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Motivation: Phase 3 clinical trials

Phase III trials are conducted as the last stage in the drug
development process.

Two positive studies are usually required to confirm that a new
treatment is superior to the current standard treatment.

Regulators customarily require a hypothesis test to reach
significance at the one-sided 2.5% level.

Studies may recruit hundreds, or even thousands, of subjects at a
cost of as much as e 10k to e 50k per patient.

The time taken to reach a conclusion eats into the limited patent
lifetime remaining to the company developing the drug.

Thus, there are strong incentives to reach an early conclusion for
either a positive or negative decision.
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Motivation: Interim monitoring

Clinical trials methodology can also be applied to animal trials and
epidemiological studies, where there is similar motivation from

Ethics

Administration (accrual, compliance, . . . )

Economics

to monitor the conduct of the trial and examine accumulating data.

Subjects should not be exposed to unsafe, ineffective or inferior
treatments.

National and international guidelines for clinical trials call for
interim analyses to be performed — and reported.

It is now standard practice for clinical trials to have a Data and
Safety Monitoring Board (DSMB) to oversee the study and
consider the option of early termination.
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Motivation: Repeated hypothesis tests during a study

Suppose θ represents the difference in mean responses in a
two-treatment comparison.

In a superiority trial, we wish to test H0: θ ≤ 0 against θ > 0.

If a test of H0 is carried out at one-sided significance level
α = 0.025 on K occasions during the course of the trial, the
overall type I error rate is:

Number of Overall Number of Overall
tests, K error rate tests, K error rate

1 0.025 10 0.097

2 0.042 20 0.124

3 0.054 100 0.190

5 0.071 ∞ 1.000

See Armitage et al. (JRSS, A, 1969).
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Motivation: Adaptive clinical trial designs

Around the year 2000, there was a surge of interest in “adaptive”
trials which allow changes in study design based on interim results.

An adaptive trial could:

Route more patients to the treatment that seems to work best

Drop treatments that don’t seem to be effective

Add more of the type of patients who react best to a
particular treatment

Merge two different phases of drug development into one trial

This represented a dramatic change from the philosophy of simple
Phase III trials, designed to answer fully formulated questions
through a pre-defined protocol and statistical analysis plan.

Time has shown what such designs can (and cannot) achieve.
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Outline of talk

1. Group sequential tests

Sequential distribution theory

Monitoring a survival study

Computations for group sequential tests

Benefits of group sequential testing

Error spending tests

Example 1: Normal response

Example 2: Binary response

Example 3: Survival endpoint
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Outline of talk

2. Adaptive trial designs

A survival trial with treatment selection

Protecting the type I error rate

Multiple hypothesis testing: Closed Testing Procedures

Combination tests

Avoiding error rate inflation in an adaptive survival trial

Choosing an adaptive design and assessing its benefits

Chris Jennison Group Sequential and Adaptive Clinical Trials



1.1 Group sequential tests: Introduction

Suppose a new treatment (Treatment A) is to be compared to a
placebo or positive control (Treatment B) in a Phase III trial.

The treatment effect θ for the primary endpoint represents the
advantage of Treatment A over Treatment B.

If θ > 0, Treatment A is more effective.

We wish to test the null hypothesis H0: θ ≤ 0 against θ > 0 with

Pθ=0{Reject H0} = α,

Pθ=δ{Reject H0} = 1− β.

In a group sequential trial, data are examined on a number of
occasions to see if an early decision may be possible.
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Group sequential tests

A typical boundary for a one-sided test, expressed in terms of
standardised test statistics Z1, . . . , ZK , has the form:
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Reject H0

Accept H0

Crossing the upper boundary leads to early stopping for a positive
outcome, rejecting H0 in favour of θ > 0.

Crossing the lower boundary implies stopping for “futility” with
acceptance of H0.
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1.2 Joint distribution of parameter estimates

Reference: Ch. 11 of Group Sequential Methods with Applications
to Clinical Trials, Jennison & Turnbull, 2000 (hereafter, JT).

Let θ̂k denote the estimate of θ based on data at analysis k.

The information for θ at analysis k is

Ik = {Var(θ̂k)}−1, k = 1, . . . ,K.

Canonical joint distribution of θ̂1, . . . , θ̂K

In many situations, θ̂1, . . . , θ̂K are approximately multivariate
normal,

θ̂k ∼ N(θ, I−1
k ), k = 1, . . . ,K,

and

Cov(θ̂k1 , θ̂k2) = Var(θ̂k2) = I−1
k2

for k1 < k2.
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Sequential distribution theory

The joint distribution of θ̂1, . . . , θ̂K can be derived directly for:

θ a single normal mean,

θ = µA − µB, comparing two normal means.

The canonical distribution also applies when θ is a parameter in:

a general normal linear model,

a general model fitted by maximum likelihood (large sample
theory).

Thus, theory supports general comparisons, including:

crossover studies,

analysis of longitudinal data,

comparisons adjusted for covariates.
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Canonical joint distribution of z-statistics

In testing H0: θ = 0, the standardised statistic at analysis k is

Zk =
θ̂k√

Var(θ̂k)
= θ̂k

√
Ik.

For these statistics,

(Z1, . . . , ZK) is multivariate normal,

Zk ∼ N(θ
√
Ik, 1), k = 1, . . . ,K,

Cov(Zk1 , Zk2) =
√
Ik1/Ik2 for k1 < k2.
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Canonical joint distribution of score statistics

The score statistics, Sk = Zk
√
Ik, are also multivariate normal

with

Sk ∼ N(θ Ik, Ik), k = 1, . . . ,K.

The score statistics possess the “independent increments”
property,

Cov(Sk − Sk−1, Sk′ − Sk′−1) = 0 for k 6= k′.

It can be helpful to know that the score statistics behave as
Brownian motion with drift θ observed at times I1, . . . , IK .
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1.3 Survival data

The canonical joint distributions also arise for

a) estimates of a parameter in Cox’s proportional hazards
regression model,

b) log-rank statistics for comparing two survival curves.

For survival data, observed information is roughly proportional to
the number of failures.

The “error spending” approach can be used to define group
sequential tests that can handle unpredictable and unevenly spaced
information levels.

Reference: “Group-sequential analysis incorporating covariate
information”, Jennison & Turnbull (JASA, 1997).
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Accrual and follow up in a survival study

-
Start of
study

End of
accrual

End of
follow up

Calendar
time

•
•

◦
•

•
◦

•
•

•
◦

•
◦

Key

• death time observed

◦ censored observation

Subjects are randomised to a treatment as they enter the study.

Survival is measured from entry to the study.
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Interim analyses

-
Analysis

1
Analysis

2
Analysis

3
Calendar

time

•
•

◦
•

•
◦

•
•

•
◦

•
◦

At an interim analysis, subjects are censored if they are still alive.

Information on such patients continues to accrue at later analyses.
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Interim analysis 1

-
Survival

time

•
◦

◦
◦

•
◦
◦

We analyse data on survival from time of randomisation.

