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3. Conclusions

Chris Jennison and Bruce Turnbull Start Small then Ask for More?



1. Choosing the sample size for a clinical trial

You might think this would be a simple question . . .

Let θ denote the effect size of a new treatment, e.g., the difference
in mean response between the new treatment and the control.

Sample size is determined by:

Type I error rate α, and

Treatment effect size θ = ∆ at which power 1− β is to be
achieved.

Dispute may arise over the choice of ∆.

Should investigators use:

The minimum effect of interest ∆1, or

The anticipated effect size ∆2 ?
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Choosing the sample size for a clinical trial

Power curves for designs with sample sizes of 500 and 1000.
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With 1000 subjects, there is good power at the minimum clinically
significant effect, ∆1.

With only 500 subjects, a high power is achieved at the more
optimistic ∆2.

If θ = ∆2, a sample size of 1000 is unnecessarily high.
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Designing a trial with high power and low sample size

In designing a clinical trial, we aim to

Protect the type I error rate,

Achieve sufficient power,

Use as small a sample size as possible.

We can use Group Sequential or Adaptive designs to achieve
desired error rates with a small average sample size.
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(A) Group sequential tests

A typical boundary for a one-sided test, expressed in terms of
standardised test statistics Z1, . . . , ZK , has the form:
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Crossing the upper boundary leads to early stopping for a positive
outcome, rejecting H0: θ ≤ 0 in favour of θ > 0.

Crossing the lower boundary implies stopping for “futility” with
acceptance of H0.
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Error spending group sequential tests

Let Ik = {Var(θ̂k)}−1 denote the information for θ at analysis k.

When the sequence I1, I2, . . . is unpredictable, a group
sequential design must adapt to observed information levels.

Lan & DeMets (Biometrika, 1983) introduced “error spending”
tests of H0: θ = 0 against θ 6= 0.

Maximum information design with error spending function f(I)
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The boundary at analysis k is set to give cumulative type I error
probability f(Ik).
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One-sided error spending tests

For a one-sided test of H0: θ ≤ 0 against θ > 0 with

Type I error probability α at θ = 0,

Type II error probability β at θ = δ,

we need two error spending functions.
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Type I error probability α is spent according to the function f(I),
and type II error probability β according to g(I).
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One-sided error spending tests

At analysis k: With observed information Ik

We find ak and bk to satisfy

Pθ=0{a1<Z1<b1, . . . , ak−1<Zk−1<bk−1, Zk > bk}=f(Ik)−f(Ik−1),

and

Pθ=δ{a1<Z1<b1, . . . , ak−1<Zk−1<bk−1, Zk < ak}=g(Ik)−g(Ik−1).
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Benefits of group sequential testing

Properties of one-sided tests with binding futility boundaries,

minimising {E0(I) + Eδ(I)}/2 for K equally sized groups,

α = 0.025, power 1− β = 0.9 at θ = δ, and Imax = R Ifix.

Minimum values of {E0(I) + Eδ(I)}/2, as a percentage of Ifix
R

K 1.01 1.05 1.1 1.2 1.3

2 80.8 74.7 73.2 73.7 75.8

3 76.2 69.3 66.6 65.1 65.2

5 72.2 65.2 62.2 59.8 59.0

10 69.2 62.2 59.0 56.3 55.1

20 67.8 60.6 57.5 54.6 53.3

Here, Ifix is the information required for a fixed sample size test
to achieve type I error rate α and power 1− β at θ = δ.
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(B) Adaptive trial designs with sample size re-estimation

Suppose we run a clinical trial adaptively in two stages:

Set the design of Stage 1,

Conduct Stage 1,

Analyse results from Stage 1,

Set the design of Stage 2, choosing the sample size based on
Stage 1 results,

Conduct Stage 2,

Analyse the results from Stage 2.

We need a way to test the null hypothesis H0: θ ≤ 0 that properly
protects the type I error rate — a combination test can do this.
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Combination tests (Bauer & Köhne, Biometrics, 1994)

Before the trial commences, define the null hypothesis.

Let θ denote the treatment effect vs control for a specified form of
the treatment, patient population and endpoint.

