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Outline of talk

1. Sample size formulae — what is it that we don’t know?

Normal, binary and survival endpoints

2. Dealing with nuisance parameters

Normal: The variance,

Binary: Probability of success on the control arm,

Survival: Overall hazard rate

3. The unknown treatment effect

Is there a problem?

Group sequential or adaptive designs?

4. Conclusions
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1. Sample size formulae

(i) A two treatment comparison with normal response

Consider a Phase 3 trial comparing a new treatment with a
control, where the primary endpoint follows a normal distribution.

Denote responses by

YBi, i = 1, 2, . . . , on the new treatment,

YAi, i = 1, 2, . . . , on the control arm.

A common variance σ2 is assumed for both treatment and control,
so we have

YAi ∼ N(µA, σ
2) and YBi ∼ N(µB, σ

2).

The treatment effect is

θ = µB − µA.
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A two treatment comparison with normal response

We wish to test H0: θ ≤ 0 against the alternative θ > 0.

We set the (one-sided) type I error rate to be α = 0.025.

We specify an effect size δ we wish to detect with high probability.

In order to achieve power 1− β when θ = δ, we need a sample size
of approximately

n =
2 (zα + zβ)2 σ2

δ2
(1)

in both the treatment and control groups. (A more precise answer
uses a t-distribution instead of the standard normal distribution.)

The sample size formula (1) depends crucially on σ2 and δ.

Practical considerations will favour choices of σ2 and δ that lead
to an affordable trial with a feasible target sample size.
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(ii) A two treatment comparison with binary response

Consider a trial with a binary outcome, e.g., success or failure of
the treatment.

Denote responses by

YBi, i = 1, 2, . . . , on the new treatment,

YAi, i = 1, 2, . . . , on the control arm,

and success probabilities by pA and pB, so

YBi = 1 with probability pB,

YAi = 1 with probability pA.

The treatment effect is

θ = pB − pA

and we wish to test H0: θ ≤ 0 against θ > 0.
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A two treatment comparison with binary response

The success probabilities of treatments A and B are pA and pB.

With θ = pB − pA, we wish to test H0: θ ≤ 0 against θ > 0.

The (one-sided) type I error rate is α = 0.025 and we aim to
achieve power 1− β at a specified effect size θ = δ.

To achieve this power, we need a sample size in each treatment
group of

n =
2 (zα + zβ)2 p̃ (1− p̃)

δ2
, (2)

where p̃ = (pA + pB)/2.

Thus, the sample size depends on the specified treatment
effect δ and the “nuisance parameter” p̃ = (pA + pB)/2.
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(iii) Two treatment comparison with a survival outcome

Consider a Phase 3 trial comparing a new treatment with a
control, where the primary endpoint is overall survival.

Survival times are assumed to follow a proportional hazards model
with hazard rates

hA(t) on the control arm,

hB(t) = λhA(t) on the new treatment.

Let θ = log(λ).

If the new treatment is successful, λ < 1 and θ < 0.

Thus, we wish to test H0: θ ≥ 0 against θ < 0.
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A two treatment comparison with a survival outcome

We test H0: θ ≥ 0 against θ < 0 with one-sided type I error rate
α = 0.025 and we want a high probability of detecting an effect
size θ = δ, i.e., a hazard ratio λ = eδ, where δ < 0.

The distribution of the logrank statistic depends on the number of
observed events (deaths in this case).

If the total number of events is n, the unstandardised logrank
statistic is distributed, approximately, as

N(θ n/4, n/4).

To achieve power 1− β when θ = δ, we need a sample size and
follow-up time that will yield a total of

n =
2 (zα + zβ)2 4

δ2
(3)

events in the treatment and control groups together.
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2. Dealing with unknowns in the sample size formula

The sample size formula, n = 2 (zα + zβ)2 σ2/δ2, for the normal
case contains the response variance, σ2.

Formula (2) for the binary case contains the average success rate p̃.

We call σ2 and p̃ “nuisance parameters”.