Survival times start at zero and “analysis time” censoring occurs
for subjects surviving past this first analysis.
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Interim analysis 2

-
Survival time

•
•
◦

◦
•

◦
◦
◦

•
◦
◦
◦

At interim analysis 2, there is further follow-up of subjects who
were censored at analysis 1.

In addition, there is initial information on the survival times of
subjects entering the trial since analysis 1.
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The logrank statistic

At stage k, the observed number of deaths is dk.

Elapsed times between entry to the study and these deaths are

τ1,k < τ2,k < . . . < τdk,k (assuming no ties).

Define variables at analysis k

riA,k and riB,k Numbers at risk on Trts A and B at τi,k−

rik = riA,k + riB,k Total number at risk at τi,k−

Ok Observed number of deaths on Trt B

Ek =
∑dk

i=1 riB,k/rik “Expected” number of deaths on Trt B

Vk =
∑dk

1 riA,kriB,k/r
2
ik “Variance” of Ok

Zk = (Ok − Ek)/
√
Vk Standardised logrank statistic
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Canonical joint distribution of logrank-statistics

In the Proportional Hazards Model: We assume hazard rates
hA on Treatment A and hB on Treatment B are related by

hB(t) = λhA(t).

The log hazard ratio is θ = ln(λ).

Then, with Ik = Vk, we have approximately

Zk ∼ N(θ
√
Ik, 1), k = 1, . . . ,K,

Cov(Zk1 , Zk2) =
√

(Ik1/Ik2) for k1 < k2.

In addition, (Z1, . . . , ZK) is approximately multivariate normal —
so the statistics Z1, . . . , ZK follow the canonical joint distribution.

The kth score statistic is Sk = Zk
√
Ik, with variance Vk = Ik,

and the sequence {I1, . . . , IK} has uncorrelated increments.
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Canonical joint distribution of estimates of the hazard ratio

Observed information: Recall that

Ik = Vk =

dk∑
i=1

riA,k riB,k
(riA,k + riB,k)2

.

If equal numbers are randomised to treatments A and B and
λ ≈ 1, we can expect riA,k ≈ riB,k for each k, and so

Ik = Vk ≈ dk/4.

Estimating θ:

Since Zk ∼ N(θ
√
Ik, 1), we can estimate θ at analysis k by

θ̂k =
Zk√
Ik
.

It follows that

θ̂k ∼ N(θ, I−1
k ) approximately.
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1.4 Computations for group sequential tests
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In order to find Pθ{Reject H0}, etc., we need to calculate the
probabilities of basic events such as

a1 < Z1 < b1, a2 < Z2 < b2, Z3 > b3.
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Computations for group sequential tests
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Probabilities such as Pθ{a1 < Z1 < b1, a2 < Z2 < b2, Z3 > b3}
can be computed by repeated numerical integration (JT, Ch. 19).

Combining these probabilities yields type I error rate, power,
expected sample size, etc., of a group sequential design.

Constants and group sizes can be chosen to define a test with a
specific type I error probability and power.
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One-sided tests: The Pampallona & Tsiatis family

To test H0: θ ≤ 0 against the one-sided alternative θ > 0 with
type I error probability α and power 1− β at θ = δ.

-
Ik

6
Sk
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• •

• •

•

Reject H0

Accept H0

For the P & T test with parameter ∆, boundaries on the score
statistic scale are

ak = Ik δ − C2 I ∆
k , bk = C1 I ∆

k .

The computational methods described above can be used to find
C1, C2 and IK such that the test has the specified error rates.

Reference: Pampallona & Tsiatis (JSPI, 1994).
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One-sided tests with a non-binding futility boundary

Regulators are not always convinced a trial monitoring committee
will abide by the stopping boundary specified in the protocol.

- Ik

6
Sk

•
•

• •

•
•

•

Reject H0

Accept H0

∗ ∗

∗

∗

The sample path shown above leads to rejection of H0. Since such
paths are not included in type I error calculations, the true type I
error rate is under-estimated.

If a futility boundary is deemed to be non-binding, the type I error
rate should be computed ignoring the futility boundary.

However, investigators will wish to know power and expected
sample size when the futility boundary is obeyed.
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1.5 Benefits of group sequential testing

In order to test H0: θ ≤ 0 against θ > 0 with type I error
probability α and power 1− β at θ = δ, a fixed sample size study
needs information

Ifix =
{Φ−1(1− α) + Φ−1(1− β)}2

δ2
,

where Φ is the standard normal cdf.

Information is (roughly) proportional to sample size in many
clinical trial settings.

A group sequential test with K analyses will need to be able to
continue to a maximum information level IK , greater than Ifix.

On average, the sequential test can stop earlier than this and
expected information on termination, Eθ(I), will be considerably
less than Ifix, especially under extreme values of θ.

We call R=IK/Ifix the inflation factor of a group sequential test.
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Optimal group sequential tests

We can seek a group sequential test that minimises expected
information Eθ(I) under certain values of the treatment effect, θ,
with a given number of analyses K and inflation factor R.

Eales & Jennison (Biometrika, 1992) and Barber & Jennison
(Biometrika, 2002) optimise designs for criteria of the form∑

i

wi Eθi(I) or

∫
f(θ)Eθ(I) dθ,

where f is a normal density.

These optimised designs could be used in their own right.

They also serve as benchmarks for other methods which may have
additional useful features (e.g., error spending tests).
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Benefits of group sequential testing

One-sided tests with binding futility boundaries, minimising

{E0(I) + Eδ(I)}/2 for K equally sized groups, α = 0.025,

1− β = 0.9 and Imax = R Ifix.

Minimum values of {E0(I) + Eδ(I)}/2, as a percentage of Ifix
R Minimum

K 1.01 1.05 1.1 1.2 1.3 over R

2 80.8 74.7 73.2 73.7 75.8 73.0 at R=1.13

3 76.2 69.3 66.6 65.1 65.2 65.0 at R=1.23

5 72.2 65.2 62.2 59.8 59.0 58.8 at R=1.38

10 69.2 62.2 59.0 56.3 55.1 54.2 at R=1.6

20 67.8 60.6 57.5 54.6 53.3 51.7 at R=1.8

Note: E(I)↘ as K ↗ but with diminishing returns,

E(I)↘ as R↗ up to a point.
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1.6 Error spending tests (JT Ch. 7)

When the sequence I1, I2, . . . is unpredictable, a group
sequential design must adapt to observed information levels.

Lan & DeMets (Biometrika, 1983) introduced “error spending”
tests of H0: θ = 0 against θ 6= 0.

Maximum information design with error spending function f(I)

-

IImax

6
f(I)

α
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The boundary at analysis k is set to give cumulative type I error
probability f(Ik).

If Imax is reached without rejecting H0, then H0, is accepted.
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One-sided error spending tests

For a one-sided test of H0: θ ≤ 0 against θ > 0 with

Type I error probability α at θ = 0,

Type II error probability β at θ = δ,

we need two error spending functions.
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IImax
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α
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Type I error probability α is spent according to the function f(I),
and type II error probability β according to g(I).
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One-sided error-spending tests

Analysis 1:

Observed information I1.

Reject H0 if Z1 > b1, where

Pθ=0{Z1 > b1} = f(I1).

