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1. Group sequential tests

Suppose a new treatment (Treatment A) is to be compared to a
control (Treatment B) in a Phase III trial.

The treatment effect θ for the primary endpoint represents the
advantage of Treatment A over Treatment B.

If θ > 0, Treatment A is more effective.

We wish to test the null hypothesis H0: θ ≤ 0 against θ > 0 with

Pθ=0{Reject H0} = α,

Pθ=δ{Reject H0} = 1− β.

In a group sequential trial, data are examined on a number of
occasions to see if an early decision may be possible.
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Group sequential tests

A typical boundary for a one-sided test, expressed in terms of
standardised test statistics Z1, . . . , ZK , has the form:
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Crossing the upper boundary leads to early stopping for a positive
outcome, rejecting H0 in favour of θ > 0.

Crossing the lower boundary implies stopping for “futility” with
acceptance of H0.
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Benefits of group sequential testing

Earlier decisions

Group sequential testing can speed up the process to
introduce an effective new treatment.

Fewer patients recruited

Expected sample sizes for group sequential designs are,
typically, around 60 to 70% of the fixed sample size for
a trial with the same type I error rate and power.

Stopping failing trials early

Early stopping “for futility” can release resources to
continue the development of other promising treatments.
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2. Over-run data

Reference: Hampson & Jennison (JRSS B, 2013), hereafter “HJ”

Group sequential designs are most often developed supposing
observations will be recorded immediately after treatment.

Thus, if it is decided to stop a trial at an interim analysis, it is
assumed the current observations will form the final set of data.

In practice, responses are observed some time after treatment.

Thus, when it is decided to stop a trial at an interim analysis, one
should expect additional data from patients who have been treated
but whose responses have not yet been observed.

We shall refer to such patients as “in the pipeline”.

How should the additional data be analysed?
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Examples of over-run data

Example 1: HJ describe a study of a cholesterol lowering drug.
The primary endpoint is reduction in cholesterol after 4 weeks.

A total of 96 patients are to be recruited at a rate of 4 patients per
week. At each interim analysis we can expect 16 subjects to have
been treated but not yet produced a response.

If the study is stopped at an interim analysis, investigators will still
follow up the ∼16 pipeline subjects and observe their responses.

Example 2: Consider a clinical trial with a time-to-event endpoint.

Data are locked before each interim analysis. Time passes as data
are cleaned, the DMC meets, and — at one analysis — the DMC
recommends to the Steering Committee that the trial be stopped.

When stopping actually happens, more events will have occurred
and other potential events will have been adjudicated.
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Example 1: The cholesterol reduction trial

Suppose a standard group sequential test (GST) with type I error
rate α is applied.
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We observe Z3 = 2.4, which exceeds the boundary value of 2.3.

The trial stops and the conclusion of the group sequential test is

“Reject H0: θ ≤ 0”.
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Example 1: The cholesterol reduction trial

Now suppose that additional observations are observed for subjects
who were “in the pipeline” at analysis 3.
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With the pipeline data included, we find Z̃3 = 2.1.

Can the investigators claim significance at level α?
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3. Whitehead’s method

Whitehead (Cont. Clin.Trials, 1992) proposed the “deletion method”.

The analysis k at which termination occurs is deleted and one
behaves as if analysis k had occurred with the information level Ĩk
arising from the final set of responses.
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A boundary value b̃k is computed and H0 is rejected if, for the test
statistic including pipeline data, Z̃k ≥ b̃k.

Note: In order to reject H0, the test statistics must first cross the
upper boundary of the original group sequential design.
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Whitehead’s method
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For H0 to be rejected, the test statistics must first cross the upper
boundary of the original group sequential design. Thus, this
method protects the type I error rate conservatively.

Sorriyarachchi et al. (Biometrics, 2003) investigated the “deletion
method” and several other proposals.

They found that tests using additional “pipeline” data often had
lower power than simple GSTs which ignored these data — but
extra information ought to help!
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4. Hampson & Jennison’s method

The method of Whitehead (1992) applies a GST as if response
were immediate, then we try to accommodate additional pipeline
data once this GST has terminated.

A more systematic approach is to recognise that there will be
pipeline data when designing the trial.

Interestingly, T. W. Anderson (JASA, 1964) recognised this issue,
well before the advent of modern group sequential methods.

The methods of Hampson & Jennison (JRSS, B, 2013) follow the
same basic structure that was proposed by Anderson.