For survival data, the required number of events in (3) depends on:
accrual rate, follow-up, baseline hazard rate and censoring.

The internal pilot study approach: Wittes & Brittain (Statist.
in Med., 1990) proposed a strategy to achieve desired power.

Let φ denote a nuisance parameter in the sample size formula.

Design the trial using an initial estimate, φ0.

At an interim analysis, estimate φ from the current data and
re-calculate the sample size using this new estimate.
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Example: Sample size re-estimation for a variance

A trial is to compare two cholesterol reducing drugs, A and B.

The primary endpoint is the fall in serum cholesterol over 4 weeks.

The one-sided type I error rate is set at α = 0.025 and a power of
1− β = 0.9 is desired to detect an improvement of 0.4 mmol/L in
Treatment B vs Treatment A.

Assuming each patient’s fall in cholesterol is normally distributed,
if the response variance is σ2, power 0.9 to detect an effect size
δ = 0.4 is achieved by a sample size per treatment of

n =
2 (z0.025 + z0.1)

2 σ2

0.42
.

The initial estimate σ20 = 0.5 gives a sample size per treatment of

n0 =
2 (1.960 + 1.281)2 0.5

0.42
= 65.7 ≈ 66.
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Example: Sample size re-estimation for a variance

Following the Wittes & Brittain approach, an interim analysis is
conducted after observing 33 patients per treatment.

Suppose this yields an estimated variance σ̂21 = 0.62.

We re-calculate the sample size per treatment as

n1 =
2 (1.960 + 1.281)2 0.62

0.42
= 81.4 ≈ 82

and increase the total sample size to 82 per treatment arm.

We analyse the final data as if from a fixed sample size study.

Questions:

Does this procedure achieve the overall power of 0.9 when the
treatment effect is 0.4?

Is the type I error rate controlled at 0.025?
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Example: Sample size re-estimation for a variance

In our example, suppose the sample size rule is to calculate

n1 =
2 (1.960 + 1.281)2 σ̂21

0.42

and take the maximum of n1 and 66 as the new sample size per
treatment arm.

If the true variance is σ2 = 0.6 and this rule is applied,

The overall power is 0.899,

The type I error probability is 0.0256.

This small inflation of the type I error rate is quite typical — the
type I error rate can be as high as 0.03 or 0.04 when the interim
analysis has fewer observations.
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Example: Sample size re-estimation for a variance

Why is there inflation of the type I error rate?

Denote the interim estimate of σ2 by σ̂21 and denote the final
estimate of σ2 by σ̂22.

If σ̂21 is high, a large final sample size, n1, is chosen and the
additional observations will tend to bring the final estimate, σ̂22,
down towards the true σ2.

If σ̂21 is low, the final sample size, n1, is small and the final
estimate, σ̂22, is likely to remain low.

The consequence of this is that, overall, σ̂22 is biased downwards.
So, on average, we under-estimate σ2.

The estimate σ̂22 appears in the denominator of the final t-statistic.
The negative bias in σ̂22 produces higher absolute values of this
t-statistic, and the high positive values inflate the type I error rate.
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Example: Sample size re-estimation for a variance

Even with 64 degrees of freedom to estimate σ2 at the interim
analysis, the estimate σ̂2 is very variable — and, hence, so is the
total sample size n1.

However, over-estimates compensate for under-estimates in
achieving the desired power.
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Similar variability in total sample size and similar type I error rate
inflation are seen for the case of binary response.
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Further comments on sample size re-estimation for σ2

Information monitoring and group sequential tests:

This method of sample size re-estimation aims for a final estimate
of the treatment effect θ with a certain variance.

Since “Information” is the reciprocal of Var(θ̂), we are aiming for a
target information level.

The same method can be applied in a group sequential test (GST).

Mehta & Tsiatis (Drug Information Journal, 2001) implement an
error spending GST where type I error probability is spent as a
function of observed information.