Accept H0 if Z1 < a1, where

Pθ=δ{Z1 < a1} = g(I1).

-
I1 I

6
Zk

•b1

•
a1

Chris Jennison Group Sequential and Adaptive Clinical Trials



One-sided error-spending tests

Analysis 2: Observed information I2

Reject H0 if Z2 > b2, where

Pθ=0{a1 < Z1 < b1, Z2 > b2} = f(I2)− f(I1)

— note that, for now, we assume the futility boundary is binding.

Accept H0 if Z2 < a2, where

Pθ=δ{a1 < Z1 < b1, Z2 < a2} = g(I2)− g(I1).

-
I1 I2 I

6
Zk

•b1 •b2

•
a1

•
a2
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One-sided error-spending tests

Analysis k: Observed information Ik

Find ak and bk to satisfy

Pθ=0{a1<Z1<b1, . . . , ak−1<Zk−1<bk−1, Zk > bk}=f(Ik)−f(Ik−1),

and

Pθ=δ{a1<Z1<b1, . . . , ak−1<Zk−1<bk−1, Zk < ak}=g(Ik)−g(Ik−1).

-
Ik I

6
Zk

• • • • bk

•
•

•
• ak
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Remarks on error spending tests

1. Computation of (ak, bk) does not depend on future
information levels, Ik+1, Ik+2, . . . .

2. A “maximum information design” continues until a
boundary is crossed or an analysis with Ik ≥ Imax is reached.

If necessary, patient accrual can be extended to reach Imax.

-×
I1

×
I2

×
I3

×
I4

×
I5

×
I6

Imax

Information

3. If a maximum of K analyses is specified, the study
terminates at analysis K with f(IK) defined to be α.

Then, bK is chosen to give cumulative type I error probability
α and we set aK = bK .
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Remarks on error spending tests

4. The value of Imax can be chosen so that boundaries
converge at the final analysis when, say,

Ik = (k/K) Imax, k = 1, . . . ,K.

5. In a one-sided test with ρ-family error spending function,
type I error probability is spent as

f(I) = α min {1, (I/Imax)ρ}

and type II error probability as

g(I) = β min {1, (I/Imax)ρ}.

The value of ρ determines the inflation factor R = Imax/Ifix.

Barber & Jennison (Biometrika, 2002) show the ρ-family
provides tests with excellent efficiency for a given number of
analyses K and inflation factor R.
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Error spending tests: Over-running

The final analysis of a one-sided error spending test needs care.

If IK > Imax, solving for aK and bK is likely to give aK > bK .
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The value calculated for bK guarantees type I error probability
equal to α. So, reduce aK to bK — and gain extra power.

Even if IK = Imax, one may find aK > bK if information levels
deviate from the equally spaced values (say) used in setting Imax.
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Error spending tests: Under-running

A final value IK < Imax may arise when the last planned analysis
is reached, e.g., at a maximum follow-up time in a survival study.

Then, solving for aK and bK is likely to give aK < bK .
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Again, the value calculated for bK gives type I error probability α.

So increase aK to bK — and attained power will be below 1− β.
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One-sided error-spending tests: Non-binding futility

If the futility boundary is treated as non-binding, computation of
the efficacy boundary only involves the type I error spending
function f(I).

Boundary values, b1, b2, . . . , are calculated as the trial proceeds.

Analysis k: Observed information Ik

Reject H0 if Zk > bk, where

Pθ=0{Z1 < b1, . . . , Zk−1 < bk−1, Zk > bk} = f(Ik)− f(Ik−1).

-
Ik I

6
Zk

•b1 • • • bk
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One-sided error-spending tests: Non-binding futility

A futility boundary can be added through a type II error spending
function g(I).

For k = 1, . . . ,K − 1:

At analysis k with observed information Ik, set ak to satisfy

Pθ=δ{a1<Z1<b1, . . . , ak−1<Zk−1<bk−1, Zk < ak}=g(Ik)−g(Ik−1).

For k = K: Set aK = bK .

-
IK I

6
Zk

•b1 • • • •bK

•a1

•

•
•

= aK
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1.7 An error spending test with normal response

Consider a two-treatment comparison with responses

XAi ∼ N(µA, σ
2) on treatment A,

XBi ∼ N(µB, σ
2) on treatment B.

Setting θ = µA−µB, we wish to test H0: θ ≤ 0 against θ > 0 with

Type I error rate α = 0.025,

Power 1− β = 0.9 at θ = δ = 0.4.

We shall apply a ρ-family error spending design with ρ = 2,

spending type I error probability as

f(I) = α min {1, (I/Imax)2}

and type II error probability as

g(I) = β min {1, (I/Imax)2}.
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A one-sided test with a non-binding futility boundary

Information

Suppose it is known that σ2 = 0.64. (This is, of course, an unusual
assumption — see JT Ch. 14.3.2 for the case of unknown σ2.)

With total numbers of observations nA on treatment A and nB on
treatment B, the estimated treatment effect has variance

Var(θ̂) =

(
1

nA
+

1

nB

)
σ2 =

(
1

nA
+

1

nB

)
0.64

and the Fisher information for θ is

I = {Var(θ̂)}−1.

It is this information that appears in the error spending functions.

The ρ-family error spending test with ρ = 2, 5 equally spaced
analyses, and a non-binding futility boundary needs Imax = 74.39
(nA = nB = 95) to satisfy type I error and power requirements.
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Applying a ρ-family error spending test

Suppose we observe θ̂1 = 0.10 at analysis 1 based on
nA = nB = 20 observations per treatment. Thus,

Var(θ̂1) =

(
1

20
+

1

20

)
0.64 = 0.064

and the Fisher information for θ at this analysis is

I1 = 0.064−1 = 15.6.

Since Imax = 74.39, the type I and II error probabilities to be
spent are

f(I1) = 0.025 (15.6/74.39)2 = 0.00110,

g(I1) = 0.1 (15.6/74.39)2 = 0.00440.

It follows that boundary values are a1 = −1.038 and b1 = 3.061 on
the Z-scale.

Chris Jennison Group Sequential and Adaptive Clinical Trials



Applying a ρ-family error spending test

Applying the stopping boundary at the first analysis

The standard error of θ̂1 is 0.0641/2 = 0.253.

Hence

Z1 =
θ̂1

s.e. (θ̂1)
=

0.10

0.253
= 0.395.

The boundary values are a1 = −1.038 and b1 = 3.061.

Since a1 < Z1 < b1, the trial continues to the next analysis.

Applying the stopping boundary at subsequent analyses

Successive analyses proceed along the same lines until a boundary
is crossed or the final analysis is reached.
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Applying a ρ-family error spending test

After further analyses, suppose the cumulative sample sizes and
information levels Ik are as recorded below.

Analysis Cumulative sample size Ik Boundary

k nA + nB ak bk

1 40 15.6 −1.038 3.061

2 80 31.2 0.072 2.681

3 120 46.9 0.887 2.436

4 164 64.1 1.653 2.213

5 190 74.2 2.135 2.135

The test with a non-binding futility boundary, has critical values
ak and bk as shown.

