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Group Sequential and Adaptive Designs

While lain and | were graduate students at Cornell, together with
Bruce Turnbull, we wrote the paper.

Asymptotically optimal procedures for sequential adaptive
selection of the best of several normal means.

We presented this research at the Purdue Symposium on Decision
Theory and Related Topics in 1981 and the paper was published in
1982.

| shall reflect on the results in this paper and subsequent research
into sequential and adaptive methods, in particular for clinical trial
designs.

First, some reminiscences:
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Kiefer-Wolfowitz Conference, Cornell, 1983







ASYMPTOTICALLY OPTIMAL PROCEDURES FOR
SEQUENTIAL ADAPTIVE SELECTION OF
THE BEST OF SEVERAL NORMAL MEANS

Christopher Jennisonl, Iain M. Johnston22
and Bruce W. Turnbul]l

Departments of Operations Research and Mathematics
Cornell University
Ithaca, New York, U.S.A.

I. INTRODUCTION

Suppose we have k(> 2) normal populations with common variance

02 and unknown means {ui; 1 <i < k}. We wish to select a popula-

tion with a 'high" mean, the population with the highest mean is
called the best population. Let u[ll < iz Lewss u[k] denote the
ordered means. Bechhofer [1] formulated this problem with the

following probability of correct selection (PCS) requirement:
> & -
(PCS 1) Whenever Mik] T V-1 > 6,

P(Select the best population) > P*,
where & > 0 and 1/k < P* < 1 are to be set by the experimenter.
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Jennison, Johnstone and Turnbull, 1982 (JJT)

Asymptotically optimal procedures for sequential adaptive
selection of the best of several normal means.

Given k populations from which observations have distributions
N(Mla 02)7 ceey N(,U,k, 02)7

we wish to select the population with the largest mean.

Denoting the ordered means

) S Bj2) S - BE)

we require

P{Select the best population} > P* whenever iy — fu_1) > 0.
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Jennison, Johnstone and Turnbull, 1982 (JJT)

The selection procedure can be
Sequential:
Populations are eliminated one by one as the study proceeds
Adaptive:
Observations can be allocated in different proportions to the
populations that remain
JJT defined a multi-stage procedure that achieves the lowest

possible expected sample size in the limit as P* — 1.

For this procedure

E(Total Sample Size)
—log(1 — P*)
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What happened next?

| shall give an overview of some subsequent developments in

Sequential,
Adaptive,
Multiple Testing

procedures.

| shall focus on applications in clinical trials.
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Group sequential tests (GSTs)

Suppose a new treatment (Treatment A) is to be compared to a
placebo or positive control (Treatment B) in a Phase 3 trial.

The treatment effect 6 for the primary endpoint represents the
advantage of Treatment A over Treatment B.

If 0 > 0, Treatment A is more effective.

We wish to test the null hypothesis Hp: 8 < 0 against 6 > 0 with
Py_p{Reject Hy} = a,

Py_s{Reject Hy} =1 — p.

In a group sequential trial, data are examined on a number of
occasions to see if an early decision may be possible.
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Group sequential tests (GSTs)

A typical boundary for a one-sided test, expressed in terms of

standardised test statistics Z1, ... , Zk, has the form:
Zy, .
r—. Reject Hyp
—.
=
/

T T / T T T Vk

. ~ Accept H

/

Crossing the upper boundary leads to early stopping for a positive
outcome, rejecting Hy in favour of 6 > 0.

Crossing the lower boundary implies stopping for “futility” with
acceptance of H.
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Benefits of group sequential testing

In order to test Hy: 6 < 0 against # > 0 with type | error
probability o and power 1 — 3 at 6§ = §, a fixed sample size study
needs information

{o'1-a)+ 0711 - )}
62 ’
where ® is the standard normal CDF.

Ifia: =

Information is (roughly) proportional to sample size in many
clinical trial settings.

A GST with K analyses will need to be able to continue to a
maximum information level Ty, greater than Zy;,.

On average, the GST can stop earlier than this and expected
information on termination, Ey(Z), will be considerably less than
T¢i., especially under extreme values of 6.

We call R=Tk /Zyi, the inflation factor of a group sequential test.
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Optimal group sequential tests

We can seek a GST that minimises expected information Ey(Z)
under certain values of the treatment effect, 6, with a given
number of analyses K and inflation factor R.

Eales & Jennison (Biometrika, 1992) and Barber & Jennison
(Biometrika, 2002) optimise designs for criteria of the form

S i o, (T) or / F£(6) Eo(T) db,
where f is a normal density.

These optimised designs could be used in their own right.

They also serve as benchmarks for other methods which may have
additional useful features (e.g., error spending tests).
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Computing optimal group sequential tests

In optimising a GST, we create a Bayes sequential decision
problem, placing a prior on 6 and defining costs for sampling and
for making incorrect decisions.

Such a problem can be solved rapidly by dynamic programming.
We then search for the combination of prior and costs such that

the solution to the (unconstrained) Bayes decision problem has the
specified frequentist error rates «w at 6 = 0 and (3 at 6 = 0.

The resulting design solves both the Bayes decision problem and
the original frequentist problem.
Complete Class Theorem:

The Bayes problem is introduced as a computational device — we
could have called it a Lagrangian approach. Nevertheless, this
derivation demonstrates that an efficient frequentist design should
also be a good Bayesian procedure (and vice versa).
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Benefits of group sequential testing

One-sided GSTs minimising {Eo(Z) + Es(Z)}/2 for K equally
sized groups, a = 0.05, 1 — 3 =10.95 and Z,,00 = R L.

