

Group Sequential Designs and Sample Size Re-estimation – Modern Uses

Professor Chris Jennison University of Bath, UK

Introduction to Complex Innovative Trial Design Webinar Series

Group Sequential Designs and Sample Size Re-estimation – Modern Uses

Agenda:

Group Sequential Methods:

- Challenges of Traditional Designs and Benefits of Group Sequential Methods
- Method Theory
- Case Studies
- Design Options and Discussion

Sample Size Re-estimation

- Challenges of Traditional Designs and Benefits of Sample-Size Re-estimation Methods
- Method Theory
- Case Studies
- Discussion

Factors to Consider and Summary

Q&A

Conclusion

Group Sequential Design Challenges of Traditional Design and Benefits of Advanced Methods

Why Use Group Sequential Methods?

I shall focus on the design of

Phase 3 trials. These studies are

- A critical step on the way to drug approval
- Large and expensive

A group sequential design can

reduce the length of a Phase 3 trial

- Saving resources
- Reaching a conclusion sooner

Group Sequential Design Can Reduce Sample Size And Duration, Conserving Resources & Accelerating Development

5

What Do Group Sequential Methods Offer?

Consider A Phase 3 Trial with

- Type I error rate $\alpha = 0.025$,
- Power 0.9 at treatment effect $\theta = 1$

Fixed Sample Size Design:

100 patients per treatment

Group Sequential Trial, 3 Analyses: Up to 105 patients per treatment

Group Sequential Trial has expected sample size E(N):

- 66 at treatment effect $\theta = 0$
- 87 at treatment effect $\theta = 0.5$
- 77 at treatment effect $\theta = 1$

Average sample size

Poll Question

Do you use Group Sequential designs?

A: No

B: Yes, but only rarely

C: Yes

7

Group Sequential Design Method Theory

How Do Group Sequential Tests Work?

At each analysis, we calculate the Z-statistic for testing H_0 : $\theta \le 0 \text{ vs } \theta > 0$

We stop the trial when this statistic crosses a boundary

Note:

 Z_k is a measure at analysis k of the evidence against the null hypothesis H₀, which states that the new treatment is no better than the control.

The boundary is chosen so that

• Type I error rate is $\alpha = 0.025$

Note: Multiple testing can inflate Type 1 error, so the boundary is set to avoid this

• Power is 0.9 at treatment effect $\theta = \delta$

How Do Group Sequential Tests Work?

Underpinning Theory

The joint distribution of the sequence of Z-statistics has a standard form for many different response distributions, including survival data.

Computation

Type I error probability and power are computed by numerical integration – which is fast and accurate.

Software

is available to implement these methods

Error Spending Group Sequential Tests

Sample size or, more generally, observed information, is unpredictable.

In an *error spending* design, we define boundaries at each analysis so that the cumulative type I and type II error probabilities are equal to a certain function of the observed information.

Group Sequential Design Case Studies

Example: A Trial For A Cholesterol Lowering Drug

To Compare Experimental treatment vs placebo control

Endpoint

Reduction in serum cholesterol (mg/dL) after 4 weeks

Responses Normally distributed with standard deviation $\sigma = 25$

Treatment Effect θ = Difference in mean response between treatments

Example: A trial for a cholesterol lowering drug

First, consider how you would design a fixed sample trial.

We wish to $H_0: \theta \le 0$ vs $\theta > 0$ with type I error rate $\alpha = 0.025$

We observe responses from n patients on each treatment arm, compute the Z-statistic,

and reject H_0 if this is significant at level 0.025.

(For simplicity we assume σ known: in practice, we would use a *t*-test.)

In order to achieve power 0.9 when $\theta = 10$, we find we need a sample size of $n_{fix} = 132$ subjects on each treatment.

Example: A Trial For A Cholesterol Lowering Drug

In creating a group sequential design, we specify

- 3 analyses (2 interim analyses, 1 final analysis)
- An error spending design, spending error in proportion to Information²
- A non-binding futility boundary

This design has an "Inflation factor" of 1.093, so we shall need up to $1.093 \times 132 = 144$ patients per treatment arm.