We test H0: θ ≤ 0 against θ > 0, with type I error rate α at θ = 0.

Define one-sided P-values P1 and P2 from hypothesis tests of H0

based on Stage 1 and Stage 2 data, respectively.

Under θ = 0

P1 ∼ U(0, 1).

Conditionally on all Stage 1 data and the Stage 2 design,

P2 ∼ U(0, 1).

Hence, P1 and P2 are independent U(0, 1) variates.
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The inverse normal combination test

Initial design

Specify the inverse normal test for null hypothesis H0, with
weights w1 and w2 where w2

1 + w2
2 = 1.

Design Stage 1, fixing sample size and test statistic.

Stage 1

Observe the one-sided P-value, P1, based on Stage 1 data.

Compute Z1 = Φ−1(1− P1).

Design Stage 2 in the light of Stage 1 data.

Stage 2

Observe the P-value, P2, based only on Stage 2 data.

Compute Z2 = Φ−1(1− P2).

NB Under θ = 0, Z1 ∼ N(0, 1), Z2 ∼ N(0, 1), independent.
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The inverse normal combination test

Under θ = 0, Z1 and Z2 are independent N(0, 1), so

w1Z1 + w2Z2 ∼ N(0, 1).

Hence, for an overall one-sided test with type I error rate α, we
reject H0 if

w1Z1 + w2Z2 > Φ−1(1− α).

If θ < 0, then Z1 and Z2 are stochastically smaller than N(0, 1)
random variables and the type I error rate is less than α.

If w1 and w2 are proportional to the square roots of the Stage 1
and Stage 2 sample sizes then w1Z1 + w2Z2 is the standard
Z-statistic based on the data at the end of Stage 2.

However, it is crucial that initially specified weights, w1 and w2,
are used in the final test.
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Adaptive sample size modification

The general adaptive framework allows investigators to choose a
moderately large sample size initially, then

If interim data are in line with original assumptions, the trial
continues as planned,

If interim data suggest the treatment effect is lower than
expected, the final sample size can be increased.

In a two stage design, as outlined in previous slides, a pre-specified
combination test protects the type I error rate at level α.

Multi-stage adaptive designs are also possible:

Lehmacher & Wassmer (Biometrics, 1999) describe a
multi-stage version of the combination test.

Cui, Hung & Wang (Biometrics, 1999) show how to increase
group sizes in a group sequential design.

Chris Jennison and Bruce Turnbull Start Small then Ask for More?



Designing a trial with good power and sample size

In designing a clinical trial, with a given type I error rate, adequate
power, and as small a sample size as possible:

Adaptive designs have the form:

Start with a fixed sample size design,

Examine interim data,

Add observations to improve power where most appropriate.

Group Sequential designs require one to:

Specify the desired type I error and power function,

Set maximum sample size a little more than the fixed sample size,

Stop the trial early if data support this.
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Designing a trial with good power and sample size

Power curve Eθ(N) curves
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All designs, including adaptive designs, have overall power curves.

Designs with similar power curves can be compared in terms of
their average sample size functions, Eθ(N).

Even if there is uncertainty about the likely treatment effect,
investigators should be able to specify the values of θ under which
early stopping is most desirable.
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Adaptive or group sequential designs?

Jennison & Turnbull have studied optimal versions of adaptive and
non-adaptive sequential designs (e.g., Statist. in Med., 2003 and
2006; Biometrika, 2006).

The set of group sequential tests
(GSTs) is a subset of the set of
adaptive designs (which can adapt
group sizes to observed responses)

Adaptive designs are, at best, a
little more efficient than GSTs
with the same number of analyses,
reducing average sample size by
1% or 2% for the same power

Many published adaptive designs
are considerably less efficient than
a well chosen GST.

And advice is available on
how to create good group
sequential designs:
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Re-visiting the Group Sequential vs Adaptive question

The paper by Mehta & Pocock (Statistics in Medicine, 2011)

“Adaptive increase in sample size when interim results
are promising: A practical guide with examples”

has re-opened this question.

Conclusions of Mehta & Pocock (MP) are counter to the findings
we have reported.

An important feature:

In MP’s first example, response is measured some time after
treatment.