The attained type I error rate is 0.023 and the design gives power
0.898 when θ = 0.4.
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Applying a ρ-family error spending test

If the observed treatment effect estimates are θ̂1 = 0.10, θ̂2 = 0.06,

θ̂3 = 0.21, and θ̂4 = 0.31, then the trial stops to reject H0 at

analysis 4.

Analysis Ik Boundary θ̂k s.e. (θ̂k) Zk
k ak bk

1 15.6 −1.038 3.061 0.10 0.253 0.395

2 31.2 0.072 2.681 0.06 0.179 0.335

3 46.9 0.887 2.436 0.21 0.146 1.438

4 64.1 1.653 2.213 0.31 0.125 2.481

5 — — — — — —

In this case, I5 and θ̂5 are not observed.
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An error spending test with a binding futility boundary

Suppose the same trial is conducted with a binding futility
boundary — using the same f and g, and with Imax = 74.39.

Then, we have:

Analysis Cumulative sample size Ik Boundary

k nA + nB ak bk

1 40 15.6 −1.038 3.061

2 80 31.2 0.072 2.681

3 120 46.9 0.887 2.436

4 164 64.1 1.653 2.203

5 190 74.2 2.044 2.044

The upper boundary is now lower at analyses 4 and 5.

With a binding futility boundary, the lower efficacy boundary gives
higher power: when θ = 0.4, the power is 0.905.
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1.8 An error spending test with binary data

Treatment for heart failure

A new treatment is to be compared to the current standard.

The primary endpoint

is re-admission to hospital (or death) within 30 days.

The current treatment

has a re-admission rate of 25%.

Testing for superiority

It is hoped the new treatment will reduce re-admissions to 20%.

Denote re-admission probabilities by pt and pc on the new
treatment and control.

To establish superiority of the new treatment, we carry out a test
of H0: pt ≥ pc against pt < pc — hoping to reject H0.
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Binary example: The testing problem

Setting θ = pc − pt, we wish to test H0: θ ≤ 0 against θ > 0 with

Type I error rate α = 0.025 at θ = 0,

Power 1− β = 0.9 when θ = δ = 0.05.

Let

nt, yt = Numbers of subjects, re-admissions on the treatment arm,

nc, yc = Numbers of subjects, re-admissions on the control arm,

p̂c = yc/nc, p̂t = yt/nt.

For large nt and nc we have, approximately,

θ̂ = p̂c − p̂t ∼ N

(
θ,
pc(1− pc)

nc
+
pt(1− pt)

nt

)
.
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Binary example: A fixed sample test

A fixed sample test requires information

If = {Φ−1(1− α) + Φ−1(1− β)}2 / δ2

= ({Φ−1(0.975) + Φ−1(0.9)}2 / 0.052

= 4203.2.

With equal allocation to the two treatments and nt = nc = n,

I = (Var(θ̂))−1 =

(
pc(1− pc)

n
+
pt(1− pt)

n

)−1

.

Calculating power under the alternative pc = 0.25 and pt = 0.2, we
find a fixed sample size test requires

n = 1461

subjects per treatment arm.

NB This sample size depends on pc and pt, not just θ = pc − pt.
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Binary example: A group sequential design

Suppose investigators choose:

A ρ-family, one-sided error spending test with ρ = 3 (in f and g),

Type I error rate α = 0.025, power 0.9 when θ = 0.05,

A total of 5 analyses, and a binding futility boundary.

This test has inflation factor R = 1.049, so the maximum

information level is

Imax = 1.049× 4203.2 = 4409.2.

Since I = n {pc(1− pc) + pt(1− pt)}−1, this will require up to

1533 subjects per treatment when pc = 0.25 and pt = 0.2.

Using an error spending test in a maximum information design
allows re-assessment of the sample size needed to reach Imax.
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Binary example: Applying the error spending test

At analysis k:

Using current estimates p̂c and p̂t, calculate observed information

Îk = { p̂c(1− p̂c)/nc + p̂t(1− p̂t)/nt }−1

and Z-statistic

Zk =
p̂c − p̂t√

{ p̂c(1− p̂c)/nc + p̂t(1− p̂t)/nt }
= θ̂k

√
Îk.

Compute boundary values ak and bk using error spending functions

f(I) = 0.025 min {1, (I/Imax)3}, g(I) = 0.1 min {1, (I/Imax)3}.

Apply the stopping rule

If Zk < ak: stop, accept H0,

If Zk > bk: stop, reject H0.
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Binary example: Information monitoring

The re-admission rates used in sample size calculations, pc = 0.25
and pt = 0.2, may not hold in practice.

These rates can be re-estimated from observed data.

Information is related to sample size per treatment by

I = n {pc(1− pc) + pt(1− pt)}−1 = nγ−1, say.

At an interim analysis, estimate γ as

γ̂ = p̂c (1− p̂c) + p̂t (1− p̂t).

Then, use this value to compute the target sample size per
treatment group,

n̂max = γ̂ Imax

and modify remaining group sizes to reach this target at the final
planned analysis.
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Binary example: Illustrative data

Analysis 1

Control treatment Experimental treatment

nc = 310, yc = 73 nt = 306, yt = 70

p̂c = 0.236 (s.e. 0.024) p̂t = 0.229 (s.e. 0.024)

θ̂1 = 0.007 (s.e. 0.034)

Z1 = 0.20, I1 = 864 a1 = −1.70, b1 = 3.56

Analysis 2

Control treatment Experimental treatment

nc = 612, yc = 151 nt = 602, yt = 141

p̂c = 0.247 (s.e. 0.017) p̂t = 0.234 (s.e. 0.017)

θ̂2 = 0.013 (s.e. 0.024)

Z2 = 0.51, I2 = 1662 a2 = −0.54, b2 = 3.03
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Binary example: Illustrative data

Analysis 3

Control treatment Experimental treatment

nc = 915, yc = 238 nt = 925, yt = 202

p̂c = 0.260 (s.e. 0.014) p̂t = 0.218 (s.e. 0.014)

θ̂3 = 0.042 (s.e. 0.020)

Z3 = 2.10, I3 = 2532 a3 = 0.39, b3 = 2.65

Analysis 4

Control treatment Experimental treatment

nc = 1225, yc = 324 nt = 1222, yt = 268

p̂c = 0.264 (s.e. 0.013) p̂t = 0.219 (s.e. 0.012)

θ̂4 = 0.045 (s.e. 0.017)

Z4 = 2.61, I4 = 3345 a4 = 1.12, b4 = 2.37

— Stop, reject H0 —
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Binary example: Illustrative data

Summary of the application of a one-sided error spending test:

Analysis Ik Boundary θ̂k s.e. (θ̂k) Zk
k ak bk

1 864 −1.70 3.56 0.007 0.034 0.20

2 1662 −0.54 3.03 0.013 0.024 0.51

3 2532 0.39 2.65 0.042 0.020 2.10

4 3345 1.12 2.37 0.045 0.017 2.61

The upper boundary is crossed at analysis 4 out of 5.

The null hypothesis H0: θ ≤ 0 is rejected at analysis 4.
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1.9 An error spending test with survival data

Example: Oropharynx Clinical Trial Data

Survival of patients on experimental Treatment A and standard
Treatment B.

