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1. Group sequential tests

Suppose a new treatment (Treatment A) is to be compared to a
placebo or positive control (Treatment B) in a Phase III trial.

The treatment effect θ for the primary endpoint represents the
advantage of Treatment A over Treatment B.

If θ > 0, Treatment A is more effective.

We wish to test the null hypothesis H0: θ ≤ 0 against θ > 0 with

Pθ=0{Reject H0} = α,

Pθ=δ{Reject H0} = 1− β.

In a group sequential trial, data are examined on a number of
occasions to see if an early decision may be possible.



Group sequential tests

A typical boundary for a one-sided test has the form:
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Crossing the upper boundary leads to early stopping for a positive
outcome, rejecting H0 in favour of θ > 0.

Crossing the lower boundary implies stopping for “futility” with
acceptance of H0.



Benefits of group sequential tests

Earlier decisions

Group sequential testing can speed up the process to
introduce an effective new treatment.

Fewer patients recruited

Expected sample sizes for group sequential designs are,
typically, around 70% of the fixed sample size for a trial
with the same type I error rate and power.



2. Testing a secondary endpoint

In a trial of two treatments, A and B, a group sequential test is
carried out on the primary endpoint, which has treatment effect θ1.

Suppose H1: θ1 ≤ 0 is rejected in favour of θ1 > 0.

The investigators wish to test whether Treatment A is also superior
for a secondary endpoint, with treatment effect denoted by θ2.

Some familiarity with “gatekeeping” procedures for testing multiple
hypotheses suggests it may be legitimate to pass on the type I
error α = 0.025 to a second hypothesis test.

As this test will be only conducted once, the investigators plan to
carry out a fixed sample size, level α test of H2: θ2 ≤ 0 vs θ2 > 0
using the available data on the secondary endpoint.

Is this approach to testing the two endpoints valid?



Testing a secondary endpoint: Example

Suppose the primary endpoint is tested using a Pampallona &
Tsiatis group sequential design with shape parameter ∆ = 0.

There are 4 analyses, type I error probability is α = 0.025 and
power is 0.8 at θ1 = 1.

This test has upper boundary:

Zk = 3.90/
√
k

and lower boundary

Zk = 1.48
√
k − 2.02/

√
k,

where k = 1, . . . , 4.
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If the upper boundary is crossed, the secondary endpoint is tested
in a level α, fixed sample size test, using current data.



Testing a secondary endpoint: Example

The plot shows the probability of rejecting H2: θ2 ≤ 0, under
θ2 = 0, when the secondary endpoint is tested as described above.

The two endpoints have correlation ρ. For modest values of ρ, the
type I error rate for testing H2 exceeds the nominal 0.025.
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Hung, Wang and O’Neill (J. Biopharm. Statis., 2007) have noted
this approach to testing a secondary endpoint is not valid.

So, how should the secondary endpoint be tested?



3. Multiple testing procedures

Our example had one primary and one secondary endpoint.

More generally, a clinical trial may involve

Co-primary endpoints

Positive outcomes required for at least one endpoint

Positive outcomes required on all endpoints

Secondary endpoints, tertiary endpoints, . . .

The trial may have

Multiple treatments,

Pre-defined sub-populations of patients.

If the trial is group sequential, each hypothesis may be tested
on several occasions.



The familywise error rate

Suppose we have h null hypotheses, Hi: θi ≤ 0 for i = 1, . . . , h.

After our analysis, we accept or reject each of these h hypotheses.

A testing procedure’s familywise error rate under a set of values
θ = (θ1, . . . , θh) is

Prθ{Reject Hi for some i with θi ≤ 0}

= Prθ{Reject at least one true Hi}.

The familywise error rate is controlled strongly at level α if this
error rate is at most α for all possible combinations of θi values.

Then

Pr{Reject any true Hi} ≤ α for all (θ1, . . . , θh).



Bonferroni adjustment (Carlo Bonferroni, 1892–1960)

Suppose we test h null hypotheses, each at significance level α/h.

If all h null hypotheses are true,

Pr{Reject at least one of H1 . . . Hh}

≤ Pr{Reject H1} + . . . + Pr{Reject Hh} = h
α

h
= α.

If only some of the h null hypotheses are true,

Pr{Reject at least one true Hi} < α.

So we have strong control of the familywise error rate.

We start by considering applications in fixed sample size study
designs . . .