Thus, at an interim analysis, many patients have been treated
but are yet to produce a response.

Delayed responses are common — and not easily dealt with by
standard GSTs.
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2. Mehta & Pocock’s Example

MP’s Example 1 concerns a Phase 3 trial of a new treatment for
schizophrenia, comparing the new drug to an active control.

The efficacy endpoint is improvement in the Negative Symptoms
Assessment score from baseline to week 26.

Responses are

YBi ∼ N(µB, σ
2), i = 1, 2, . . . , on the new treatment,

YAi ∼ N(µA, σ
2), i = 1, 2, . . . , on the control arm,

where σ2 = 7.52.

The treatment effect is

θ = µB − µA.
and we estimate θ by

θ̂ = µ̂B − µ̂A = Y B − Y A.
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Mehta & Pocock’s Example

The initial plan is for a total of n2 = 442 patients, 221 on each
treatment.

In testing H0: θ ≤ 0 vs θ > 0 at the final analysis, we reject H0 if

Z2 =
θ̂(n2)√
{4σ2/n2}

> 1.96.

This design and analysis gives type I error rate 0.025 and power
0.8 at θ = 2.

Higher power, e.g., power 0.8 at θ = 1.6, would be desirable.

But, the sponsors will only increase sample size if interim results
are “promising”.

An interim analysis is planned after observing n1 = 208 responses.
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Increasing the sample size

At the interim analysis with n1 = 208 observed responses, the
estimated treatment effect is

θ̂1(n1) = Y B(n1)− Y A(n1)

and
Z1 =

θ̂1(n1)√
{4σ2/n1}

.

At this analysis, a further 208 subjects will have been treated for
less than 26 weeks. Their responses will be observed in due course.

As recruitment continues, we use the value of Z1 in choosing a
new total sample size — between the original figure of 442 and a
maximum of 884.

In deciding whether to increase the sample size, MP consider
conditional power of the original test with n2 = 442 observations,
given the observed value of Z1.
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Increasing the sample size

Definition

The conditional power CPθ(z1) is the probability the final test,
with 442 observations, rejects H0, given Z1 = z1 and effect size θ,

CPθ(z1) = Pθ{Z2 > 1.96 |Z1 = z1}.

MP’s design is based on conditional power under θ = θ̂1.

They divide the range of z1 into three regions:

Favourable CP
θ̂1

(z1) ≥ 0.8 Continue to n2 = 442,

Promising 0.365 ≤ CP
θ̂1

(z1) < 0.8 Increase n2,

Unfavourable CP
θ̂1

(z1) < 0.365 Continue to n2 = 442.

When increasing sample size in the promising zone, the final test of
H0 must protect the type I error rate at level α.
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The Chen, DeMets & Lan method

References:

Chen, DeMets & Lan, Statistics in Medicine (2004),

Gao, Ware & Mehta, J. Biopharmaceutical Statistics (2008).

Suppose at interim analysis 1, the final sample size is increased to
n∗2 > n2 and, naively, H0 is rejected if

Z2(n
∗
2) =

θ̂(n∗2)√
{4σ2/n∗2}

> 1.96.

Chen, DeMets & Lan (CDL) show that if n2 is only increased when

CP
θ̂1

(z1) > 0.5,

then the type I error probability will not increase.

(In general, changes to sample size may increase or decrease the
type I error rate.)
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Gao’s extension of the CDL method

Gao et al. extended the CDL method to lower values of θ̂1, as long
as a sufficiently high value is chosen for the final sample size, n∗2.
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With an upper limit of n∗2 = 884, the final sample sizes permitted
by the CDL+Gao approach are as shown in the figure.

Now, n2 can be increased when CP
θ̂1

(z1) is as low as 0.365.
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The MP “Promising Zone” design

In their “promising zone”, MP increase n2 to achieve conditional
power 0.8 under θ = θ̂1, truncating this value to 884 if it is larger
than that.
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Density of θ̂1(θ = 1.6)

Comparison with the distribution of θ̂1 under θ = 1.6 shows that
increases in n2 occur in a region of quite small probability.