With delayed response data, a trial comes to an end in two stages:

1. Stop recruitment of any more subjects,

2. After responses have been observed for all recruited
subjects, make a decision to accept or reject H0.
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Defining a group sequential test with delayed responses

For now, we assume, as in Example 1:

The primary endpoint is measured a fixed time after treatment
commences,

The endpoint will be known (eventually) for all treated subjects,

If recruitment is stopped, it cannot be re-started.

Consider a trial with responses observed time ∆t after treatment.
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At each analysis, patients arriving in the last ∆t units of time are
“in the pipeline”.
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Boundaries for a Delayed Response GST

At interim analysis k, observed information is Ik = {Var(θ̂k)}−1.
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If Zk > bk or Zk < ak at analysis k, we cease enrolment of patients
and follow-up all recruited subjects to observe their responses.

At the subsequent decision analysis, denote information by Ĩk and
the standardised test statistic by Z̃k. We reject H0 if Z̃k > ck.

If we reach the final analysis K, we reject H0 if Z̃K > cK .
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Delayed Response GSTs

For a particular sequence of observed responses, we apply
boundary points at a sequence of information levels of the form

I1, . . . , Ik, Ĩk.

In the example below, recruitment ceases at the second analysis
and the final decision is made with the additional “pipeline” data
bringing the information up to Ĩ2.
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Calculations for a Delayed Response GST

The type I error rate, power and expected sample size of a Delayed
Response GST depend on the joint distributions of test statistic
sequences:

{Z1, . . . , Zk, Z̃k}, k = 1, . . . ,K − 1,

and

{Z1, . . . , ZK−1, Z̃K}.

Each sequence is based on accumulating data sets.

Given {I1, . . . , Ik, Ĩk}, the sequence {Z1, . . . , Zk, Z̃k} follows
the “canonical joint distribution” for the sequence of Z-statistics
observed in a GST with immediate response (Jennison & Turnbull,
2000, Ch. 11).
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Calculations for a Delayed Response GST

Specifically, with

Zk =
θ̂k√

Var(θ̂k)
= θ̂k

√
Ik,

we have:

(Z1, . . . , ZK) is multivariate normal,

Zk ∼ N(θ
√
Ik, 1), k = 1, . . . ,K,

Cov(Zk1 , Zk2) =
√
Ik1/Ik2 for k1 < k2.

Thus, properties of Delayed Response GSTs can be calculated
using the same numerical routines that were needed for standard
group sequential designs.
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The value of information from pipeline subjects

When recruitment is terminated at interim analysis k with Zk > bk
or Zk < ak, current data suggest the likely final decision.

Pipeline data give more information to use in making this decision.

The pipeline data may produce a “reversal”, with the final decision
differing from that anticipated when recruitment was terminated.

We could, for example, observe:
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Here, accrual stops at analysis 1 because of unpromising results,
but H0 is rejected when the pipeline data are observed.
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The value of information from pipeline subjects

Or, recruitment may cease with promising data only for H0 to be
accepted.
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Note: There is no option of “banking” the evidence at analysis 1
— we assume all pipeline subjects will eventually be observed.

Decisions based on more data ought to be more accurate: perhaps
these pipeline data have helped to avoid a false positive conclusion.

An optimised design will place boundary points to achieve high
power for the permitted type I error rate, α.
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Optimising a Delayed Response GST

We can specify the type I error rate α and power 1− β at θ = δ.

Set the maximum sample size nmax, number of stages K, and the
analysis schedule.

Suppose there are r nmax pipeline subjects at each interim analysis.

Let N denote the total number of subjects recruited.

Objective:

Given α, β, δ, nmax, K and r, we may find the Delayed Response
GST minimising

F =

∫
Eθ(N) f(θ) dθ

where f(θ) is the density of a N(δ/2, (δ/2)2) distribution.

Other weighted combinations of Eθ(N) can also be used.
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An optimal design for Example 1: Cholesterol treatment

For normally responses with σ2 = 2, α = 0.025, power 0.9 required
at θ = 1, and given group sizes, the following design minimises

F =

∫
Eθ(N) f(θ) dθ,

where f(θ) is the density of a N(0.5, 0.52) distribution.
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The values of c1 and c2 are less than 1.96. These can be raised to
1.96 with little change to the design’s power curve.
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4. Error spending Delayed Response GSTs

HJ show how to construct Error Spending Delayed Response GSTs.