Example: A Bonferroni test with co-primary endpoints

A trial compares a new treatment against control with respect to:

Endpoint 1, Core MACE (Major Adverse Cardiac Event —

CV-related death, nonfatal stroke, or nonfatal MI)

Endpoint 2, Expanded MACE (Core MACE plus hospitalization

for unstable angina or coronary revascularization).

Type I error probability α=0.025 is divided between the endpoints.

With Z-statistics Z1 and Z2 for endpoints 1 and 2,

An effect on Core MACE is declared if

Z1 > Φ−1(1− α/2) = 2.24,

An effect on Expanded MACE is declared if

Z2 > Φ−1(1− α/2) = 2.24.



Example: Co-primary endpoints

This Bonferroni procedure can be represented graphically as:
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There is a positive correlation between the two tests, due to the
common aspects of the two endpoints.

Hence, familywise type I error is protected conservatively.

Power when H1 and H2 are false can be increased by “recycling”
type I error after one or other hypothesis is rejected.



Bonferroni procedure with recycling (the Holm procedure)

The Holm procedure is a version of the Bonferroni procedure that
“recycles” error probability after rejecting H1 or H2.

This method can be represented as:
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If H1 is rejected at level α/2, we pass that error probability to H2

and test this hypothesis at level α.

If H2 is rejected at level α/2, we pass that error probability to H1

and test this hypothesis at level α.



Proof that FWER is protected
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If H1 and H2 are both true,

FWER = Pr{Reject H1 or H2}

≤ Pr{Z1 > Φ−1(1− α/2)}+ Pr{Z2 > Φ−1(1− α/2)}

≤ α/2 + α/2 = α.

If H1 is true and H2 is false,

FWER = Pr{Reject H1} ≤ Pr{Z1 > Φ−1(1− α)} = α.

H2 is true and H1 false: Similar to H1 true and H2 false.

H1 and H2 both false: A type I error cannot be made.



Example: Primary and secondary endpoints

A hierarchical testing or “gatekeeping” procedure

Consider a trial where

The null hypothesis H1 concerns the primary endpoint,

The null hypothesis H2 relates to a secondary endpoint,

and H2 will only be tested if H1 has already been rejected.

First, we test H1 at significance level α.

If H1 is rejected, we continue and test H2 at significance level α.
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Proof that FWER is protected
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Suppose H1 is true.

A family-wise error occurs if H1 is rejected (whether or not H2 is
also rejected). So

FWER = Pr{Reject H1} = Pr{Z1 > Φ−1(1− α)} = α.

If H1 is false and H2 is true,

FWER = Pr{Reject H1 and then reject H2}

≤ Pr{Z2 > Φ−1(1− α)} = α.

If H1 and H2 are both false, a type I error cannot be made.



Testing co-primary and secondary endpoints

The figure below represents a testing procedure that starts with a
Bonferroni test of H1 and H2.
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H1, H2: co-primary endpoints

H3: secondary endpoint

Then, if either H1 or H2 is rejected, the associated type I error is
passed on to the test of H3.

We can prove there is strong control of FWER at level α by
considering all combinations of H1, H2 and H3 being True or False.



Testing co-primary and secondary endpoints

We can add more “recycling” to the previous testing procedure.
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H1, H2: co-primary endpoints

H3: secondary endpoint

The additional lines in the graph indicate that

If P1 ≤ α/2 and P3 ≤ α/2, then H2 is tested at level α,

If P2 ≤ α/2 and P3 ≤ α/2, then H1 is tested at level α.



Testing co-primary and secondary endpoints

We may prefer to gain maximum power for tests of co-primary
endpoints before testing a secondary endpoint.

To do this, we recycle type I error probability between H1 and H2

before allocating any error probability to H3.

A graphical representation is:
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Half of the type I
error probability is
cycled through H1,
H2 and on to H3.

The other half is
cycled through H2,
H1 and on to H3.



More complex procedures: General methodology

As we add more options, and get more creative, we can produce
some quite complex procedures.

Two papers, published simultaneously, describe an elegant way to
describe complex multiple testing procedures.

“A recycling framework for the construction of Bonferroni-
based multiple tests” by Burman, Sonesson and Guilbaud,
Statistics in Medicine, 2009.

“A graphical approach to sequentially rejective multiple
test procedures” by Bretz, Maurer, Brannath and Posch,
Statistics in Medicine, 2009.

These procedures are closed testing procedures in which the tests
of intersection hypotheses are weighted Bonferroni tests.

It is implicit in their method of construction that these procedures
provide strong control of the FWER.