A target information level is specified and, unless early stopping
occurs, the trial continues until this target is reached — with
additional recruitment to increase information if necessary.
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Further comments on sample size re-estimation for σ2

Survival data are different:

The information level for treatment effects in survival data is
determined primarily by the number of failures.

Typically, the analysis is conditional on the number of failures
and, under the null hypothesis, the standardised test statistic is
independent of the number of observed failures.

Thus, one can make changes to a trial design in response to
observed information levels (i.e., observed numbers of failures)
without affecting the type I error.

Information can be increased by recruiting additional patients or
extending the follow-up of patients in the trial.

Warning: The situation is quite different if the trial design is
modified to increase information because of a low estimate of
treatment effect. This is likely to inflate the type I error rate.
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Further comments on sample size re-estimation for σ2

Blinded sample size re-estimation:

A number of papers address the question of re-estimating sample
size when the treatment labels for each observation are not
revealed (in the interests of maintaining complete blinding).

For normal responses, one can fit a mixture of two normal
distributions to the pooled data: see papers by Gould & Shih,
Friede & Kieser.

Alternatively, one can estimate σ2 from the sample variance of the
pooled data — even though this estimate includes a contribution
from the difference in means of the two treatments.

Friede & Miller (Applied Statistics, 2012) observe that sample size
modification based on this form of blinded estimate of σ2 produces
little or no type I error rate inflation.
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Blinded sample size re-estimation

Applying Friede & Miller’s method in our example, let σ̂21p denote

the estimate of σ2 from the pooled data. We calculate

n1 =
2 (1.960 + 1.281)2 σ̂21p

0.42

and take the maximum of n1 and 66 as the new sample size per
treatment arm.

If the true variance is σ2 = 0.6 and this rule is applied,

The overall power is 0.902,

The type I error probability is 0.0249.

Recall: Using the unblinded estimate of σ2, we had power 0.899
and type I error rate 0.0256.

However, there is no proof that this approach controls the type I
error rate exactly.
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Using a combination test with sample size re-estimation

A combination test:

Reference: Bauer & Köhne (Biometrics, 1994)

Define the null hypothesis H0 (with a one-sided alternative).

We shall test H0: θ ≤ 0 vs θ > 0, with type I error probability α.

Design Stage 1, fixing sample size and test statistic for this stage.

Stage 1

Observe the P-value P1 for testing H0.

After seeing Stage 1 data, design Stage 2 and fix the test statistic.

Stage 2

Observe the P-value P2 for testing H0.
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A combination test

Suppose θ = 0:

Then, P1 has the usual U(0, 1) distribution.

Also, P2 ∼ U(0, 1) conditionally on the Stage 1 data and the
resulting Stage 2 design.

Since the conditional distribution of P2 is the same for all Stage 1
data, P2 is independent of the Stage 1 data (including P1).

Thus, when θ = 0, P1 and P2 are independent U(0, 1) variables.

Bauer and Köhne proposed a test based on P1 P2, using the fact
that P1 P2 ∼ exp(−χ2

4/2) when P1 and P2 ∼ U(0, 1).

Alternatively, one can define a test in terms of the Z-statistics

Z1 = Φ−1(1− P1) and Z2 = Φ−1(1− P2),

which have independent N(0, 1) distributions under θ = 0.
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The “inverse normal” combination test

To use the inverse normal” combination test, we stipulate that this
test will be used and specify weights w1 and w2, where

w2
1 + w2

2 = 1.

The trial is conducted in two stages, with the design of Stage 2 set
after seeing Stage 1 data, as described above.

The stage-wise P -values P1 and P2 are calculated, and from these
we obtain Z1 = Φ−1(1− P1) and Z2 = Φ−1(1− P2).

The overall combination test rejects H0 if

w1 Z1 + w2 Z2 > zα.

Since Z1 and Z2 are independent N(0, 1) variables under θ = 0,

w1Z1 + w2Z2 ∼ N(0, 1)

and, hence, the combination test has type I error probability α.
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Comments on the inverse normal combination test

The inverse normal combination test rejects H0 if

w1 Z1 + w2 Z2 > zα,

where w1 and w2 are pre-specified weights satisfying w2
1 + w2

2 = 1.

