of the U.S. Eastern
Co-operative Oncology Group.

Had group sequential stopping rules been applied, early stopping
(mostly to accept H0) would have occurred in ∼80% of cases.
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Requirements for clinical trial designs

We seek designs which:

Achieve specified type I error rate and power,

Stop early, on average, under key parameter values,

Can be applied to a variety of response types.

We shall present distribution theory which shows that a common
set of methods can be applied to many data types.

To define efficient tests, we shall formulate and solve an optimal
stopping problem.
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Sequential distribution theory

Let θ̂k denote the estimate of the treatment effect θ at analysis k.

Information for θ at analysis k is Ik = {Var(θ̂k)}−1, k = 1, . . . ,K.

Canonical joint distribution of θ̂1, . . . , θ̂K

In many situations, in the absence of early stopping, θ̂1, . . . , θ̂K are
approximately multivariate normal,

θ̂k ∼ N(θ, {Ik}−1), k = 1, . . . ,K,

and

Cov(θ̂k1 , θ̂k2) = Var(θ̂k2) = {Ik2}−1 for k1 < k2.

References:

Jennison & Turnbull, JASA, 1997,

Scharfstein et al, JASA, 1997.
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An optimal stopping problem

Consider a trial designed to test H0: θ ≤ 0 vs θ > 0, with:

Type I error rate α,

Power 1− β at θ = δ,

Up to K analyses.

A fixed sample test needs information

Ifix = {Φ−1(α) + Φ−1(β)}2/δ2.

We set the maximum information to be

Imax = R Ifix,

where R > 1, with equal increments between analyses.
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Optimal group sequential tests

The error rates impose two constraints on the 2K − 1 boundary
points — leaving a high dimensional space of possible boundaries.
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We shall look for a boundary that minimises

{E0(I) + Eδ(I)}/2.
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Computations for group sequential tests
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We need to be able to calculate the probabilities of basic events
such as

a1 < Z1 < b1, a2 < Z2 < b2, Z3 > b3.

Combining such probabilities gives key properties, such as

Prθ{Reject H0} and Eθ(I).

l
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Numerical integration

We can write probabilities as nested integrals, e.g.,

Pr{a1 < Z1 < b1, a2 < Z2 < b2, Z3 > b3} =

∫ b1

a1

∫ b2

a2

∫ ∞
b3

f1(z1) f2(z2|z1) f3(z3|z2) dz3 dz2 dz1.

Applying numerical integration, we replace each integral by a sum
of the form ∫ b

a
f(z) dz =

n∑
i=1

w(i) f(z(i)),

where z(1), . . . , z(n) is a grid of points from a to b.
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Numerical integration

Thus, we have

Pr{a1 < Z1 < b1, a2 < Z2 < b2, Z3 > b3} ≈
n1∑
i1=1

n2∑
i2=1

n3∑
i3=1

w1(i1) f1(z1(i1)) w2(i2)f2(z2(i2)|z1(i1))

w3(i3) f3(z3(i3)|z2(i2)).

Multiple integrations and summations will arise, e.g., for an
outcome at analysis k,

n1∑
i1=1

. . .

nk∑
ik=1

w1(i1) f1(z1(i1)) w2(i2)f2(z2(i2)|z1(i1))

. . . wk(ik) fk(zk(ik)|zk−1(ik−1)).
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Numerical integration

In the multiple summation

n1∑
i1=1

n2∑
i2=1

. . .

nk∑
ik=1

w1(i1) f1(z1(i1)) w2(i2)f2(z2(i2)|z1(i1))

. . . wk(ik) fk(zk(ik)|zk−1(ik−1)),

the structure of the k nested summations is such that the
computation required is of the order of k − 1 double summations.

Using Simpson’s rule with 100 to 200 grid points per integral can
give accuracy to 5 or 6 decimal places.