A figure from Burman et al. (2009)

The following diagrams illustrate the graphical representations of
multiple testing procedures used by Burman et al.

(a) and (b) A parallel gatekeeping procedure

(c) and (d) A fallback procedure



A figure from Bretz et al. (2009)

And here is an example of a graphical representation of a
procedure as defined by Bretz et al.

Question: How can we apply such a procedure in a group
sequential trial?



A figure from Bretz et al. (2009)

And here is an example of a graphical representation of a
procedure as defined by Bretz et al.

Question: How can we apply such a procedure in a group
sequential trial?



4. Multiple testing procedures and group sequential designs

Maurer & Bretz (Statist. in Biopharm. Research, 2013) explain
how to carry out tests of multiple hypothesis in a group sequential
trial with strong control of FWER.

Consider a multiple testing procedure for hypotheses H1, . . . ,Hh

that involves testing H1, . . . ,Hh at different significance levels,
possibly increasing these levels after other hypotheses are rejected.

Define group sequential tests of each hypothesis with type I error
rates equal to the various significance levels that may be applied.

At each analysis, conduct tests of H1, . . . ,Hh using the boundary
points of their group sequential tests for the current analysis.

In doing this, follow the testing hierarchy and “re-cycling rules” to
determine the type I error rate of each hypothesis testing boundary.

Stop the study when key conclusions have been reached.



Combining multiple testing and group sequential design

For group sequential implementation of the above multiple testing
procedure, we need

GSTs at levels α/3, α/2 and α

for each of the hypotheses, H1, H2 and H3.



5. Testing a secondary endpoint after a sequential test

A correct gatekeeping procedure

We discussed a group sequential trial comparing the effects of two
treatments with on a primary endpoint. Then, if a positive result is
obtained, a secondary endpoint is tested.

In Maurer & Bretz’s scheme, we need to specify a level α group
sequential test for the secondary endpoint: this test of H2 will be
applied whenever the trial terminates.

GST of
H1

GST of
H2

?

?

α
The group sequential test of H1

determines the stopping time
for the trial

The group sequential test of H2 is
used for the secondary analysis

if and when H1 is rejected



A correct gatekeeping procedure

Let Z1,1, . . . , Z1,K be Z-statistics for testing H1: θ1 ≤ 0

at analyses 1, . . . ,K.

The group sequential test of H1 stops at analysis k to

Reject H1 if Z1,k ≥ bk,

Accept H1 if Z1,k < ak.

Boundary values for the test of H1 control the type I error rate at

level α under θ1 = 0, i.e.,

K∑
k=1

Pr{Z1,1 ∈ (a1, b1), . . . , Z1,k−1 ∈ (ak−1, bk−1), Z1,k > bk} = α.

Suppose this GST stops to reject H1 at analysis k∗ . . .



A correct gatekeeping procedure

Let Z2,1, . . . , Z2,K be Z-statistics for testing H2: θ2 ≤ 0.

The level α group sequential test of H2 rejects H2 at analysis k if

Z2,k ≥ ck, where under θ2 = 0

K∑
k=1

Pr{Z2,1 < c1, . . . , Z2,k−1 < ck−1, Z2,k > ck} = α. (1)

(The trial’s stopping rule is based on the primary endpoint, so we
do not need a lower boundary for early acceptance of H2.)

When the GST of H1 has rejected H1 at analysis k∗, we reject H2

if Z2,k∗ ≥ ck∗ .

A gatekeeping procedure could reject H2 if

Z2,k ≥ ck for any k ∈ {1, . . . ,K},

so the FWER is protected conservatively.



Example: Testing primary and secondary endpoints

In a trial comparing two treatments, denote the treatment effects
on the primary and secondary endpoints by θ1 and θ2.

Suppose the trial is conducted
group sequentially, using a
Pampallona & Tsiatis test with
∆ = 0 for the primary endpoint.

There are 4 analyses, α = 0.025
and power is 0.8 at θ1 = 1.
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If H1: θ1 ≤ 0 is rejected for the primary endpoint at analysis k∗,
we test the secondary endpoint: we reject H2: θ2 ≤ 0 if

Z2,k∗ ≥ ck∗ .

We consider two options for this test of H2.



Example: Testing primary and secondary endpoints

We consider two options for the group sequential test of H2.

A: Pocock boundary for H2

ck = 2.361, k = 1, . . . , 4.
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B: OBF boundary for H2

ck = 2.024
√

4/k, k = 1, . . . , 4.
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Note: The O’Brien & Fleming boundary requires a very high value
of Z2,k∗ to reject H2 if the GST of H1 stops at the first analysis.