Analysis Number entered Number of deaths
k Date Trt A Trt B Trt A Trt B

1 12/69 38 45 13 14

2 12/70 56 70 30 28

3 12/71 81 93 44 47

4 12/72 95 100 63 66

5 12/73 95 100 69 73

From Kalbfleisch & Prentice (2002) The Statistical Analysis of
Failure Time Data, 2nd edition, Appendix A, Data Set II.

See also JT, Ch. 13.
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Canonical joint distribution of logrank-statistics

Recall that in the Proportional Hazards Model:

We assume that hazard rates hA on Treatment A and hB on
Treatment B are related by

hB(t) = λhA(t).

The log hazard ratio is θ = ln(λ).

Then, with Ik = Vk, we have approximately

Zk ∼ N(θ
√
Ik, 1), k = 1, . . . ,K,

Cov(Zk1 , Zk2) =
√

(Ik1/Ik2) for k1 < k2.

In addition, (Z1, . . . , ZK) is approximately multivariate normal —
so the statistics Z1, . . . , ZK follow the canonical joint distribution.
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Design of the Oropharynx trial

Suppose we wish to create a one-sided test of H0: θ ≤ 0 vs θ > 0.

Note θ > 0 ⇒ λ > 1, i.e., Treatment A is better.

We require:

Type I error probability α = 0.025,

Power 1− β = 0.8 at θ = 0.5, i.e., at λ = 1.65.

Information needed for a fixed sample study is

If =
{Φ−1(1− α) + Φ−1(1− β)}2

0.52
= 31.40.

Under the approximation I ≈ d/4, the total number of failures to
be observed is

df = 4 If ≈ 126.
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Design of the Oropharynx trial

For a one-sided test with up to 5 analyses, we could use a standard
design created for equally spaced information levels.

-
k
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•
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Reject H0

Accept H0

However, increments in information between analyses are
unpredictable.

So, an error spending design is a natural choice.
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A one-sided, error spending design

Specification:

One-sided test of H0: θ ≤ 0 vs θ > 0,

Type I error probability α = 0.025,

Power 1− β = 0.8 at θ = ln(λ) = 0.5,

Binding futility boundary.

When designing, assume K = 5 equally spaced information levels.

Use a power-family test with ρ = 2 to spend error ∝ (I/Imax)2.

Information for a fixed sample test has to be inflated by R = 1.098.

So, we require Imax = 1.098× 31.40 = 34.48, which needs a total

of 4× 34.48 ≈ 138 observed deaths.
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A one-sided, error spending design

Suppose that, as assumed when planning the trial, information
levels are equally spaced up to I5 = Imax = 34.48.

Then, we would have the following boundary values
(a1, b1), . . . , (a5, b5) for the standardised logrank statistics
Z1, . . . , Z5.

k Ik ak bk

1 6.90 −1.10 3.09

2 13.79 −0.05 2.71

3 20.69 0.72 2.47

4 27.58 1.39 2.28

5 34.48 2.06 2.06
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A one-sided, error spending design

If information levels Ik = (k/5) 34.48, k = 1, . . . , 5, are observed,
the expected information on termination is the following function
of the log hazard ratio, θ.
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Summary data and critical values for the Oropharynx trial

In reality, we construct error spending boundaries using the
observed information levels.

This gives the following boundary values (a1, b1), . . . , (a5, b5) for
the standardised logrank statistics Z1, . . . , Z5.

Analysis Number Number

k entered of deaths Ik ak bk Zk

1 83 27 5.43 −1.41 3.23 −1.04

2 126 58 12.58 −0.21 2.76 −1.00

3 174 91 21.11 0.78 2.44 −1.21

4 195 129 30.55 1.68 2.16 −0.73

5 195 142 33.28 2.14 2.14 −0.87

The trial would have terminated at analysis 2 to accept H0.
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An error spending test with a non-binding futility boundary

If a non-binding futility boundary is used, the required maximum
information level is a little higher at 35.58.

Applying this design to the observed information levels gives:

Analysis Number Number

k entered of deaths Ik ak bk Zk

1 83 27 5.43 −1.44 3.25 −1.04

2 126 58 12.58 −0.23 2.78 −1.00

3 174 91 21.11 0.75 2.46 −1.21

4 195 129 30.55 1.64 2.20 −0.73

5 195 142 33.28 2.09 2.09 −0.87

Again, the trial terminates at analysis 2 with acceptance of H0.
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Covariate adjustment in the Oropharynx trial

Covariate information was recorded for subjects: Institution (6),

Gender, Initial condition, T-staging, N-staging, Tumour site (3).

A proportional hazards regression model includes

Strata l = 1, . . . , 6 for the six participating institutions,

Treatment effect β1,

Coefficients β2, . . . , β5 for Gender and the continuous
variables Initial condition, T-staging and N-staging,

Coefficients β6 and β7 for the categorical variable Tumour site.

Modelling the hazard rate for patient i as

hil(t) = h0l(t) e
{β1I(Patient i on Trt B) + Σ7

j=2 xijβj},

the objective is to test H0: β1 ≤ 0 against β1 > 0.
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Covariate adjustment in the Oropharynx trial

Standard software for Cox regression can provide an estimate of
the parameter vector, β, and its estimated variance.

We are interested in the treatment effect β1.

At stage k we have

β̂
(k)
1

vk = V̂ar
(
β̂

(k)
1

)
Ik = v−1

k

Zk = β̂
(k)
1 /
√
vk.

Theory tells us: The standardised statistics Z1, . . . , Z5 have,
approximately, the canonical joint distribution.

Chris Jennison Group Sequential and Adaptive Clinical Trials



Covariate-adjusted analysis of the Oropharynx trial

Constructing the error spending test with a non-binding futility
boundary gives critical values (a1, b1), . . . , (a5, b5) for Z1, . . . , Z5.

k Ik ak bk β̂
(k)
1 Zk

1 4.11 −1.77 3.40 −0.79 −1.60

2 10.89 −0.47 2.87 −0.14 −0.45

3 19.23 0.55 2.52 −0.08 −0.33

4 28.10 1.41 2.27 0.04 0.20

5 30.96 2.27 2.27 0.01 0.04

Under this stopping rule, the study would have continued — just
— at analysis 2 and stopped to accept H0 at analysis 3.

Note that β1 is the log hazard ratio after covariate adjustment.
For β1 > 0, we should expect β1 > λ where λ is the log hazard
ratio in a model without covariates.
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Recapitulation: Group sequential tests

1 It is natural to monitor clinical trials with a view to possible
early stopping.

2 Distribution theory supports a general approach to design
group sequential tests for a variety of response types.

3 Numerical integration allows us to compute properties of
group sequential designs precisely and set stopping boundaries
and decision rules that control the type I error rate.