Demonstration of East Software

Cholesterol Study:

- A fixed sample size design
- Group sequential design
- Interim analyses: Data entry and boundary calculation
- Simulating the group sequential design

			Design Type: Superiority V Number of Looks: 1 V						
			Test Parameters						
	Ex:GSD	Ex:Fixed Sample	Test Type: 1-Sided v Input Method: Individual Means v Test Statistic: Z						
Mnemonic	MN-25-DI	MN-2S-DI	Type I Error (α): 0.025 O Specify Mean Responses						
Test Parameters			Power: 0.9 O						
Design Type	Superiority	Superiority	Sample Size (n): 263						
No. of Looks	3	1	Allocation Ratio: 1						
Test Type	1-Sided	1-Sided	(n_t/n_c)						
Specified α	0.025	0.025							
Attained α	0.024		Design Type: Superiority Number of Looks: 2						
Power	0.901	0.9	Test Parameters Poundance						
Model Parameters			Test Farameters boundary						
Allocation Ratio (nt/nc)	1	1	Test Type: 1-Sided v Input Method: Individual Means v Test Statistic: Z						
Input Method	Individual Means	Individual Means	Type I Error (α): 0.025 Specify Mean Responses						
Diff. in Means ($\delta = \mu t - \mu c$)	10	10	Power: 0.9 \bigcirc Mean Treatment (u): 10						
Mean Control (µc)	0	0	Sample Size (n): 288						
Mean Treatment (µt1)	10	10	Allocation Ratio: 1						
Std. Deviation (σ)	25	25	(n_t/n_c)						
Test Statistic	Z	Z	Design Type: a second by Number of Looks: a						
Boundary Parameters			Design type. Superiority Vinumber of Looks. 3 V						
Spacing of Looks	Equal		Fifeary Futility						
Efficacy Boundary	Rho (2)		Boundary Family: Spending Functions V Boundary Family: Spending Functions V						
Futility Boundary	Rho (2) (NB)		Spending Function: Rho Family V Spending Function: Rho Family V						
Sample Size			Parameter (ρ): 2 Parameter (ρ): 2 O Binding						
Maximum	288	263	Type I Error (α): 0.025 Type II Error (β): 0.1						
Expected Under H0	169.642		Spacing of Looks						
Expected Under H1	198.33		● Equal O Unequal Boundary Scale: Z Scale V						
			Look #Info. FractionStop for EfficacyStop for FutilityCum. α SpentEfficacy BoundaryCum. β BoundaryFutility Boundary10.333 \swarrow \checkmark 0.0032.7730.011-0.33020.667 \checkmark \checkmark 0.0112.3470.0441.01031.000 \checkmark 0.0252.0620.1002.062						

Group Sequential Design Design Options and Discussion

How Rapidly Should We "Spend" Alpha? The ρ -Family Of Error Spending Functions

We fix the parameter ρ and maximum number of analyses *K*.

Then, at analysis k, with observed information I_k , boundaries are set so that

Cumulative type I error probability = $(I_k/I_{max})^{\rho}\alpha$ (under $\theta = 0$),

Cumulative type II error probability = $(I_k/I_{max})^{\rho}\beta$ (under $\theta = \delta$).

We set $I_{max} = RI_{fix}$, so boundaries meet at analysis K if we observe $I_1 = \frac{1}{K}I_{max}, \dots, I_{K-1} = \frac{K-1}{K}I_{max}, I_K = I_{max}.$

Note: The more aggressively you spend alpha early on in the study, the greater potential reduction in expected sample size for the study.

Here, I_{fix} is the information for a fixed sample test and the "Inflation factor" R depends on α , β , ρ and K.

Choosing $\rho \& K$

Properties of ρ -family designs with non-binding futility boundaries, type I error rate $\alpha = 0.025$, and power 0.9 when $\theta = \delta$. **Expected Sample Size, E(N)** Number of Inflation When When When *For ρ=2:* $\theta = \delta/2$ $\theta = \delta$ analyses, K $\theta = 0$ factor, R as % of n_{fix} as % of n_{fix} as % of n_{fix} 2 1.06 89.2 80.8 70.7 3 1.09 64.4 84.8 75.3 1.12 4 82.4 72.4 61.1 5 1.13 59.2 80.9 70.6

Choosing $\rho \& K$

Properties of ρ -family designs with non-binding futility boundaries, type I error rate $\alpha = 0.025$, and power 0.9

when $\theta =$	δ.		Expected Sample Size, E(N)				
For ρ=2:	Number of analyses, K	Inflation factor, R	When heta=0 as % of n_{fix}	When $ heta=\delta/2$ as % of n_{fix}	When $ heta=\delta$ as % of n_{fix}		
Chalastanal	2	1.06	70.7	89.2	80.8		
study example	3	1.09	64.4	84.8	75.3		
	4	1.12	61.1	82.4	72.4		
	5	1.13	59.2	80.9	70.6		

Choosing $\rho \& K$

Properties of ρ -family designs with non-binding futility boundaries, type I error rate $\alpha = 0.025$, and power 0.9 when $\theta = \delta$. **Expected Sample Size, E(N)** Number of Inflation When When When *For ρ=3:* $\theta = \delta/2$ $\theta = \delta$ analyses, K $\theta = 0$ factor, R as % of n_{fix} as % of n_{fix} as % of n_{fix} 2 1.02 74.8 92.0 84.1 3 1.04 68.8 87.2 78.2 4 1.06 65.4 75.1 84.7 5 83.2 1.07 63.3 73.3

Discussion: Group Sequential Tests

Designs from the ρ -family of error spending tests are highly efficient: Values of E(N) are close to the minimum possible for a given number of analyses K and inflation factor R.*

A lower value of ρ gives greater reductions in expected sample size and time to a conclusion, but at the cost of a higher maximum sample size.