For details of efficient sets of grid points, see Ch. 19 of Group
Sequential Methods with Applications to Clinical Trials by
Jennison and Turnbull (2000).
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Finding optimal group sequential tests

Recall, we want a group sequential test of H0: θ ≤ 0 vs θ > 0 with

Prθ=0{Reject H0} = α,

Prθ=δ{Accept H0} = β,

Analyses at Ik = (k/K) Imax, k = 1, . . . ,K,

Minimum possible value of {E0(I) + Eδ(I)}/2.

We deal with constraints on error rates by introducing Lagrangian
multipliers to create the unconstrained problem of minimising

{E0(I) + Eδ(I)}/2 + λ1Prθ=0{Reject H0}+ λ2 Prθ=δ{Accept H0}.

We shall find a pair of multipliers (λ1, λ2) such that the solution
has type I and II error rates α and β, then this design will solve the
constrained problem too.
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Bayesian interpretation of the Lagrangian approach

Suppose we put a prior on θ with Pr{θ = 0} = Pr{θ = δ} = 0.5
and specify costs of

1 per unit of information observed,

2λ1 for rejecting H0 when θ = 0,

2λ2 for accepting H0 when θ = δ.

Then, the total Bayes risk is

{E0(I)+Eδ(I)}/2+λ1 Prθ=0{Reject H0}+λ2 Prθ=δ{Accept H0},

just as in the Lagrangian problem.

An advantage of the Bayes interpretation is that it can give insight
into solving the problem by using “Dynamic Programming” or
“Backwards Induction”.
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Solution by Dynamic Programming

Denote the posterior distribution of θ given Zk = zk at analysis k
by

p(k)(θ|zk), θ = 0, δ.

At the final analysis, K

There is no further sampling cost, so compare decisions

Reject H0: E(Cost) = 2λ1 p
(K)(0|zK),

Accept H0: E(Cost) = 2λ2 p
(K)(δ|zK).

The boundary point aK is the value of zK where these expected
losses are equal.

The optimum decision rule is to reject H0 for ZK > aK .
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Dynamic Programming

At analysis K − 1

-

IIK−1 IK

6
Zk

•aK×
ZK−1

If the trial stops at this analysis, there is no further cost of
sampling and the expected additional cost is

Reject H0: 2λ1 p
(K−1)(0|zK−1),

Accept H0: 2λ2 p
(K−1)(δ|zK−1).
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At analysis K − 1

If the trial continues to analysis K, the expected additional cost is

1× (IK − IK−1)

+ 2λ1 p
(K−1)(0|zK−1)Prθ=0{ZK > aK |ZK−1 = zK−1}

+ 2λ2 p
(K−1)(δ|zK−1)Prθ=δ{ZK < aK |ZK−1 = zK−1}.

We can now define the optimal boundary points:

Set bK−1 to be the value of zK−1 where

E(Cost of continuing) = E(Cost of stopping to reject H0).

Set aK−1 to be the value of zK−1 where

E(Cost of continuing) = E(Cost of stopping to accept H0).
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At analysis K − 1
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Before leaving analysis K − 1, we set up a grid of points for use in
numerical integration over the range aK−1 to bK−1.

For each point, we sum over the posterior distribution of θ to
calculate

β(K−1)(zK−1) = E(Additional cost when continuing |ZK−1 = zK−1).

We are now ready to move back to analysis K − 2.
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Analyses 1 to K − 2

We work back through analyses k = K − 2, K − 3, . . . , 1.
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At each analysis, we find the optimal stopping boundary using
knowledge of the optimal stopping rule at future analyses.

Then, for a grid of values of zk, compute

β(k)(zk) = E(Additional cost when continuing |Zk = zk)

to use in evaluating the option of continuing at analysis k − 1.
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Solving the original problem

For any given (λ1, λ2) we can find the Bayes optimal design and
compute its type I and II error rates.

We now search for a pair (λ1, λ2) for which type I and type II error
rates of the optimal design equal α and β, respectively.