The distribution of θ̂1 under other values of θ is shifted but has the
same variance.
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Properties of the MP design

The increase in n2 in the “promising zone” has increased the
power curve a little.
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Given the limited range of values of θ̂1 for which n2 is increased,
only a small improvement in power can be expected.

Although it was stated that power 0.8 at θ = 1.6 would be
desirable, power at this effect size has only risen from 0.61 to 0.66.
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Properties of the MP design

The cost of higher power is an increase in expected sample size.
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Aiming for higher conditional power under θ = θ̂1 or raising the
sample size beyond 884 would give a small increase in power at
the cost of a large increase in E(N).
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Alternatives to the MP design

Suppose we are satisfied with the overall power function attained
by MP’s design: the same power can be achieved by other designs.

A fixed sample design

Emerson et al. (Statistics in Medicine, 2011) note that the same
power is achieved by a fixed sample size study with 490 subjects.

This is an attractive option since Eθ(N) for the MP design is
greater than 490 for effect sizes θ between 0.8 and 2.0.

NB: There is more to sample size distribution than Eθ(N)

High variance in N is usually regarded as undesirable, so the wide
variation in N for the MP design is a negative feature.

Perhaps variation in N is viewed more positively when investors in
a small bio-tech company are thinking of adding resource to a
study when it is most helpful?
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A group sequential test

Despite the delayed response, we can still consider a group
sequential design.

Suppose an interim analysis takes place after 208 observed
responses. If the trial stops at this analysis, we take the sample
size as 416, counting all subjects treated thus far — even though
only 208 have provided a response.

We apply an error spending design in the ρ-family (JT, Ch. 7):

At analysis 1 after 208 responses

If Z1 ≥ 2.54 Stop, reject H0

If Z1 ≤ 0.12 Stop, accept H0

If 0.12 < Z1 < 2.54 Continue

At analysis 2 after 514 responses

If Z2 ≥ 2.00 Reject H0

If Z2 < 2.00 Accept H0
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Sample size rules for MP, fixed and group seq. designs

Sample size for the MP design varies between 442 and 884.

The fixed sample size design has 490 observations.

The group sequential test stops with a sample size of 416 or 514.

Since 514 = 490× 1.05, it has an “inflation factor” of R = 1.05.
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Comparison of designs

Power curves Eθ(N) curves
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M−P adaptive design   
Fixed N=490 
GST R=1.05 
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M−P adaptive design   
Fixed N=490 
GST R=1.05 

All three designs have essentially the same power curve.

It is clearly possible to improve on the MP design’s Eθ(N) curve.

NB, Mehta & Pocock discuss two-stage group sequential designs
but they only present an example with much higher power (and,
thus, higher sample size).

Chris Jennison and Bruce Turnbull Start Small then Ask for More?



Can we improve the design within the MP framework?

Why does the MP design have high Eθ(N) for its achieved power?

Mehta & Pocock describe their method as adding observations in
situations where they will do the most good:

This seems a good idea, but the results are not so great,

Can we work out how to do this effectively?

Reference: Jennison & Turnbull (SiM, 2015)

Adaptive sample size modification in clinical trials: start small then
ask for more?
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Deriving efficient sample size rules in the MP framework

Continuing with MP’s example, we retain the basic elements of the
MP design.

The interim analysis takes place after 208 observed responses.

A final sample size n∗2 is chosen based on θ̂1 (or equivalently Z1).
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Allowable values of N for CDL+Gao framework Values of n∗2 ∈ [442, 884] that
satisfy the CDL+Gao conditions
are allowed.

At the final analysis, we reject
H0 if Z2 > 1.96, where Z2 is
calculated without adjustment
for adaptation.
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Efficient sample size rules in the MP framework

We shall assess the value of an increase in sample size in terms of
the conditional power that it achieves.

Suppose Z1 = z1 and we are considering a final sample size n∗2 with

Z2(n
∗
2) =

θ̂(n2)√
{4σ2/n2}

and conditional power under θ = θ̃

CP
θ̃
(z1, n

∗
2) = P

θ̃
{Z2(n

∗
2) > 1.96 |Z1 = z1}.