Type I error probability for testing H2

A: Pocock boundary for H2
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B: OBF boundary for H2
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Type I error probabilities are calculated under θ2 = 0, but they also
depend on θ1 and the correlation, ρ, between the primary and
secondary endpoints.

The OBF test of H2 is particularly conservative when θ1 is large.



Power for testing H2, ρ = 0.25

A: Pocock boundary for H2
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For correlation ρ = 0.25

θ1 = 2.4 
θ1 = 2.0 
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B: OBF boundary for H2
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For correlation ρ = 0.25

θ1 = 2.4 
θ1 = 2.0 
θ1 = 1.6 
θ1 = 1.2 
θ1 = 0.8 
θ1 = 0.4 

Results are shown for the case that the variance of the secondary
response is 0.5 times that for the primary response.

Power is shown as a function of θ2 for selected values of θ1.

The Pocock boundary for H2 deals better with the trial’s uncertain
termination time — which depends significantly on the value of θ1.



Power for testing H2, ρ = 0.5

A: Pocock boundary for H2
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B: OBF boundary for H2
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For correlation ρ = 0.5

θ1 = 2.4 
θ1 = 2.0 
θ1 = 1.6 
θ1 = 1.2 
θ1 = 0.8 
θ1 = 0.4 

Results are shown for the case that the variance of the secondary
response is 0.5 times that for the primary response.

Power is shown as a function of θ2 for selected values of θ1.

Again, the Pocock boundary for H2 deals better with the trial’s
uncertain termination time — which depends significantly on θ1.



Testing a secondary endpoint: Further options

Conservatism in the overall procedure arises because the test of H1

may stop at analysis k∗ when Z2,k∗ < ck∗ , but

Z2,k ≥ ck for some k < k∗ or k > k∗.

There are options for reducing conservatism and increasing power:

1. Reject H2 if Z2,k≥ck for some k<k∗, even though Z2,k∗<ck∗ .

However, ignoring more recent data (and not using the sufficient
statistic for θ2) may detract from the credibility of this decision.

2. Continue the trial to see if Z2,k ≥ ck at a future analysis.

However, if the primary endpoint is observed for future subjects,
the positive result on the primary endpoint could be “lost”.

Several authors have considered option (2), retaining a positive
outcome for H1, whatever the additional information about θ1.



GSTs and multiple hypothesis testing: Conclusions

1. There are methods available to test multiple hypotheses in a
group sequential design AND control the overall type I error
probability.

2. Graphical representations (SiM papers, 2009) can help
investigators to select — and understand — an appropriate
multiple testing procedure.

3. There are many multiple testing schemes to choose from. The
most suitable choice will depend on the importance to investigators
of rejecting each null hypothesis and the likelihood of each null
hypothesis being true or false.

4. When testing multiple hypotheses in a group sequential trial
design, the key point is to use GSTs as the “testing rules” in the
multiple testing scheme: if this is not done correctly, FWER may
be inflated.



Testing a secondary endpoint: Further options

3. If the worst case scenario, in which a procedure’s maximum
FWER occurs, can be identified then, the procedure may be
calibrated so the FWER is equal to the specified level α in this
scenario. See:

Glimm, Maurer & Bretz (Stat. in Med., 2010) Hierarchical testing

of multiple endpoints in group-sequential trials.

Tamhane, Mehta & Liu (Biometrics, 2010) Testing a primary and a

secondary endpoint in a group sequential design.

Tamhane, Wu & Mehta (Stat. in Med., 2012) Adaptive extensions

of a two-stage group sequential procedure for testing primary and

secondary endpoints (I) unknown correlation between endpoints.

Tamhane, Gou, Jennison, Mehta & Curto (Biometrics, 2018) A

gatekeeping procedure to test a primary and a secondary endpoint in a

group sequential design with multiple interim looks.



GSTs and multiple hypothesis testing: further reading

Tang & Geller (Biometrics, 1999) Closed testing procedures for
group sequential clinical trials with multiple endpoints.

Ye, Liu & Yao (Statist. in Med., 2012) A group sequential
Holm procedure with multiple primary endpoints.

Maurer & Bretz (Statist. in Biopharm. Research, 2013)
Multiple testing in group sequential trials using graphical
approaches.

Li, Wang, Luo, Grechko & Jennison (Biometrical Journal, 2018)

Improved two-stage group sequential procedures for testing a secondary

endpoint after the primary endpoint achieves significance.