The resulting design will be the optimal group sequential test, with
the specified frequentist error rates, for our original problem.

Notes

1. The method of solving the overall problem demonstrates
explicitly that good frequentist procedures should be similar to
Bayes procedures.

2. The prior and costs in the final Bayes problem are a means to
an end, rather than “true” costs of type I and type II errors, or
costs of treating patients in the trial.
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Properties of optimal designs

Tests with α = 0.025, 1− β = 0.9, K analyses, Imax = R Ifix,

equal group sizes, minimising {E0(I) + Eδ(I)}/2.

Minimum values of {E0(I) + Eδ(I)}/2, as a percentage of Ifix
R Minimum

K 1.01 1.05 1.1 1.2 1.3 over R

2 80.8 74.7 73.2 73.7 75.8 73.0 at R=1.13

5 72.2 65.2 62.2 59.8 59.0 58.8 at R=1.38

10 69.2 62.2 59.0 56.3 55.1 54.2 at R=1.6

20 67.8 60.6 57.5 54.6 53.3 51.7 at R=1.8

Observe: E(I)↘ as K ↗ but with diminishing returns,

E(I)↘ as R↗ up to a point.
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Generalisations

Solutions can be obtained for a variety of related problems:

• Other optimality criteria such as a weighted sum∑
i

wiEθi(I)

or an integral ∫
f(θ)Eθ(I) dθ

• Optimising a set of fixed group sizes in a group sequential test

• Data dependent group sizes in a group sequential test

• Group sequential tests for a delayed response

• Testing for either superiority or non-inferiority
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Comments on optimal group sequential tests

We created an artificial Bayes problem in order to find the optimal
frequentist design.

The prior probabilities for θ = 0 and θ = δ do not necessarily
reflect beliefs about the likelihood of these values of θ, nor do λ1
and λ2 represent actual costs of type I and type II errors.

One can ask whether the Bayes decision problem that has been
solved is realistic — but this requires costs associated with the trial
sample size and final decisions to be put on a common scale.

Eales & Jennison (Biometrika, 1992) create such costs by
considering overall benefit to patients inside and outside the trial.

A more basic observation is that the class of efficient frequentist
designs is equal to the class of Bayes designs; see, e.g., Jennison &
Turnbull (Biometrika, 2006).

If a Bayes design is “calibrated” to have an acceptable type I error
rate, it should be the same as an optimised frequentist design.
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2. Optimising a Phase 2/3 seamless design

During Phase 2 and Phase 3 of the drug development process,

The final decision is made on the treatment specification,
including the dose level,

The selected treatment is tested against control.

A seamless Phase 2/3 trial design combines these two phases:

In stage 1 (Phase 2)

Compare K “treatments” against control

Select the best treatment and, if it has performed sufficiently
well, proceed to stage 2.

In stage 2 (Phase 3)

Compare the selected treatment against the control.
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Optimising a Phase 2/3 seamless design

After both stages are completed, we test the null hypothesis that
the selected treatment is no better than the control.

Since this treatment was selected based on data that will also be
used in the final analysis, care must be taken to avoid inflating the
overall type I error rate.

Design issues

We would like to optimise:

The way in which data on all treatments are combined in the
final hypothesis test,

The way in which the total sample size is divided between the
two stages.
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Optimising a Phase 2/3 seamless design
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Optimising a Phase 2/3 seamless design

Denote the K treatment effects vs control by θ1, . . . , θK .

Stage 1

Randomise m1 subjects to each of the K treatments and the
control and observe their responses.

Denote the estimated treatment effects by θ̂1,i, i = 1, . . . ,K.

Treatment i∗ with the highest θ̂1,i is selected for stage 2.

Stage 2

Treatment i∗ is compared against control, with m2 observations on
each. The estimated treatment effect is θ̂2,i∗ .