Tables of operating characteristics, as in the previous slides, can aid the choice of a suitable design.

*Barber & Jennison, Biometrika, 2002.

Sample Size Re-Estimation Benefits of Advanced Methods

Sample Size Re-estimation (SSR)

Another way to seek the same benefits of

• Reduced sample size • An earlier conclusion

In a group sequential test, we set a large sample size and hope to stop early.

Some prefer the philosophy of "Start small, then ask for more".

In a two-stage design with Sample Size Re-estimation, we: Set an initial sample size Conduct an interim analysis Possibly increase the sample size Analyse the final set of data

Adaptive Sample Size Re-estimation Can Increase Probability of Success

Sample Size Re-Estimation Method Theory

SSR: Controlling The Type I Error Probability

A two-stage combination test (Bauer and Köhne, *Biometrics*, 1994)

In Stage 1: Calculate $Z_{(1)}$ based on Stage 1 data

In Stage 2: Calculate $Z_{(2)}$ based on new data from Stage 2

Note: Z is a measure of evidence against the null hypothesis, which states the new treatment is no better than the control.

Type I error is protected even if the Stage 2 sample size depends on Stage 1 data.

SSR: Controlling The Type I Error Probability

Multi-stage tests (Cui, Hung & Wang, *Biometrics*, 1999; Lehmacher & Wassmer, *Biometrics*, 1999) Define a *K*-stage group sequential test.

Express the cumulative Z-statistic at analysis k as

$$Z_{k} = \frac{1}{\sqrt{k}} Z_{(1)} + \dots + \frac{1}{\sqrt{k}} Z_{(k)} \qquad (*)$$

where $Z_{(1)}, ..., Z_{(k)}$ are the Z-statistics based on new data in each Stage 1, ..., k.

If "adaptation" has occurred at an analysis j < k, replace $Z_{(j+1)}, \ldots, Z_{(k)}$ in (*) by the new $\tilde{Z}_{(j+1)}, \ldots, \tilde{Z}_{(k)}$ and apply the original group sequential testing boundary.

Poll Question

Do you use Sample Size Re-estimation designs?

A: No

B: Yes, but only rarely

C: Yes

Sample Size Re-estimation Case Studies

SSR: An Example

Cholesterol Study:

Has $\alpha = 0.025$, power 0.9 when $\theta = 10$, K = 3 analyses, error spending test with $\rho = 2$, non-binding futility boundary.

Three groups are planned with 48 patients per treatment in each.

Suppose we observe

Analysis 1: $\hat{\theta}_1 = 4.2$, $Z_1 = 0.832$ Analysis 2: $\hat{\theta}_2 = 5.0$, $Z_2 = 1.386$ (based on cumulative data)

SSR: An Example

Cholesterol study

We Observe

Analysis 1:
$$\hat{\theta}_1 = 4.2, Z_1 = 0.823$$

Analysis 2: $\hat{\theta}_2 = 5.0, Z_2 = 1.386$

(based on cumulative data)

Data For The First 2 Analyses Zk 3 . 2 1 * • 0 2 1 -1 -Conditional power is less than desirable and study would benefit from increased sample size

Can we increase the final sample size?

Demonstration of East software

Cholesterol Study:

- Error Spending Group Sequential Design
- Conditional Power
- A "CHW" Design

Takeaways

	Look	Incremental	Cumulative	Incremental	Prespecified	Weighted	\$	Standard	Efficacy	ficacy Futility	95% RCI for δ		Repeated
	#	Sample Size	Sample Size	Statistic	Weights	Statistic	0	Error			Upper	Lower	p-value
ſ	1	96	96	0.823	0.333	0.823	4.2	5.103	2.773	-0.331	18.351	-9.951	1
ľ	2	96	192	1.137	0.333	1.386	5.8	5.103	2.347	1.01	13.47	-3.47	0.204
ľ	3	144	336	1.68	0.333	2.101	7	4.167	2.062	2.062	11.411	0.108	0.023

Sample Size Re-estimation Discussion

SSR: Discussion

The role of sample size

re-estimation

- Rescuing an underpowered trial
- In a prospectively designed trial (FDA require *pre-specified* adaptive designs)

Assessing the performance of SSR designs

- The role of the sample size rule
- Compare a group sequential design with the same maximum sample size

Staging of investment

• Is this different in an SSR design?