Setting γ as a “rate of exchange” between sample size and power,

we choose n∗
2 to optimise a combined objective

CP
θ̃
(z1, n

∗
2)− γ(n

∗
2 − 442).

We shall do this taking θ̃ = 1.6, a value where we wish to “buy”
additional power.
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An overall optimality property

The rule that maximises CP
θ̃
(z1, n

∗
2(z1))− γn∗2(z1) for every z1

also maximises, unconditionally,

Pθ=θ̃ (Reject H0) − γE
θ̃
(N).

This can be seen by writing Pθ=θ̃ (Reject H0)− γEθ̃(N) as∫
{CP

θ̃
(z1, n

∗
2(z1))− γn∗2(z1)} fθ̃(z1) dz1,

where f
θ̃
(z1) denotes the density of Z1 under θ = θ̃, and noting

that we have minimised the integrand for each z1.

We set γ = 0.14/(4σ2) to achieve the power of the MP design.

So, the resulting procedure will have minimum possible Eθ=1.6(N)
among all designs following the CDL+Gao framework that achieve
power 0.658 at θ = 1.6.
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Plots of conditional power and combined objective function

Plots for θ̃ = 1.6, γ = 0.14/(4σ2) and θ̂1 = 1.5
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The objective CP
θ̃
(z1, n

∗
2)− γ(n∗2 − 442) has a maximum at

n∗2 = 654.

This value is similar to MP’s choice of n∗2 when θ̂1 = 1.5.
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Plots of conditional power and combined objective function

Plots for θ̃ = 1.6, γ = 0.14/(4σ2) and θ̂1 = 1.3
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Conditional power
Combined objective

In this case, the conditional power curve is steeper and the
optimum occurs at a higher n∗2.

Now, CP
θ̃
(z1, n

∗
2)− γ(n∗2 − 442) is maximised at n∗2 = 707.

MP’s design takes the maximum permitted value of n∗2 = 884.
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Optimal sample size rule for θ̃ = 1.6, γ = 0.14/(4σ2)
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CDL+Gao Min E(N) at 1.6 
CDL+Gao bound 

This rule gives power 0.658 at θ = 1.6, the same as the MP design.

Decisions about sample size are based on a consistent comparison
of the higher power and the cost of additional observations.

As θ̂1 decreases, sample size increases less steeply than for the MP
design.
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Efficient sample size rules in the MP framework

Power curves Eθ(N) curves
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M−P adaptive design 
CDL+Gao Min E(N) at 1.6 
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M−P adaptive design 
CDL+Gao Min E(N) at 1.6 

With the type I error rate fixed at 0.025, matching the MP design’s
power at one value of θ will match the whole power curve.

Our optimised design has the same power curve as the MP design
and lower Eθ(N) (just about) at all θ values.

The reductions in Eθ(N) are modest — but given the optimality
property of the sampling rule in the Mehta & Pocock framework,
this is as good as it gets.
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Further efficiency gains

Our new, optimised procedure still has higher Eθ(N) than the
two-stage GST that ignores (but is charged for) pipeline data.
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M−P adaptive design 
CDL+Gao Min E(N) at 1.6 
GST R=1.05
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Shapes of optimised sample size rules suggest it would help to
increase n∗2 at lower values of θ̂1 — but this is not allowed in the
CDL+Gao framework.

If we use a Combination Test, such adaptations are permissible.
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Optimal sample size rule for a combination test design

We follow our previous strategy in this new framework and set n∗2
to maximise CP

θ̃
(z1, n

∗
2)− γ(n∗2 − 442), where θ̃ = 1.6.
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The design with this sample size rule for γ = 0.25/(4σ2) matches
the MP test’s power of 0.658 at θ = 1.6.

Shapes of optimised sample size rules are very different from the
MP design — the best opportunities for investing additional
resource are not in Mehta & Pocock’s “promising zone”.
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Optimal sample size rule for a combination test design

Eθ(N) curves
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When using a combination test, we can increase sample size for θ̂1
below the CDL+Gao region.

This leads to a useful reduction in Eθ(N) at θ = 1.6.
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Further extensions

1. We can allow recruitment to terminate at the interim analysis,
so the minimum sample size is n2 = 416, rather than 442.