Minimum values of {Ey(Z) + Es(Z)}/2, as a percentage of Zy;,

R Minimum
K 1.01 105 11 1.2 1.3 over R
2 809 745 728 73.2 753 72.6 at R=1.13
3 763 693 665 64.8 6438 64.7 at R=1.25
5 722 652 622 59.8 59.0 58.7 at R=1.41
10 69.1 621 59.0 56.3 55.2 54.3 at R=1.61
20 67.6 605 574 546 53.3 51.9 at R=1.80
oo (SPRT) 49.0 at R=cc

Note: E(Z)\, as K ' but with diminishing returns,
E(Z)N, as R~ up to a point.
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Benefits of group sequential testing

Most of the benefits of sequential testing can be achieved by a
group sequential test with a small number of analyses and a
modest increase in maximum sample size over a fixed sample
design.

Many “sequential” clinical trials have K = 2, i.e., one interim
analysis and a final analysis.

| would recommend designs with 4 or 5 analyses and an inflation
factor of 1.05 or 1.1.
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Relating results on optimal GSTs to our 1982 paper

JJT: Theory tells us a reduction to 25% of the fixed sample size is
possible in the limit as a = 8 — 0.

The smallest number in the preceding table is 49%.

Even the SPRT (the best one can do), approaches this limit slowly.

a(=p) SPRT's {Ey(Z) + E5(Z)}/2

as a percentage of Zy;,

0.05 49.0
0.01 41.6
1073 36.1
1074 333
107° 31.6
1076 30.6
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Relating results on optimal GSTs to our 1982 paper

JJT: We applied results of Schwarz and Berk that show one can
construct sequential tests which are asymptotically efficient for all
0 values.

For typical error rates, a and 3, it is possible to construct group
sequential designs which are efficient over a range of 0 values.

For example, if a design with K analyses and inflation factor R is
chosen to minimise

/ 1(0) Eo(T) db,

where () is a N(6/2, (§/2)?) density, then this design will be
highly efficient for § between 0 and 4.

Furthermore, one can specify an error spending design that will
have very similar boundaries and, thus, similarly high efficiency.
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Adaptive design and multiple testing

A change in philosophy for clinical trials

From around 2000, there has been a growing interest in adaptive
design of clinical trials.

Prior to this, the philosophy for Phase 3 clinical trials was to
pre-specify all aspects of the designs and stay as close as possible
to this plan.

With a decline in major breakthroughs in the pharmaceutical
industry and a rise in late phase trial failures, new approaches were
encouraged — and methods were proposed to achieve this while
protecting against the risk of false positive results.

In 2006, these developments made the front page of the Wall
Street Journal:
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Adaptive design in clinical trials

Wall Street Journal, July 2006:
FDA Signals it’s Open to Drug Trials that Shift Midcourse
Adaptive designs may allow trials to be adjusted:
e Route more patients to the treatment that seems to work best
e Drop treatments that don't seem to be effective

e Add more of the type of patients ... reacting best to a
particular treatment

e Merge two different phases of drug development into one trial

With views from:
Bob O'Neill , FDA Michael Krams, Wyeth
Paul Gallo, Novartis Don Berry, M. D. Anderson Cancer Center

Tom Fleming, Univ. Washington  Bruce Turnbull, Cornell University
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Adaptive design and multiple testing

In JJT, the asymptotic setting implies large sample sizes and the
opportunity to learn a great deal about the true parameter values
during the course of a study.

Thus, one can effectively use a design optimised for the true
parameter values.

Results in JJT rely on a “mean path approximation” where it is
argued that, with probability close to 1, the mean of a sample is
very close to its expectation, even at an early point in the study.

Some of the comments promoting adaptive designs for current use
appear to be based on similar reasoning.

However, in the non-asymptotic case, the picture can be very
different.
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Sample size re-estimation

Rather than use a group sequential test, some authors propose:

Design a trial to achieve desired power at 6§ = Ay, an initial
estimate of the true value of 6,

Calculate an estimate @ at an interim analysis,

Modify the sample size to achieve power in the case 6 = 0.
Suppose a study is designed to test Hy: 8 < 0 vs 6 > 0 with type |
error probability o = 0.025 and power 0.9 when 6 = 10.

After observing half the data, the standard deviation of 0is 4.4.
So, if @ = 5.0, a 95% confidence interval for 6 is (—3.6,13.6).

Conclusion: Sequential tests do not gain their efficiency by
“adapting to new estimates of 6".
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Multi-arm multi-stage designs

Adaptive designs can contribute significantly when multiple
hypotheses are to be tested:

Seamless Phase 2 / Phase 3 designs
Enrichment designs (shifting focus to a sub-population)
Umbrella trials (multiple therapies for a single disease)

Basket trials (one therapy, multiple diseases)

Even so, interim information on which to base adaptations tends to
be noisy.

JJT's selection problem has much in common with the testing
problem in an “umbrella trial’” — and there are lessons to take
from their 1982 solution.
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Discussion and conclusions

What is the role of asymptotic theory?

Over the decades, numerical computation and simulation have
played an increasing role — but exhaustive computation for all
possible cases is not always an option.

Theory is likely to reveal patterns and principles to guide us when
choosing an approach to solve a new problem.

Presenting an impressive looking paper at a Purdue Symposium (or
equivalent) is a good way to start your academic career!
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