It may be tempting to adjust the weights w1 and w2 to reflect the
sample sizes actually seen in Stages 1 and 2.

However, this would undermine the mechanism by which the type I
is protected — and type I error inflation may ensue.

Combination tests provide a method to control type I error
probability precisely in adaptive trial designs.

Together, combination tests and multiple testing procedures
underpin a wide variety of adaptive designs, including seamless
Phase 2/3 designs and enrichment trials.
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Example: Sample size re-estimation for a variance

In the setting of our previous example, we proceed as follows.

First stipulate that an inverse normal combination test will be used
with weights w1 = w2 = 1/

√
2.

Stage 1

Take n0 = 33 observations per treatment arm,

Calculate the t-statistic

t1 =
θ̂1√

2 σ̂21 / 33

and find the corresponding P -value P1 = P{T64 > t1}.

Compute n1 = 2 (zα + zβ)2 σ̂21 / δ
2 and set the Stage 2 sample

size per treatment to be n2 = max(n1, 66)− 33.
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Example: Sample size re-estimation for a variance

Stage 2

Take n2 observations per treatment arm,

Calculate the t-statistic based solely on Stage 2 data

t2 =
θ̂2√

2 σ̂22 / n2

and find the P -value P2 = P{T2n2−2 > t2}.

The overall combination test

Find Z1 = Φ−1(1− P1) and Z2 = Φ−1(1− P2).

Using the pre-specified weights, reject H0: θ ≤ 0 if

(1/
√

2)Z1 + (1/
√

2)Z2 > zα.
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Properties of the trial design using a combination test

In the above design, we take an initial sample of n0 = 33 per
treatment, then calculate

n1 = 2 (1.960 + 1.281)2 σ̂21/0.4
2,

and take a further {max(n1, 66)− 33} patients per treatment arm.

If the true variance is σ2 = 0.6 the Wittes & Brittain method gave

Type I error probability = 0.0256,

Overall power = 0.899

The inverse normal combination test, with same n1 values, has

Type I error probability = 0.0250,

Overall power = 0.896.
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Sample size re-estimation with a binary response

Example: Treatment for heart failure

A new treatment is to be compared to the current standard.

The primary endpoint is

Re-admission to hospital (or death) within 30 days.

The current treatment has a re-admission rate of 25%.

Testing for superiority

It is hoped the new treatment will reduce re-admissions to 20%.

Denote re-admission probabilities by pt on the new treatment and
pc on the control.

To establish superiority of the new treatment, we test H0: pt ≥ pc
against pt < pc — hoping to reject H0.
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Binary example: Treatment for heart failure

Setting θ = pc − pt, we wish to test H0: θ ≤ 0 against θ > 0 with

Type I error rate: α = 0.025 at θ = 0,

Power: 1− β = 0.9 when θ = δ = 0.25− 0.2 = 0.05.

From (2), we achieve this power with a sample size of

n =
2 (zα + zβ)2 p̃ (1− p̃)

δ2
,

in each treatment group, where p̃ = (pc + pt)/2.

From historical data, we expect pc = 0.25.

With pt = 0.2, this gives p̃ = (0.25 + 0.2)/2 = 0.225, and the
required sample size test per treatment arm is

n0 = 1466.
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Binary example: Treatment for heart failure

The sample size formula depends on pc, as well as θ = pc − pt.

Desired power may not be achieved if previous data are not
representative of the new study: for example, hospitals involved
may have a different case mix and admit more seriously ill patients.

Suppose investigators decide to conduct an interim analysis at
which an increase in sample size may be agreed.

The trial design

A Bauer & Köhne two-stage design is specified.

Data from before and after the interim analysis will be combined
using an inverse normal combination test with w1 = w2 = 1/

√
2.