Here, we present a variation on these methods which allows a
non-binding futility boundary.

The test is defined through two error spending functions:

f(I/Imax) for type I error probability,

g(I/Imax) for type II error probability.

Recruitment stops when the target information Imax is reached (or
will be reached with the responses from pipeline subjects).

After analysis k and its subsequent decision analysis:

The cumulative type I error will be exactly f(Ik/Imax),

The cumulative type II error will be approximately g(Ik/Imax)
(depending on how accurately Ĩk can be predicted).
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Error spending Delayed Response GSTs
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Non-binding futility boundary:

Type I error is calculated assuming recruitment still continues if
Zk < ak at interim analysis k, so the futility boundary is crossed.

If recruitment is stopped when Zk < ak, a final decision to reject
H0 is not permitted, even if Z̃k > ck.
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Computing an error spending Delayed Response GST
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If we can predict Ĩk accurately, we want ak, bk and ck to satisfy

Pθ=0{Z1 < b1, . . . , Zk−1 < bk−1, Zk > bk, Z̃k > ck}

= f(Ik/Imax)− f(Ik−1/Imax),
and

Pθ=δ{a1 < Z1 < b1, . . . , ak−1 < Zk−1 < bk−1 and [Zk < ak or

(Zk > bk and Z̃k < ck) ] } = g(Ik/Imax)− g(Ik−1/Imax).

Note: We have two equations but three unknowns, ak, bk and ck.
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Computing an error spending Delayed Response GST
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HJ noted their optimal Delayed Response GSTs with α = 0.025
often had values of c1, . . . , cK−1 less than Φ−1(1− α) = 1.96.

For reasons of credibility, they suggested increasing the values of
c1, . . . , cK−1 to 1.96 — or set c1 = · · · = cK−1 = 1.96 before
optimising over the remaining constants.

In an error spending design, we can set ck = Φ−1(1− α) = 1.96,
then we have two equations to determine ak and bk.
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Updating ck on observing Ĩk — preserving type I error

The above boundary spends the required increments in type I and II
error probability exactly — if the predicted Ĩk is actually observed.

-

6

I

Zk

I1 Ik−1 Ik Ĩ ′k
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If, in fact, the final information level is Ĩ ′k, we find c′k such that

Pθ=0{Z1 < b1, . . . , Zk−1 < bk−1, Zk > bk, Z̃k > c′k}

= f(Ik/Imax)− f(Ik−1/Imax)

and increase this to c′k = 1.96 if the result is less than 1.96.

(This leads to c′k > 1.96 if Ĩ ′k < Ĩk and c′k = 1.96 if Ĩ ′k > Ĩk.)
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The ρ-family of error spending functions

HJ considered ρ-family error spending functions of the form

f(I/Imax) = αmin{1, (I/Imax)ρ},

g(I/Imax) = βmin{1, (I/Imax)ρ}.

They found the resulting Delayed Response GSTs to have close to
optimal efficiency for the objective function

F =

∫
Eθ(N) f(θ) dθ,

where f(θ) is the density of a N(0.5, 0.52) distribution.

We shall use the functions f and g to define error spending
Delayed Response GSTs with non-binding futility boundaries.

We consider designs for Example 1: the cholesterol treatment trial.
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Example 1: A ρ-family error spending GST

Given α, β and δ, we can choose an error spending delayed
response GST whose boundaries will converge at the final analysis
if {I1, Ĩ1, . . . , IK−1, ĨK−1, ĨK} follow anticipated values.

In the cholesterol trial, the anticipated sample sizes

n1 = 28, ñ1 = 44, n2 = 54, ñ2 = 72, ñ3 = 96

lead to

I1 = 3.5, Ĩ1 = 5.5, I2 = 6.75, Ĩ2 = 8.75, ñ3 = 12.

With these information levels, the boundaries of a ρ-family error
spending test with ρ = 1.345 will meet up at analysis 3.

In this case, the boundary values are

a1 = −0.409, b1 = 2.437, c1 = 1.960;

a2 = 0.664, b2 = 2.244, c2 = 1.960;

c3 = 2.069.
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Example 1: A ρ-family error spending GST

The figure shows Eθ(N) for:

1. A fixed sample study design

2. Error spending delayed response GST (ρ = 1.345)

3. Error spending GST ignoring pipeline data (ρ = 1.368)
but counting these subjects in Eθ(N)
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Both GSTs have non-binding futility boundaries.
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Example 1: A ρ-family error spending GST
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Making use of the
pipeline data leads
to some efficiency
gains for θ > 0.5.