SSR: Handling "Pipeline" Data

In a group sequential trial, data may still arrive after deciding to "stop"

- The primary endpoint has not yet been observed for recently treated patients
- Observations are recorded after data are "locked" for the interim analysis.

Hampson and Jennison (*J. Royal Statist. Soc., B,* 2013) proposed "Delayed response
group sequential designs" to deal with this issue.

In a 2-stage design with a large number of pipeline patients, a design based on sample size re-estimation can be an attractive proposition.

SSR: Handling "Pipeline" Data

Example: Schizophrenia Study

(Mehta and Pocock, *Statistics in Medicine*, 2010)

Endpoint: Improvement in NSA at 26 weeks

Initial sample size = 442

At The Interim Analysis

416 patients enrolled208 observed responses,208 "pipeline" patients

Sample Size Decision

Continue to the original target of 442 patients or increase the final sample size

SSR: Mehta and Pocock's "Promising zone" design

See Mehta & Pocock (2010) for more on their "Promising zone" design.

Jennison & Turnbull (*Statistics in Medicine*, 2015) discuss this design and **propose a cost-benefit approach, in which gains in conditional power are set against increased patient numbers.** Hsiao, Liu & Mehta (*Biometrical Journal*, 2018)
propose a sample size rule that combines
Jennison & Turnbull's approach with a
requirement of a minimum conditional power for
sample size to increase.

Factors to Consider & Summary

Factors To Consider

The stopping boundary and sample size rule must be pre-specified The Data Monitoring Committee should discuss the rationale for study design with the sponsor before the trial is under way and a "firewall" is in place. We need to increase maximum sample size slightly to account for interim looks

Group sequential designs help reduce patient numbers and reach early conclusions.

Designs with 2 or 3 analyses and a maximum sample size 5% or 10% greater than the fixed sample test can make savings of around 30%.

Sample size re-estimation offers an alternative approach, and can be an attractive option when there is a large amount of "pipeline" data.

Error spending tests are efficient and flexible. Current software makes these methods straightforward to apply.

Easy Access to the Adaptive Designs That Matter

Delivered by the Thought Leaders Behind the Methods

Software that is Faster & Easier to Use

Popular Fixed and Adaptive Designs at your Fingertips

Global Products and Services

Statistical Software

Industry standard for trial design, including CID adaptive (East, EOD)

Leader in exact statistical solutions (Xact: StatXact, LogXact, Procs)

Operations software (e.g. ACES, EnForeSys, FlexRandomizer)

All 25 top biopharma companies, the FDA, EMA & PMDA use our software

Strategic Consulting

PhD statisticians expert in innovative design & complex statistical questions

Experts in Data Science, PK/PD, Enrolment & Event Forecasting, Portfolio/Program Optimization (NPV)

Project-Based Services

Reliable Biometrics service provider delivering high quality, on time

Lead staff with over 15 years industry experience on average

Including biostatistics & programming, ISC, data management, PK/PD analysis, medical writing

Functional Services Provision (FSP)

Creation of dedicated teams operating within/as an extension of the client's own biostatistics & programming, data management and PK/PD teams

Leader in offshoring of Biometrics competencies

Upcoming Webinars

Торіс	Date	Time	Speaker
Complex Innovative Trial Designs at a Glance – The Concepts, the Promise, and the Factors to Consider	Wednesday, May 20, 2020	11:00am Edt 16:00 Gmt	Zoran Antonijevic 🗸
Group Sequential Designs and Sample Size Re- estimation – Modern Uses	Wednesday, June 3, 2020	11:00AM EDT 16:00 GMT	Christopher Jennison
Practical Model-based Approaches for Phase I Oncology Trials	Wednesday, June 17, 2020	11:00AM EDT 16:00 GMT	Satrajit Roychoudhury
Introduction to Population Enrichment	Wednesday, July 15, 2020	11:00AM EDT 16:00 GMT	Thomas Burnett

Other Topics Planned for Series: Introduction to Adaptive Dose Finding, Seamless Phase 2/3 Trial Designs, Basket Trial Designs, Umbrella Trial Design, Multi-arm Multi-stage Trial Design, and Program/Portfolio Designs

Recordings will be posted to <u>www.cytel.com</u>.

48

Thank you

Professor Chris Jennison

University of Bath, UK

Thank you

www.cytel.com