The initial calculation gave a target sample size of n0 = 1466 per
treatment arm: we recruit 730 patients per treatment in Stage 1.
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Binary example: Treatment for heart failure

Stage 1, with 730 subjects per treatment, yields p̂c = 0.253 and

p̂t = 0.219, so θ̂ = 0.034 with standard error 0.0222.

A test of H0: θ ≤ 0 has Z1 = 0.034/0.0222 = 1.531.

The overall test will reject H0 if

(1/
√

2)Z1 + (1/
√

2)Z2 > zα = 1.96.

Since Z1/
√

2 = 1.083, results thus far are promising. However, a
positive outcome is by no means certain.

Investigators learn that trials of competing treatments have been
unsuccessful.

It is decided to increase the second stage sample size to give higher
probability of a positive outcome under the original alternative,
θ = 0.05 — and under smaller effect sizes.
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Binary example: Planning the Stage 2 sample size

Implications of several sample size choices are summarised below.

pc pt θ Stage 2 Conditional
sample size power

0.25 0.22 0.03 750 0.55

1000 0.63

1250 0.70

0.25 0.21 0.04 750 0.73

1000 0.81

1250 0.87

0.25 0.20 0.05 750 0.86

1000 0.92

1250 0.96

Investigators increase Stage 2 sample size to 1000 per treatment.
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Binary example: Treatment for heart failure

With 1000 subjects per treatment, Stage 2 data (alone) yield

p̂c = 0.248 and p̂t = 0.223.

Thus, θ̂ = 0.025 with standard error 0.0190.

A test of H0: θ ≤ 0 based on Stage 2 data has Z-statistic

0.025/0.0190 = 1.318.

In the overall test,

Z1/
√

2 + Z2/
√

2 = (1.531 + 1.318)/
√

2 = 2.013 > zα.

Thus, the null hypothesis H0: θ ≤ 0 is rejected and the new

treatment is recommended for use.

We have dealt with unknown “nuisance parameters” — and

we have seen other reasons for a change in sample size.
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3. The unknown treatment effect

In the last example, we saw the opportunity to increase sample size
in order to increase power under smaller treatment effects.

It seems quite reasonable to do this in response to external
information that was not available when the trial was designed.

Should one do this in response to an interim estimate, θ̂, of the
treatment effect?

In the sample size formulae

n =
2 (zα + zβ)2 σ2

δ2
(normal case),

n =
2 (zα + zβ)2 p̃ (1− p̃)

δ2
(binary case),

is δ an “unknown”?
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Choosing the effect size δ for the sample size formula

We denote by θ the effect size of a new treatment, i.e., the
difference in mean response between the new treatment and the
control.

If we wish the trial to have power 1− β when θ = δ, we put the
effect size δ in the sample size formula.

Dispute can arise over the choice of δ.

For example, should investigators use:

The minimum effect of interest ∆1, or

The anticipated effect size ∆2 ?
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An example: Specifying the effect size δ

Suppose sample sizes of 500 and 1000 give these power curves:
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With 1000 subjects, there is good power at the minimum clinically
significant effect, ∆1.

With only 500 subjects, a high power is achieved at the more
optimistic ∆2 — but there is not a lot of power at ∆1.

If θ = ∆2, a sample size of 1000 is unnecessarily high.
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An example: Specifying the effect size δ

A sample size of 500 would be sufficient if θ = ∆2.

However, if θ = ∆1 we would like to have the power provided by a
sample size of around 1000.

An adaptive strategy: Start small then ask for more

Start with a planned sample size of 500,

Look at the results of the first 250 observations,

If appropriate, increase the sample size to 1000.

The group sequential approach

Start with a maximum sample size of 1000,

Conduct one or more interim analyses,

Stop early if there is enough evidence to do so.
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Comparing different types of trial design

Every design has an overall power function and an Eθ(N) curve.

Power curve Eθ(N) curves
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Designs with similar power curves can be compared in terms of
their average sample size functions, Eθ(N).