2. We can use a general combination test or, equivalently, a
general conditional type I error function (Proschan & Hunsberger,
Biometrics, 1995).

3. We can minimise other average sample size criteria, such as a
weighted sum or integral∑

i

wiEθi(N) or

∫
w(θ)Eθi(N) dθ.

The resulting two-stage designs deal neatly with the “pipeline”
subjects arising when there is a delayed response.

For the chosen criteria, they will give the best possible sampling
and decision rules with n1 = 208 and n2 in the range 416 to 884.
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General sampling rule, early termination of recruitment

We have followed (1) and (2) above in minimising Eθ=1.6(N).

Sample size rule Eθ(N) curves
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Reductions in Eθ(N) are mostly due to (1), which allows n2 to be
limited to 416.

The highest final sample sizes arise at values of θ̂1 below MP’s
“promising zone”.
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Relation to proposals for Delayed Response GSTs

Reference: Hampson & Jennison, JRSS B (2013).

Hampson & Jennison have extended methodology for group
sequential tests to handle a delayed response.

Their “Delayed Response GSTs” allow any number of interim
analyses and can be optimised for specified criteria.

Applying this approach in the case of just 2 analyses:

Either recruitment stops at analysis 1 and the final analysis
occurs when all pipeline subjects have been observed,

Or, an additional group of subjects is recruited and the final
analysis has pipeline subjects plus these new subjects.

Thus, we have a special case of the designs we have been
developing where only two values of n2 are possible.
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Delayed Response GST for the MP example

Optimising a DR GST to minimise Eθ=1.6(N) while matching the
power of the MP design gives the sample size rule shown below.
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The sampling rule approximates that of the general adaptive
method, but with a step function rather than a continuous sample
size function.
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Properties of the optimal DR GST

The optimised DR GST has an almost identical Eθ(N) curve to
the general rule that uses the continuum of possible sample sizes.
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Thus, as Jennison & Turnbull (Biometrika, 2006) found for an
immediate response, there is minimal benefit from fine-tuning the
total sample size in response to interim data.
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Hsiao, Liu & Mehta, Biometrical Journal (2018)

Hsiao et al. re-visited promising zone designs and used optimised
versions of these designs to benchmark their proposals.

Using our earlier notation, their proposed design is as follows:

Constrained Promising Zone Design

In the final analysis, use an inverse normal combination test.

Set n∗2 to maximise CP
θ̃
(z1, n

∗
2), subject to

n ≤ n∗2 ≤ nmax,

CP
θ̃
(z1, n

∗
2) ≤ cpmax,

CP
θ̃
(z1, n

∗
2) ≥ cpmin if n∗2 > n2.

(Note the use of CP
θ̃

rather than CP
θ̂1

.)

The third constraint ensures that sample size is only increased if
conditional power can be raised to an acceptable level.
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Hsiao et al. “Optimal promising zone designs”

Hsiao et al. assessed their new design by comparing it with:

Constrained Jennison-Turnbull Design

In the final analysis, use an inverse normal combination test.

Set n∗2 to maximise CP
θ̃
(z1, n

∗
2)− γn∗2, subject to

n ≤ n∗2 ≤ nmax,

CP
θ̃
(z1, n

∗
2) ≥ cpmin if n∗2 > n2.

Again, sample size is only increased if conditional power can be
raised to an “acceptable” level.

In their example, with an appropriate choice of γ, the two methods
produce designs with almost identical power and expected sample
size functions.
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3. Conclusions

1. Traditional GSTs provide efficient trial designs.

2. We have considered MP’s “Promising Zone” designs and
developed their idea of spending resources where they have the
greatest benefit — and found more efficient adaptive designs.

3. A simple option for a 2-stage design is to

(i) use an inverse normal combination test and

(ii) optimise the second stage sample size to maximise
conditional power at θ = θ̃ minus a penalty for sample size.

4. An extension of this method gives designs very similar to the
“Delayed Response GSTs” of Hampson & Jennison (2013).

5. The above approach can be combined with constraints —
such as the requirement for a certain probability of success if
additional resources are to be committed to a trial.
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