4 Group sequential designs can be optimised for a given
objective.

5 Error spending designs offer efficient, flexible monitoring of a
variety of response types, including survival data.
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2 Adaptive trial designs

A case study:

A survival trial with treatment selection

Protecting the type I error rate

Multiple hypothesis testing: Closed Testing Procedures

Combination Tests

Avoiding error rate inflation in an adaptive survival trial

Choosing an adaptive design and assessing its benefits
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2.1 A survival trial with treatment selection

Consider a Phase 3 trial of cancer treatments comparing

Experimental Treatment 1: Intensive dosing

Experimental Treatment 2: Slower dosing

Control treatment

The primary endpoint is Overall Survival (OS).

At an interim analysis, information on OS, Progression Free
Survival (PFS), PK measurements and safety will be used to
choose between the two experimental treatments.

Note that PFS is useful here as it is more rapidly observed.

After the interim analysis, patients will only be recruited to the
selected treatment and the control.
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Overall plan of the trial

Interim

analysis

Final

analysis

Stage 1
cohort

-
�
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Q
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Exp. Treatment 2
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- Follow up

PFS & OS

-
Further

follow up

of OS

Stage 2
cohort

��1

PPq

Selected
Exp. Treatment

Control

- Follow up

of OS

At the final analysis, we test the null hypothesis that OS on the
selected treatment is no better than OS on the control treatment.
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Protecting the type I error rate

We shall assume a proportional hazards model for OS with

λ1 = Hazard ratio, Control vs Exp Treatment 1

λ2 = Hazard ratio, Control vs Exp Treatment 2

θ1 = log(λ1), θ2 = log(λ2).

We test null hypotheses

H0,1: θ1 ≤ 0 vs θ1 > 0 (Exp Treatment 1 superior to control),

H0,2: θ2 ≤ 0 vs θ2 > 0 (Exp Treatment 2 superior to control).

In order to control the “familywise error rate”, we require

P(θ1,θ2){Reject any true null hypothesis} ≤ α

for all (θ1, θ2).
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2.2 Procedures for testing multiple hypotheses

The familywise error rate

Suppose we have h null hypotheses, Hi: θi ≤ 0 for i = 1, . . . , h.

A procedure’s familywise error rate when θ = (θ1, . . . , θh) is

Pθ{Reject Hi for some i with θi ≤ 0}.

The familywise error rate is controlled strongly at level α if this
error rate is at most α for all possible combinations of θi values.

Then

Pθ{Reject any true Hi} ≤ α for all (θ1, . . . , θh).

Using such a procedure, the probability of choosing to focus on a
parameter θi∗ and then falsely claiming significance for the
associated null hypothesis Hi∗ is at most α.
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Closed Testing Procedures

Marcus et al. (Biometrika, 1976) introduced a Closed Testing
Procedure which provides strong control of FWER by combining
level α tests of each Hi and of intersections of these hypotheses.

Suppose we have null hypotheses Hi, i = 1, . . . , h.

For each subset I of {1, . . . , h}, define the intersection hypothesis

HI = ∩i∈I Hi.

Construct a level α test of each intersection hypothesis HI , i.e., a
test which rejects HI with probability at most α whenever all
hypotheses specified in HI are true.

Closed Testing Procedure

The simple hypothesis Hj : θj ≤ 0 is rejected overall if, and only if,
HI is rejected for every set I containing index j.
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Closed Testing Procedures

Proof of strong control of familywise error rate

In the Closed Testing Procedure, overall rejection of the simple
hypothesis Hj can only occur if HI is rejected for every set I
containing index j.

Let Ĩ be the set of indices of all true hypotheses Hi.

Since HĨ is true, P{Reject HĨ} = α.

For a familywise error to be committed, HĨ must be rejected.

Hence, the probability of a familywise error is no greater than α.
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Testing an intersection hypothesis

Suppose the intersection hypothesis HI = ∩i∈I Hi is the
intersection of m simple hypotheses.

For each i ∈ I, let Pi be the 1-sided P-value for testing Hi.

Denote the ordered values of the Pi by P(1) ≤ P(2) ≤ . . . ≤ P(m).

There are several ways to test an intersection hypothesis.

Bonferroni adjustment

The overall P-value for testing HI is PI = mP(1).

Simes’ method (Biometrika, 1986):

The overall P-value for HI is

PI = min
k=1,...,m

(mP(k)/k).
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Bonferroni and Simes’ methods

The Bonferroni adjustment is simple, but conservative.

In the definition of Simes’ P-value,

PI = min
k=1,...,m

(mP(k)/k),

the term for k = 1 is mP(1), i.e., the Bonferroni adjusted P-value.

Other low P-values can reduce the overall result, e.g., if P(2) is only
a little higher than P(1) so P(2)/2 < P(1), then this will reduce PI .

The Simes method is valid — and still slightly conservative —
when the Pi are independent or positively dependent.

Such positive dependence arises in a comparison of m treatments
with a common control.
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Dunnett’s method (JASA, 1955)

Suppose m treatments are compared with a control, responses are
normal with known variance, and sample sizes on each treatment
and the control are equal.

Each null hypothesis Hi says treatment i is no better than control.

We are to test the intersection hypothesis HI = ∩i∈I Hi.

Denote the Z-statistic arising from the test of Hi by Zi.

When each treatment effect for an Hi ∈ HI is zero,

Zi ∼ N(0, 1), i ∈ I, Cov(Zi, Zi′) = 0.5, i 6= i′.

The P-value for testing HI using Dunnett’s test is

P{max
i∈I

Zi > z∗},

where z∗ is the observed value of maxi∈I Zi, and the probability is
under the above multivariate normal distribution for {Zi, i ∈ I}.
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A Closed Testing Procedure for our 3-arm survival trial

Define level α tests of

H0,1: θ1 ≤ 0,

H0,2: θ2 ≤ 0

and a level α test of the intersection hypothesis

H0,12 = H0,1 ∩H0,2: θ1 ≤ 0 and θ2 ≤ 0.

Then:

Reject H0,1 overall if the above tests reject H0,1 and H0,12,

Reject H0,2 overall if the above tests reject H0,2 and H0,12.

The requirement to reject H0,12 compensates for testing multiple
hypotheses and the “selection bias” in choosing the treatment to
focus on in Stage 2.
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2.3 Combining data across stages

Consider testing a generic null hypothesis H0: θ ≤ 0 against θ > 0.

Suppose Stage 1 data produce Z1 where

Z1 ∼ N(0, 1) if θ = 0.

On adaptation, Stage 2 data yield Z2 conditionally distributed as

Z2 ∼ N(0, 1) if θ = 0,

while Z2 is stochastically smaller than N(0, 1) if θ < 0.

Weighted inverse normal Combination Test

With pre-specified weights w1 and w2 satisfying w2
1 + w2

2 = 1,

Z = w1 Z1 + w2 Z2 ∼ N(0, 1) if θ = 0,

and Z is stochastically smaller than N(0, 1) if θ < 0.

So, for a level α test, we reject H0 if Z > Φ−1(1− α).
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Applying a Combination Test to survival data

For now, consider Experimental Treatment 1 vs Control.
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Properties of log-rank tests

Comparing Experimental Treatment 1 vs Control, define

S1 = Unstandardised log-rank statistic at interim analysis,

I1 = Information for θ1 at interim analysis ≈ (Number of deaths)/4

S2 = Unstandardised log-rank statistic at final analysis,

I2 = Information for θ1 at final analysis ≈ (Number of deaths)/4

Here, “Number of deaths” refers to the total number of deaths on
Experimental Treatment 1 and Control arms only.

