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1. Examples

Multi-stage clinical trials that test multiple hypotheses include:

Seamless Phase 2/3 trials

Trials comparing several experimental treatments to a control

Two versions of a new treatment vs control (GATSBY)

Multiple new treatments vs control (Umbrella trials)

Enrichment designs

Two patient subgroups

Ordered subgroups based on a biomarker value

Aim: To reach conclusions, rejecting zero, one or more null
hypotheses while controlling the overall type I error rate.
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2. Controlling the Familywise Error Rate

Suppose we have h null hypotheses, Hi: θi ≤ 0 for i = 1, . . . , h.

A procedure’s familywise error rate when θ = (θ1, . . . , θh) is

Pθ{Reject Hi for some i with θi ≤ 0}.

The familywise error rate is controlled strongly at level α if this
error rate is at most α for all possible combinations of θi values.

Then

Pθ{Reject any true Hi} ≤ α for all θ = (θ1, . . . , θh).

Using such a procedure, the probability of choosing to focus on a
parameter θi∗ and then falsely claiming significance for the
associated null hypothesis Hi∗ is at most α.
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Closed testing procedures (Marcus et al. Biometrika, 1976)

Suppose we have null hypotheses Hi, i = 1, . . . , h.

For each subset I of {1, . . . , h}, define the intersection hypothesis

HI = ∩i∈I Hi.

Construct a “local” level α test of each intersection hypothesis HI ,
i.e., a test which rejects HI with probability at most α whenever
all hypotheses specified in HI are true.

Closed testing procedure

The simple hypothesis Hj : θj ≤ 0 is rejected overall if, and only if,
the “local” tests reject HI for every set I containing index j.
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Closed testing procedures

Proof of strong control of familywise error rate

Let Ĩ be the set of indices of all true hypotheses Hi.

Since HĨ is true, P{Reject HĨ} = α.

For a familywise error to be committed, HĨ must be rejected.

Hence, the probability of a familywise error is no greater than α.
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Testing an intersection hypothesis

Suppose the intersection hypothesis HI = ∩i∈I Hi is the
intersection of m simple hypotheses.

For each i ∈ I, let Pi be the 1-sided P-value for testing Hi.

Denote the ordered values of the Pi by P[1] ≤ P[2] ≤ . . . ≤ P[m].

Bonferroni adjustment

The overall P-value for testing HI is defined to be PI = mP[1].

Simes’ method (Biometrika, 1986)

The Simes P-value for HI is

PI = min
k=1,...,m

(mP[k]/k).

The Simes method is valid when the Pi are independent or
positively dependent. It is less conservative than Bonferroni.

Chris Jennison Designing a Multi-test Multi-stage Clinical Trial



Dunnett’s method (JASA, 1955)

Suppose m treatments are compared with a control, and responses
are normal with known variance.

Each null hypothesis Hi says treatment i is no better than control.

We are to test the intersection hypothesis HI = ∩i∈I Hi.

Denote the Z-statistic arising from the test of Hi by Zi.

The Zi have a multivariate normal distribution with a known
covariance matrix.

The P-value for testing HI using Dunnett’s test is

P{max
i∈I

Zi > z∗},

where z∗ is the observed value of maxi∈I Zi, and the probability is
calculated assuming each E(Zi) = 0.
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3. Multi-stage adaptive designs: Combination tests

Suppose we run a clinical trial adaptively in two stages:

Set the design of Stage 1, then conduct this part of the trial,

Analyse results from Stage 1,

Consider external information, if appropriate.

Set the design of Stage 2, informed by Stage 1 results and
external information,

Conduct Stage 2,

Analyse the results from Stage 2.

How can we test a null hypothesis with proper protection of the
type I error rate?
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Combination tests (Bauer & Köhne, Biometrics, 1994)

Let θ denote the treatment effect vs control for a specified form of
the treatment, patient population and endpoint.

We test H0: θ ≤ 0 against θ > 0, with type I error rate α at θ = 0.

Define one-sided P-values P (1) and P (2) from hypothesis tests of
H0 based on Stage 1 and Stage 2 data, respectively.

Under θ = 0

P (1) ∼ U(0, 1).

Conditional on Stage 1 data and Stage 2 design, P (2) ∼ U(0, 1).

Thus, P (1) and P (2) are independent U(0, 1) variates when θ = 0.

Hence P (1) and P (2) can be combined in an overall test of H0.
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The inverse normal combination test

Initial design

Specify use of the inverse normal test for hypothesis H0,
with weights w1 and w2 where w2

1 + w2
2 = 1.

Design Stage 1, fixing sample size and test statistic.

Stage 1

Observe the one-sided P-value, P (1), based on Stage 1 data.

Compute Z(1) = Φ−1(1− P (1)).

Design Stage 2 in the light of Stage 1 data.

Stage 2

Observe the P-value, P (2), based only on Stage 2 data.

Compute Z(2) = Φ−1(1− P (2)).