Even if investigators are uncertain about the likely treatment
effect, they can usually specify values of θ under which early
stopping is most desirable.
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Adaptive or group sequential designs?

Jennison & Turnbull have studied optimal versions of adaptive and
non-adaptive sequential designs (e.g., Statist. in Med., 2003 and
2006, Biometrika, 2006). They report:

The set of group sequential tests
(GSTs) is a subset of the set of
adaptive designs (which can adapt
group sizes to observed responses)

Adaptive designs are, at best, a
little more efficient than GSTs
with the same number of analyses,
reducing average sample size by
1% or 2% for the same power,

Many published adaptive designs
are considerably less efficient than
a well chosen GST.

And advice is available on
how to create good group
sequential designs:
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What to look for in a trial design

If you are considering a trial design with sample size re-estimation
in response to an interim estimate of the treatment effect, then:

Look at the power function and Eθ(N) curve,

Compare with Eθ(N) for a standard GST, e.g., from the
ρ-family of error spending tests (J & T, Ch. 7).

You should be wary of a sample size rule that treats an interim θ̂
as an accurate estimate of the true θ:

In the Heart Failure example, we wanted power 0.9 to
differentiate between θ = 0 and θ = 0.05,

The interim estimate θ̂ = 0.034 had a standard error of
0.0222, giving a 95% CI for θ of (−0.01, 0.08),

This scale of standard error of θ̂ is typical.
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Some comments on the “Promising Zone” approach

Mehta & Pocock (Statist. in Med., 2010) proposed a particular
form of sample size re-estimation in their paper:

“Adaptive increase in sample size when interim results

are promising: A practical guide with examples”

In their Example 1, response is measured 26 weeks after treatment,
causing problems for standard group sequential tests.

At the interim analysis, there is a large number of “pipeline”
patients who have been treated but are yet to produce a response.

Jennison & Turnbull focus on this example in their (Statist. in
Med., 2015) paper

“Adaptive sample size modification in clinical trials:

start small then ask for more?”
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Properties of the Mehta-Pocock design

M & P use a result of Chen, DeMets & Lan (Statist. in Med.,
2004) that allows an increase in sample size (in certain situations)
to be followed by a standard, fixed sample size analysis at the end
of the trial.
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J & T note that the limited opportunity for increasing sample size
leads to only a small increase in overall power.
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Alternatives to the MP design for their Example 1

J & T explore other ways of achieving the power of MP’s design.
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1. A fixed sample size design with 490 observations (cf, the
minimum of 442 for MP)

2. A group sequential test that stops after with a sample size of
416 or 514. If the GST stops at the first analysis, responses from
the 208 pipeline subjects are not used — but these patients are
counted in Eθ(N).
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Alternatives to the MP design for their Example 1

Power curve Eθ(N) curves
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MP adaptive design   

Fixed N=490 

GSD R=1.05 

All three designs have essentially the same power curve.

The fixed sample design has lower Eθ(N) than the MP design over
the θ values of most interest.

The GST has uniformly lower Eθ(N) than the MP design.
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Alternatives to the MP design for their Example 1

J & T go on to develop a method in the adaptive framework
(“start small and ask for more”) that lowers the Eθ(N) curve
while maintaining power.

Sample size rules Eθ(N) curves
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J & T use an inverse normal combination test.

They also employ a “rate of exchange” between sample size and
power to ensure a consistent approach to the choice of sample size.
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4. Conclusions

Sample size re-estimation in response to information about
nuisance parameters can help in achieving a desired power curve.

In doing this, the use of combination tests avoids any inflation of
the type I error rate.

Group sequential tests provide a mechanism for responding to
information about the treatment effect — by stopping the trial
at an interim analysis.

GSTs are tried and tested, and special forms of GST have been
developed to deal with unequal group sizes and delayed response
(see Hampson & Jennison, J. Roy. Statist. Soc., B, 2013).

Some adaptive designs match the performance of good GSTs.

However, some other adaptive designs do not.
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