Conclusion

A final decision is made, based on θ̂1,1, . . . , θ̂1,K and θ̂2,i∗ .
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Optimising a Phase 2/3 seamless design

There are K null hypotheses, Hi: θi ≤ 0 , i = 1, . . . ,K.

If dose i∗ is selected for Phase 3, we focus on testing Hi∗ : θi∗ ≤ 0.

Family-wise error

We want strong control of the family-wise error rate. Then, for
all vectors θ = (θ1, . . . , θK),

Prθ{Reject any true Hi} ≤ α.
Power

When some θi are greater than zero, we can define power as

Pr{Select treatment j with maximum θi and reject Hj : θj ≤ 0}.

More generally, we can define a gain function or utility that is
positive when Hi∗ is rejected, whichever treatment is selected, but
the gain increases with θi∗ .
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Optimising a Phase 2/3 seamless design

Family-wise error can be controlled by a Closed Testing Procedure:

Define level α tests for each null hypothesis Hi, and for all
intersections of sets of null hypotheses.

Reject Hi overall if all intersection hypotheses that include Hi

are rejected.

Theory implies the family-wise type I error rate is at most α.

Each hypothesis test can be formed as a Combination Test across
the two stages of the trial (Bauer & Köhne, Biometrics, 1984).

How should we test the intersection hypotheses in stage 1?

What type of combination test is best?

The best choice may depend on the K-dimensional parameter θ.
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Optimising a Phase 2/3 seamless design

Hampson & Jennison (Statistics in Medicine, 2013) found optimal
final decision rules that maximise power when θ = δ v, for various
choices of vector v.

Two procedures were close to 100% efficient across a wide range
of scenarios.

1. In the framework we have described, use a Dunnett test for
each intersection hypothesis in stage 1 and combine Z values
across stages with a weighted normal combination test.

2. Use the procedure proposed by Thall, Simon and Ellenberg
(Biometrika, 1988).

The very best design does depend on the high-dimensional,
treatment effect vector θ.

However, since we have such robustly efficient procedures, we do
not need to consider Bayesian averaging over θ.
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Optimising a Phase 2/3 seamless design

Hampson & Jennison also considered how best to divide a total
sample size between stage 1 (m1 observations on K treatments
and control) and stage 2 (m2 on selected treatment and control).

The choice that maximises power depends on the vector of
treatment effects, θ, in particular, the largest effect maxi(θi).

If maxi(θi) is fairly small, a high stage 2 (Phase 3) sample size,
m2, is needed to give adequate power in that stage.

If maxi(θi) is large, a lower m2 suffices and a higher m1 increases
the chance of selecting the best treatment in stage 1 (Phase 2).

Bayesian averaging:

We do not know θ.

So, we express our expectations as a distribution for θ and choose
a design with good properties averaged over this distribution.
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Optimal Stage 1 group sizes in a seamless design
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Benefits of Phase 2/3 seamless designs

Regulators require a seamless Phase 2/3 trial to be conducted as a
single trial, with a firewall between the data monitoring committee
and the investigators.

Efficiency gains from using “Phase 2”data in the final hypothesis
test must balance extra planning and organisational requirements.

With m1 observations on each treatment and control in stage 1
and m2 on the selected treatment and control in stage 2, what are
the benefits of using the stage 1 data in the final analysis?

Hampson & Jennison show that:

If only Phase 3 data are used in the final analysis,
then in many plausible scenarios, m2 needs to be
increased by between 0.5m1 and 0.7m1, in order to
achieve the same power as the seamless design.
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Comments on Seamless Phase 2/3 Designs

Controlling the frequentist type I error rate

Use of a closed testing procedure (CTP) and combination test
guarantees control of type I error.

Optimising within this class of designs

1. We can (very nearly) optimise the choice of CTP and
combination test for all treatment effect vectors θ simultaneously.

2. However, the best choice of sample sizes in stage 1 and stage 2
does depend on the vector θ.

The Bayes solution is to specify a prior distribution for the unknown
θ and optimise performance integrated over this distribution.