NB Under θ = 0, Z(1) ∼ N(0, 1), Z(2) ∼ N(0, 1), independent.
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The inverse normal combination test

The combination test is based on the statistic w1Z
(1) + w2Z

(2).

Under θ = 0, Z(1) and Z(2) are independent N(0, 1) so, with
w2
1 + w2

2 = 1,

w1Z
(1) + w2Z

(2) ∼ N(0, 1).

Hence, for an overall one-sided test with type I error rate α, we
reject H0 if

w1Z
(1) + w2Z

(2) > Φ−1(1− α).

If θ < 0, then Z(1) and Z(2) are stochastically smaller than N(0, 1)
random variables and the type I error rate is less than α.
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A K-stage combination test (Lehmacher & Wassmer,
Biometrics, 1999)

Start by defining a standard form of group sequential test

At analysis k, statistics Zk (based on the cumulative data) are
compared with critical values ak and bk.

If Zk < ak or Zk > bk the test stops, rejecting H0 if Zk > bk.

Values of ak and bk are set so the type I error probability is α.

For k = 1, . . . ,K, let Z(k) be the standardised test statistic based
on Stage k data alone, and write the cumulative Z-statistics as

Zk = (w1Z
(1) + . . .+ wkZ

(k)) / (w2
1 + . . .+ w2

k)1/2. (1)

In the adaptive trial design, calculate each Z(k) based on Stage k
data alone and substitute these values into (1).

Applying the stopping rule with critical values ak and bk gives a
group sequential test with type I error rate α.
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A Closed Testing Procedure with Combination Tests

It is straightforward to put together these two ingredients of a
design.

The Closed Testing Procedure requires a “local” level α test of
each individual hypothesis or intersection hypothesis.

Each level α test is created by combining the P -values or Z-values
based on data accrued in successive stages of the study. (In the
case of an intersection hypothesis, this may be a Bonferroni, Simes
or Dunnett P -value or Z-value.)

At each stage of group sequential testing a hypothesis Hi can be
rejected overall if every intersection hypothesis HI with i ∈ I has
been rejected by its local, level α test.
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4. Example: A Multi-arm Multi-stage (MAMS) trial

Suppose 3 treatments, low, medium and high doses of a new drug,
are to be compared against a control in a 4-stage trial.

We specify:

A Closed Testing Procedure,

Dunnett’s method to be used to create stage-wise Z-values for
intersection hypotheses,

Lehmacher-Wassmer, 4-stage combination tests for each HI

based on ρ-family error spending tests (see JT, 2000) with

ρ = 2, α = 0.025, no futility boundary (so each ak = −∞).

The null hypothesis Hj : θj ≤ 0 can be rejected globally if the
Lehmacher-Wassmer “local” tests reject each HI with j ∈ I.

Each treatment may be discontinued at any point for positive or
negative reasons.
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Example: Stage 1 data

Suppose the first stage produces Z-statistics Z
(1)
1 , Z

(1)
2 , and Z

(1)
3

for the three treatments, as shown below.

Treatment j Z
(1)
j

1 1.26

2 1.84

3 2.76

We shall apply Dunnett’s rule to find the Z-value Z
(1)
I for each

intersection hypothesis HI .

At Stage 1, the Z
(1)
I are also the cumulative Z-values, ZI,1, that

appear in the Lehmacher-Wassmer test.

The Lehmacher-Wassmer testing boundary has

b1 = 2.96, b2 = 2.56, b3 = 2.30, b4 = 2.09,

so we need to see ZI,1 = Z
(1)
I ≥ 2.96 to reject HI at this stage.
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Example: Stage 1 data

Applying Dunnett’s rule, Z-values for intersection hypotheses are

Hypothesis HI Z
(1)
I

H{1} 1.26
H{2} 1.84
H{3} 2.76

H{1,2} 1.56
H{1,3} 2.54
H{2,3} 2.54

H{1,2,3} 2.41

As already noted, the Z
(1)
I are also the cumulative Z-values, ZI,1,

that appear in the Lehmacher-Wassmer test.

As each ZI,1 = Z
(1)
I < b1 = 2.96, no hypotheses are rejected here.

We suppose the trial continues with all 3 treatments still active.
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Example: Stage 2 data

Results in Stage 2 (only) produce the Z-statistics Z
(2)
1 , Z

(2)
2 and

Z
(2)
3 shown below.

Treatment j Z
(2)
j

1 −0.45

2 2.21

3 0.71

From these, we compute the Dunnett Z-values, Z
(2)
I , for each

intersection hypothesis HI .