Then, approximately,

S1 ∼ N(I1 θ1, I1),

S2 − S1 ∼ N({I2 − I1} θ1, {I2 − I1})
and S1 and (S2 − S1) are independent (independent increments).

Reference: Tsiatis (Biometrika, 1981).
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A Combination Test for survival data

We create Z statistics

Based on data at the interim analysis:

Z1 =
S1√
I1
,

Based on data accrued between the interim and final analyses:

Z2 =
S2 − S1√
I2 − I1

.

If θ1 = 0, then Z1 ∼ N(0, 1) and Z2 ∼ N(0, 1) are independent.

If θ1 < 0, Z1 and Z2 are stochastically smaller than this.

So, we can use Z = w1 Z1 + w2 Z2 in an inverse normal

Combination Test of H0,1: θ1 ≤ 0.
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A Combination Test for survival data: Caution!

The above distribution theory for logrank statistics of a single
comparison requires

Z2 =
S2 − S1√
I2 − I1

∼ N(0, 1) under θ1 = 0,

regardless of decisions taken at the interim analysis.

Bauer & Posch (Statistics in Medicine, 2004) note this implies that
the conduct of the second part of the trial should not depend on
the prognosis of Stage 1 patients at the interim analysis.

Suppose prognoses are better for patients on Exp Treatment 1
than for those on Control, and the Stage 2 cohort size is reduced
while follow up of Stage 1 patients is extended: then, the
distribution of Z2 could be biased upwards.

Our example has another potential source of bias, depending on
how the Stage 2 statistic for testing H0,12 is defined.
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2.4 Analysing an adaptive survival trial

In applying a Closed Testing Procedure, we require level α tests of

H0,1: θ1 ≤ 0,

H0,2: θ2 ≤ 0,

H0,12: θ1 ≤ 0 and θ2 ≤ 0.

Combination Tests for these hypotheses are formed from:

Stage 1 data Stage 2 data

H0,1 Z1,1 Z2,1

H0,2 Z1,2 Z2,2

H0,12 Z1,12 Z2,12

The question is how we should define Z1,1, Z2,1, etc?
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Analysing an adaptive survival trial

A natural choice is to:

Base Z1,1, Z1,2 and Z1,12 on data at the interim analysis,

Base Z2,1, Z2,2 and Z2,12 on the additional information

accruing between interim and final analyses.

We could take Z1,1 and Z1,2 to be standardised log-rank statistics,
and Z2,1 and Z2,2 standardised increments between analyses.

For the intersection hypothesis: Z1,12 is formed from Z1,1 and Z1,2,
while Z2,12 = Z2,j, where j is the selected treatment.

However, treatment j is selected because it has better PFS
outcomes at the interim analyses, so it is likely that future OS for
these patients will also be better.

This approach would lead to a bias in the null distribution of Z2,12.
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The method of Jenkins, Stone & Jennison (2011)

If we base a Combination Test on the two parts of the data
accrued before and after the interim analysis, bias can result:

Z1 Z2

Stage 1 Overall survival Overall survival
cohort (during Stage 1) (during Stage 2)

Stage 2 Overall survival
cohort (during Stage 2)

Instead, we divide the data into the parts from the two cohorts:

Stage 1 Overall survival Overall survival Z1
cohort (during Stage 1) (during Stage 2)

Stage 2 Overall survival Z2
cohort (during Stage 2)
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Partitioning data for a Combination Test

To avoid bias: All patients in the Stage 1 cohort are followed for
overall survival up to a fixed time, shortly before the final analysis.

“Stage 1” statistics are based on Stage 1 cohort’s final OS data

Z1,1 from log-rank test of Exp Tr 1 vs Control

Z1,2 from log-rank test of Exp Tr 2 vs Control

Z1,12 from pooled log-rank test, or a Simes or Dunnett test.

“Stage 2” statistics are based on OS data for the Stage 2 cohort

If Exp Treatment 1 is selected:

Z2,1 from log-rank test of Exp Tr 1 vs Control, Z2,12 = Z2,1

If Exp Treatment 2 is selected:

Z2,2 from log-rank test of Exp Tr 2 vs Control, Z2,12 = Z2,2.
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Partitioning data for a Combination Test

Discussion

Jenkins, Stone & Jennison (2011) introduced the proposed method
in a design where a choice is made between testing for an effect in
the full population or a sub-population.

They stipulated that the amount of follow up for the Stage 1
cohort should be fixed at the outset to avoid any risk of inflating
the type I error rate.

Some adaptive designs allow an early decision based on summaries
of “Stage 1” data at an interim analysis.

In our three-treatment design, the statistics Z1,1, Z1,2 and Z1,12

are not known at the time of the interim analysis, so we cannot
define a formal stopping rule.

However, with only a little OS data available at the interim
analysis, this is not a serious limitation.
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2.5 Choosing an adaptive design and assessing its benefits

We compare the adaptive design with a non-adaptive trial in which
randomisation is to both experimental treatments and control
throughout the trial:

Final
analysis

All
patients

-
�
�3

Q
Qs

Exp. Treatment 1

Exp. Treatment 2

Control

- Follow up

of OS

A Closed Testing Procedure is used to control familywise error rate.

When the total numbers of patients and lengths of follow-up are
the same in adaptive and non-adaptive designs,

Does the adaptive design provide higher power?

Are there other advantages?
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Assessing the adaptive design: Model assumptions

Overall Survival
Log hazard ratio

Exp Treatment 1 vs control θ1

Exp Treatment 2 vs control θ2

Logrank statistics are correlated due to the common control arm.

Progression Free Survival
Log hazard ratio

Exp Treatment 1 vs control ψ1

Exp Treatment 2 vs control ψ2

Denote correlation between logrank statistics for OS and PFS by ρ.

In fact, hazard rates cannot be proportional for both endpoints.

However, it is the implications for the joint distribution of logrank
statistics that matter, and it is convenient to describe these as if
from two proportional hazards models.
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Assessing the adaptive design: Model assumptions

Log hazard ratios for OS: θ1, θ2.

Log hazard ratios for PFS: ψ1, ψ2.

We suppose logrank statistics are distributed as if

ψ1 = γ × θ1 and ψ2 = γ × θ2

Final number of OS events for Stage 1 cohort = 300 (over 3
treatment arms)

Number of OS events for Stage 2 cohort = 300 (over 2 or 3
treatment arms)

Number of PFS events at interim analysis = λ× 300.

When the log hazard ratio is θ, the standardised logrank statistic

based on d observed events is, approximately, N(θ
√
d/4, 1).
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Testing the intersection hypothesis H0,12

We have null hypotheses H0,1: θ1 ≤ 0 and H0,2: θ2 ≤ 0.

In the Closed Testing Procedure, we must also test

H0,12 = H0,1 ∩H0,2 : θ1 ≤ 0 and θ2 ≤ 0.

We could test H0,12 by pooling the Exp Trt 1 and Exp Trt 2
patients and carrying out a logrank test vs the Control group.