An outer layer

If the optimised value of m1 leads to unacceptably low average
power, consider a higher total sample size for the two stages.
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3. Creating an efficient enrichment design

Consider a drug designed to disrupt a disease’s biological pathway.

Patients with high levels of a biomarker for this pathway should
gain particular benefit.

In a clinical trial with enrichment we

Start by comparing the new treatment against control in the
full population.

At an interim analysis, we decide whether to:

Continue recruiting from the full population, or

Recruit only from the subgroup — and increase their
numbers.

Results may support a licence for the full population or just for the
sub-population.
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Creating an efficient enrichment design

&%
'$
θ1 θ2Sub-population

(proportion λ1)

Rest of the population

(proportion λ2)

The treatment effect (difference in mean response between new
treatment and control) is θ1 in the sub-population and θ2 in the
complement of this sub-population.

The treatment effect over the full population is θ3 = λ1θ1 + λ2θ2.

We may wish to test either or both of:

The null hypothesis for the full population, H3: θ3 ≤ 0 vs θ3 > 0,

The null hypothesis for the sub-population, H1: θ1 ≤ 0 vs θ1 > 0.
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Creating an efficient enrichment design

As in the adaptive seamless Phase 2/3 design, we want to control
strongly the family-wise error rate.

Then, for all values of θ1 and θ3,

Prθ{Reject any true Hi} ≤ α.

This can be achieved by a Closed Testing Procedure, involving
level α tests of H1, H3 and the intersection hypothesis H1 ∩H3.

Each of these tests will be constructed as a Combination Test
across the two stages of the trial.

Then, general theory implies that the family-wise type I error rate
is controlled at level α.

This leaves freedom to define the rule for deciding whether or not
to enrich at the interim analysis.
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Creating an efficient enrichment design
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Abstract
When planning a Phase III clinical trial, suppose a certain subset of patients
is expected to respond particularly well to the new treatment. Adaptive enrich-
ment designs make use of interim data in selecting the target population for the
remainder of the trial, either continuing with the full population or restricting
recruitment to the subset of patients. We define a multiple testing procedure
that maintains strong control of the familywise error rate, while allowing for
the adaptive sampling procedure. We derive the Bayes optimal rule for decid-
ing whether or not to restrict recruitment to the subset after the interim analysis
and present an efficient algorithm to facilitate simulation-based optimisation,
enabling the construction of Bayes optimal rules in a wide variety of problem
formulations. We compare adaptive enrichment designs with traditional non-
adaptive designs in a broad range of examples and draw clear conclusions about
the potential benefits of adaptive enrichment.

K E Y W O R D S

adaptive designs, adaptive enrichment, Bayesian optimization, phase III clinical trial, population
enrichment

1 INTRODUCTION

Consider a Phase III trial in which it is believed a certain subset of patients will respond particularly well to the new treat-
ment. We wish to test for a treatment effect in both the pre-identified subpopulation and the full population. Such multiple
testing can be conducted using a closed testing procedure to control the familywise error rate (FWER).1 In an adaptive
enrichment design, if interim data suggest it is only the subpopulation that benefits from the new treatment, recruitment
in the second half of the trial is restricted to the subpopulation. This increase in recruitment from the subpopulation is
referred to as “enrichment” of the sampling rule.

We develop and assess designs which use a closed testing procedure with Simes’ method2 to test the intersection
hypothesis and a weighted inverse normal combination test3-5 to combine data from the two stages of the trial. We show
that the resulting testing procedure controls the FWER, whatever rule is used to decide when enrichment should occur.
This allows us to seek the enrichment rule which is optimal for a specified criterion. We shall follow the approach pre-
sented by Burnett,6 defining a gain function that reflects the value of the outcome of the trial and a prior distribution for
the treatment effects in the subpopulation and full population. The optimal decision at the interim analysis is that which
maximises the expected gain with respect to the posterior distribution of the treatment effects, given current data. Since
we use simulation in constructing the Bayes optimal decision rule for an adaptive design, our approach has the poten-
tial to be computationally expensive. We present an efficient algorithm for deriving this decision rule that significantly

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2020 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

690 wileyonlinelibrary.com/journal/sim Statistics in Medicine. 2021;40:690–711.
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Creating an efficient enrichment design

I have worked on this problem with Thomas Burnett.