Importantly, the pipeline data do not have a detrimental effect.

In contrast, if we apply Whitehead’s deletion method, starting
from the ρ-family error spending GST for immediate response,
power at θ = 1 falls from 0.9 to 0.872.

A 10% increase in overall sample size would be needed to recover
this loss of power.
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Example 2: A study with a time-to-event endpoint

Suppose a study’s endpoint is survival or progression free survival.

Events are likely to be recorded between the data set lock for an
interim analysis and a decision to stop recruitment.

If events require adjudication, a further increase may follow.

The same approach can be taken as in Example 1 to create an
error-spending Delayed Response GST.

Predicting Ĩk may be harder — but the methods can handle this.

Pipeline data may provide a substantial amount of additional
information. Then, the guiding principles should be that:

If θ = 0, using these data may help avoid a type I error;

If θ = δ, pipeline data are unlikely to “reverse a positive result”.

Detailed calculations for Example 1 show this is possible!
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6. Conclusions

HJ (2013) showed how GSTs for a delayed response can be
optimised for criteria involving both the number of subjects
recruited and the time to a final decision.

These optimised designs provide a template for error spending
GSTs that can accommodate over-run data.

Our error spending GSTs reduce the possibility (compared to
Whitehead’s method) that over-run data will produce a “reversal”
where a high Zk causes recruitment to stop but the final Z̃k is
below the boundary — even though there is still quite strong
evidence against H0.

In “reversals” where the final test statistic Z̃k falls below 1.96, we
have the consolation that a simple fixed sample test based on the
same data would not have produced a significant result.
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7. Additional slides: Optimising a Delayed Response GST

Specify the type I error rate α and power 1− β at θ = δ.

Set the maximum sample size nmax, number of stages K, and the
analysis schedule.

Suppose there are r nmax pipeline subjects at each interim analysis.

Let N denote the total number of subjects recruited.

Objective:

Given α, β, δ, nmax, K and r, find the Delayed Response GST
minimising

F =

∫
Eθ(N) f(θ) dθ

where f(θ) is the density of a N(δ/2, (δ/2)2) distribution.

Other weighted combinations of Eθ(N) can also be used.
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Computing optimal Delayed Response GSTs

HJ (JRSS B, 2013) explain how to derive an optimal delayed
response GST.

They create a Bayes sequential decision problem, placing a prior
on θ and defining costs for sample size and the time taken to reach
a decision, plus a penalty for incorrect decisions.

They solve this problem by dynamic programming.

They then search for the combination of prior and costs such that
the solution to the (unconstrained) Bayes decision problem has the
specified frequentist error rates α at θ = 0 and β at θ = δ.

The resulting design solves both the Bayes decision problem and
the original frequentist problem.
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An optimal design for the cholesterol treatment example

In the cholesterol treatment trial (Example 1), the primary
endpoint is reduction in serum cholesterol after 4 weeks.

Responses are assumed normally distributed with variance σ2 = 2.

The treatment effect θ is the difference in mean response between
the new treatment and control.

An effect θ = 1 is regarded as clinically significant.

It is required to test H0: θ ≤ 0 against θ > 0 with

Type I error rate α = 0.025,

Power 0.9 at θ = 1.

A fixed sample test needs nfix = 85 subjects over the two
treatments.
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An optimal design for the cholesterol treatment example

Consider designs with a maximum sample size of 96.

Assuming a recruitment rate of 4 per week:

Data start to accrue after 4 weeks,

Each interim analysis will have 4× 4 = 16 pipeline subjects,

so the “pipeline fraction” is r = 16/96 = 0.17.

Recruitment will close after 24 weeks.

Interim analyses are planned after n1 = 28 and n2 = 54 observed

responses and the final decision is based on:

ñ1 = 44 responses if recruitment stops at interim analysis 1,

ñ2 = 70 responses if recruitment stops at interim analysis 2,

ñ3 = 96 responses if there is no early stopping.
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An optimal design for the cholesterol treatment example

The following Delayed Response GST minimises

F =

∫
Eθ(N) f(θ) dθ,

where f(θ) is the density of a N(0.5, 0.52) distribution.
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The values of c1 and c2 are less than 1.96. These can be raised to
1.96 with little change to the design’s power curve.
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