Alternatively we could use a Simes test or a Dunnett test.

Simes’ test:

Given observed values p1 and p2 of P1 and P2, Simes’ test of
H0,12 yields the P-value

min ( 2 min(p1, p2), max(p1, p2) ).

Simes’ test protects type I error conservatively when P1 and P2 are
independent or positively associated.
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Dunnett’s test of an intersection hypothesis

Dunnett’s test for comparisons with a common control

Suppose Z1 and Z2 are the Z-values for logrank tests of Exp Trt 1
vs control and Exp Trt 2 vs Control.

If z1 and z2 are the observed values of Z1 and Z2, the Dunnett
test of H0,12 yields the P-value

P (max(Z1, Z2) ≥ max(z1, z2))

where (Z1, Z2) is bivariate normal with Z1∼N(0, 1), Z2∼N(0, 1)
and Corr(Z1, Z2) = 0.5.

We shall see from comparisons of different methods that the
Dunnett test of the intersection hypothesis leads to the most
efficient versions of both adaptive and non-adaptive designs.
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Comparing adaptive and non-adaptive trial designs

With selected values of ψ1, θ1, ψ2, θ2 and ρ, we simulate logrank
statistics from their large sample distributions.

For the adaptive design, we define

P (1) = P (Select Treatment 1 and Reject H0,1 overall)

P (2) = P (Select Treatment 2 and Reject H0,2 overall)

For the non-adaptive design, we set

P (1) = P (θ̂1 > θ̂2 and H0,1 is rejected overall)

P (2) = P (θ̂2 > θ̂1 and H0,2 is rejected overall)

Hence, we define the overall expected “Gain” or utility measure

E(Gain) = θ1 × P (1) + θ2 × P (2).
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Comparing tests of the intersection hypothesis

Intersection tests produce Z1,12 in an adaptive trial design with

ψ1 = θ1, ψ2 = θ2, λ = 1, ρ = 0.6, α = 0.025.

P (1) E(Gain)

θ1 θ2 Pooled Simes Dunnett Pooled Simes Dunnett

0.3 0.0 0.77 0.85 0.86 0.232 0.254 0.259

0.3 0.1 0.78 0.81 0.82 0.238 0.245 0.247

0.3 0.2 0.68 0.68 0.69 0.238 0.237 0.238

0.3 0.25 0.58 0.58 0.58 0.250 0.249 0.249

0.3 0.295 0.48 0.47 0.47 0.275 0.274 0.274

All simulation results are based on 1,000,000 replicates.

The Dunnett test has the highest power. Unlike the pooled test, it
is well aligned (consonant) with individual tests of H0,1 and H0,2.
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Comparing adaptive and non-adaptive trial designs

We compare designs using a Dunnett test for H0,12 with

ψ1 = θ1, ψ2 = θ2, λ = 1, ρ = 0.6, α = 0.025.

Non-adaptive Adaptive

θ1 θ2 P (1) P (2) E(Gain) P (1) P (2) E(Gain)

0.3 0.0 0.78 0.00 0.235 0.86 0.00 0.259

0.3 0.1 0.78 0.01 0.234 0.82 0.02 0.247

0.3 0.2 0.70 0.11 0.234 0.69 0.16 0.238

0.3 0.25 0.60 0.26 0.244 0.58 0.30 0.249

0.3 0.295 0.47 0.43 0.267 0.47 0.44 0.274

Here, λ = 1 implies there are 300 PFS events at the interim analysis.

The adaptive design has higher P (1) when θ1 is well above θ2.

With θ1 and θ2 closer, the adaptive design still has higher E(Gain).
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Comparing adaptive and non-adaptive trial designs

The adaptive design can only succeed if there is adequate
information to select the correct treatment at the interim analysis:

Treatment effects on PFS should be be reliable indicators of
treatment effects on OS,

There must be good information on PFS at the interim analysis.

We have investigated varying the parameters γ and λ where

ψ1 = γ × θ1, ψ2 = γ × θ2, with θ1 = 0.3 and θ2 = 0.1

Final number of OS events for Stage 1 cohort = 300 (over 3 arms)

Number of OS events for Stage 2 cohort = 300 (over 2 or 3 arms)

Number of PFS events at interim analysis = λ× 300.

NB It is quite plausible that γ should be greater than 1, i.e., a
larger treatment effect on PFS than on OS.
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Comparing adaptive and non-adaptive trial designs

We compare designs with θ1 = 0.3, θ2 = 0.1, ρ = 0.6, α = 0.025,

PFS log hazard ratios: ψ1 = γ θ1, ψ2 = γ θ2,

Number of PFS events at interim analysis = λ× 300.

Non-adaptive Adaptive

γ λ P (1) P (2) E(Gain) P (1) P (2) E(Gain)

1.5 1.2 0.88 0.00 0.264

1.2 1.1 0.85 0.01 0.256

1.0 1.0 0.78 0.01 0.234 0.82 0.02 0.247

0.9 0.9 for all γ and λ 0.78 0.03 0.238

0.8 0.8 (PFS is not used) 0.74 0.04 0.225

0.7 0.7 0.68 0.05 0.208

Adaptation works well when there is enough PFS information for
treatment selection at the interim analysis.
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2.6 Related work

1. Friede et al. (Statistics in Medicine, 2011) consider a seamless
phase II/III trial design with treatment selection based on both
short-term and long-term responses. They take a similar approach
to Jenkins, Stone & Jennison (Pharm. Statistics, 2011) and apply a
Combination Test to the long-term response data from the cohorts
of patients admitted before and after the interim decision point.

2. Irle & Schäfer (JASA, 2012) propose similar adaptive designs
for survival data. They determine critical values for test statistics
through the “Conditional Probability of Rejection” principle. Since
this is related to Combination Tests, the method has much in
common with that of Jenkins, Stone & Jennison.

However, determining the conditional probability of rejection is
problematic since the final information level (in a log-rank statistic,
say) is not known at the time this probability is calculated.
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Conclusions about the benefits of the adaptive design

1 The adaptive design offers the chance to select the better
treatment and focus on this in the second stage of the trial.

2 Overall, adaptation is beneficial as long as there is sufficient
information to make a reliable treatment selection decision.

3 Other evidence may be used in reaching this decision:

Safety data

Pharmacokinetic data

Overall survival

4 In addition to reaching a final decision, both non-adaptive and
adaptive trials compare the two forms of treatment: the
conclusions from this comparison may be more broadly useful.
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Recapitulation: Adaptive clinical trial designs

1 It is desirable to adapt a clinical trial design as information
becomes available on parameters that were initially unknown.

2 Methods are available to create adaptive designs that will
protect the overall type I error rate.

3 Combination Tests allow results from different stages of the
trial to be merged.

4 Closed Testing Procedures allow tests of multiple hypotheses,
or of a single hypothesis selected in a data-dependent manner.

5 It should not be assumed that introducing adaptation will
automatically make a trial design more efficient.

6 Critical appraisal of trial designs is crucial and, where feasible,
it is advisable to define an objective function and optimise for
this criterion within a chosen class of designs.
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