We chose to use Simes’ test for the intersection hypothesis
H1 ∩H3 and an inverse normal combination test.

We specified a utility or “gain function” to optimise:

Gain = λ1 θ1 I(Reject H1 only) + θ3 I(Reject H3).

We placed a prior distribution on (θ1, θ2).

We then sought the adaptive decision rule that maximises the
expected gain.

Given observed treatment effects, θ̂1 and θ̂2, at the interim
analysis, the optimal decision (to continue in the full population or
to enrich in the sub-population) is that which maximises the
conditional expected gain.
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Example: An optimal enrichment design

Consider a trial with total sample size that would provide power 0.9
to detect a treatment effect in the full population if θ1 = θ2 = 10.

Suppose λ1 = λ2 = 0.5.

Our prior distribution for (θ1, θ2) is bivariate normal with

E(θ1, θ2) = (12, 2)

and

Var(θ1, θ2) =

(
25 18.75

18.75 25

)
.

We conduct an interim analysis after half the total number of
subjects have been observed.

If the decision is to “enrich”, all the remaining sample size is
allocated to the sub-population.
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Example: An optimal enrichment design

The optimal decision rule is:

The peculiar shape of the boundary reflects features of the Simes
test applied to data at the interim analysis.
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Example: An optimal enrichment design

Properties of the optimised enrichment design:

Pr(Enrich) = 0.49

Pr(Reject H1 only) = 0.29

Pr(Reject H3) = 0.44

E(Gain) = 6.23

The design with no enrichment that tests both H1 and H3 has

E(Gain) = 6.09

The design that recruits all subjects from the sub-population from
the outset, and only tests H1, has

E(Gain) = 5.57
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Creating an efficient enrichment design

We have found examples of the gain function and prior for which
the best adaptive design is superior to both simple, non-adaptive
designs — but this is not always the case.

However, adaptive enrichment may have additional appeal:

If investigators differ in their prior beliefs, an optimal adaptive
design for a “consensus” prior may be broadly acceptable.

An optimal design that recruits only from the sub-population may
be deemed too restrictive by some investigators — and the
adaptive approach allows a slower route towards this end.

When the optimal policy is to recruit from the full population
(so no enrichment occurs and combination tests are not needed),
the optimal adaptive design’s E(Gain) is only slightly sub-optimal.
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Comments on Enrichment Designs

Controlling the frequentist type I error rate

Use of a closed testing procedure and combination tests guarantees
control of family-wise type I error.

Optimising within this class of designs

Given gain and cost functions, and a prior distribution for (θ1, θ2),
we can compute Bayes-optimal adaptive enrichment designs.

An outer layer

Other design features that merit investigation include:

Details of the closed testing procedure and combination tests.

The timing of the interim analysis.

Preferential sampling of one population when the proportions λ1
and λ2 are away from 0.5.
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4. Overall conclusions

Controlling the frequentist type I error rate

We can apply closed testing procedures and combination tests to
protect family-wise error in complex, high-dimensional settings.

We can then work on optimising other aspects of a given design.

Optimising within a class of designs

Before trying to optimise, we need to understand which properties
of a design are important to the investigators.

Typically, this is done through the elicitation of their gain function,
cost function, and prior distribution for unknown parameters.

Then, we can optimise by analysis, calculation or simulation.

An outer layer

Once we can optimise the central component of a design, we may
re-visit higher level aspects and question initial assumptions.
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