Then, to apply the Lehmacher-Wassmer test, we calculate the
cumulative Z-value for each HI

ZI,2 =
Z

(1)
I + Z

(2)
I√

2
.
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Example: Results after Stages 1 and 2

HI Z
(1)
I = ZI,1 Z

(2)
I ZI,2

H{1} 1.26 −0.45 0.57
H{2} 1.84 2.21 2.86
H{3} 2.76 0.71 2.45

H{1,2} 1.56 1.96 2.49
H{1,3} 2.54 0.34 2.04
H{2,3} 2.54 1.96 3.18

H{1,2,3} 2.41 1.81 2.98

The Lehmacher-Wassmer tests reject intersection hypotheses H{2},
H{2,3} and H{1,2,3} since they have ZI,2 > b2 = 2.56.

However, H{1,2} is not rejected so the Closed Testing Procedure
does not allow global rejection of H2.

Suppose the high dose Treatment 3 is dropped for safety reasons,
so the trial continues with Treatments 1 and 2 and the control.
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Example: Stage 3 data

Results in Stage 3 (only) produce Z-statistics Z
(3)
1 and Z

(3)
2

Treatment j Z
(3)
j

1 0.90

2 1.41

3 —

In computing the Dunnett Z-value for an intersection hypothesis

HI with 3 ∈ I, we set Z
(3)
I equal to Z

(3)
I′ where I ′ = I \ {3}.

This cannot be done for I = {3} — but that is not a problem as
we are no longer interested in the global test of H3.

The cumulative Z-value for each HI after the first 3 stages is

ZI,3 =
Z

(1)
I + Z

(2)
I + Z

(3)
I√

3
.
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Example: Results after Stages 1, 2 and 3

HI Z
(1)
I = ZI,1 Z

(2)
I ZI,2 Z

(3)
I ZI,3

H{1} 1.26 −0.45 0.57 0.90 0.99
H{2} 1.84 2.21 2.86 1.41 3.15
H{3} 2.76 0.71 2.45 — —

H{1,2} 1.56 1.96 2.49 1.10 2.67
H{1,3} 2.54 0.34 2.04 0.90 2.19
H{2,3} 2.54 1.96 3.18 1.41 3.41

H{1,2,3} 2.41 1.81 2.98 1.10 3.07

The Lehmacher-Wassmer tests reject intersection hypotheses H{2},
H{1,2}, H{2,3} and H{1,2,3} since they have ZI,3 > b3 = 2.30.

Thus, H2 can be rejected globally and Treatment 2 declared
superior to the control.

Suppose Treatment 2 is discontinued at this point and the trial
continues with the low dose Treatment 1 and the control.
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Example: Stage 4 data

Results in Stage 4 (only) produce the single Z-statistic Z
(4)
1 .

Treatment j Z
(4)
j

1 2.07

2 —

3 —

We shall use Z
(4)
1 to create Z-statistics for intersection hypotheses

HI involving Treatment 1.

We can then conduct the final analysis of the Lehmacher-Wassmer
tests of these hypotheses using the test statistics

ZI,4 =
Z

(1)
I + Z

(2)
I + Z

(3)
I + Z

(4)
I

2
.
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Example: Results after Stages 1, 2, 3 and 4

HI Z
(1)
I Z

(2)
I ZI,2 Z

(3)
I ZI,3 Z

(4)
I ZI,4

H{1} 1.26 −0.45 0.57 0.90 0.99 2.07 1.89
H{2} 1.84 2.21 2.86 1.41 3.15 — —
H{3} 2.76 0.71 2.45 — — — —

H{1,2} 1.56 1.96 2.49 1.10 2.67 2.07 3.35
H{1,3} 2.54 0.34 2.04 0.90 2.19 2.07 2.93
H{2,3} 2.54 1.96 3.18 1.41 3.41 — —

H{1,2,3} 2.41 1.81 2.98 1.10 3.07 2.07 3.69

The Lehmacher-Wassmer tests reject intersection hypotheses
H{1,2}, H{1,3} and H{1,2,3} since they have ZI,4 > b4 = 2.09.

However, H{1} is not rejected, so the Closed Testing Procedure
does not allow global rejection of H1.
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Example: Conclusions

The conclusions from the study are that:

The medium dose, Treatment 2, was shown to be superior
to the control in a testing procedure with familywise type I
error rate α = 0.025.

The low dose, Treatment 1, was not found to be superior to
the control.

The high dose, Treatment 3, was found to have safety
problems and was dropped half way through the study.
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5. Creating efficient designs

We have shown how to construct designs that protect the
familywise error rate.

We can also choose elements of a design to “optimise” aspects of
its performance.

In a sequential design, we can aim to reduce average sample size
subject to controlling type I error and achieving a specified power.

In optimising a design that tests multiple hypotheses, we need to
define an overall measure of the value of a final set of outcomes,
depending on which null hypotheses are rejected.

Then, we can try to maximise the expected value of this “gain
function”, either under a certain set of parameter values or
integrated over a prior distribution.
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Creating efficient designs

Optimising every element of a complex design may not be feasible.

However, one can fix certain elements to control familywise error
and then optimise the remaining parts of the design.

The process of assessing the value of a final set of outcomes and
identifying the parameter values under which to optimise
performance can be an instructive exercise in itself.
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