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Group Sequential and Adaptive Designs

Group sequential and adaptive clinical trial designs have been
proposed for a number of important applications:

Early stopping for efficacy or futility,

Sample size modification,

Treatment selection and testing (seamless Phase 2/3 trials),

Population selection and testing (enrichment designs).

There are usually options to choose from within such a design.

How should one make such choices and assess the end result?
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Choosing an adaptive design

A key requirement for any Phase 3 trial is to protect the type I
error rate.

This can be a complex problem when there are multiple null
hypotheses under consideration — and multiple parameters, so the
type I error rate must be controlled over a high-dimensional region.

Then, one wishes to be efficient, gaining high power with low
sample size.

Question

How should one make decisions:

At interim analyses?

At the final analysis?
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Outline of talk

1. Monitoring clinical trials

Group sequential stopping rules

Sample size modification

2. Seamless Phase 2/3 designs

Designs that protect family-wise error rate,

Optimising decision rules and sample size allocation.

3. Enrichment designs

Adaptive enrichment in response to interim data.

Optimising the decision rule for when to enrich.

4. Conclusions
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1. Early stopping and sample size re-estimation

A clinical trial is run to compare a new treatment with an existing
treatment or placebo.

As the trial progresses, a Data and Safety Monitoring Board
(DSMB) monitors patient recruitment, treatment administration,
and the responses observed at interim points.

The DSMB can take actions in view of safety variables or
secondary endpoints, for example, to drop a treatment arm with a
high dose level if this appears unsafe.

Response on the primary endpoint may indicate that early
termination of the study is desirable — for either a positive or
negative conclusion.
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The need for special methods

Multiple looks at accumulating data can lead to over-interpretation
of interim results.

Armitage et al. (JRSS, A, 1969) report the overall type I error rate
when applying repeated significance tests at level α = 0.05 to
accumulating data:

Number of tests Error rate

1 0.05

2 0.08

3 0.11

5 0.14

10 0.19

Clearly, a different approach is needed to avoid inflation of the
type I error rate.

Chris Jennison Optimal Group Sequential and Adaptive Designs



Formulating the problem

Let θ denote the “effect size”, a measure of the improvement in
the new treatment over the standard.

We shall test the null hypothesis H0: θ ≤ 0 against θ > 0.

Then, rejecting H0 allows us to conclude the new treatment is
better than the standard.

We allow type I error probability α for rejecting H0 when it is
actually true.

We specify power 1− β for the probability of (correctly) rejecting
H0 when θ = δ. Here, δ is, typically, the minimal clinically
significant treatment difference.

The trial design, including the method of analysis and stopping
rule, must be set up to attain these error rates.
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An early example: The BHAT trial

DeMets et al. (Cont. Clin. Trials, 1984) report on the Beta-Blocker
Heart Attack Trial, that compared propanolol with placebo.

An “O’Brien and Fleming” stopping boundary was defined with
overall type I error probability 0.025.
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The trial stopped after the 6th of 7 planned analyses.
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Group sequential tests: Stopping for futility

Adding a lower boundary allows stopping when there is little
chance of a positive conclusion.
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Rosner & Tsiatis (Statistics in Medicine, 1989) carried out
retrospective analyses of 72 cancer studies of the U.S. Eastern
Co-operative Oncology Group.

Had group sequential stopping rules been applied, early stopping
(mostly to accept H0) would have occurred in ∼80% of cases.
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Requirements for clinical trial designs

We seek designs which:

Achieve specified type I error rate and power,

Stop early, on average, under key parameter values,

Can be applied to a variety of response types.

We shall present distribution theory which shows that a common
set of methods can be applied to many data types.

To define efficient tests, we shall formulate and solve an optimal
stopping problem.
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Sequential distribution theory

Our interest is in the parameter for the treatment effect, θ.

Let θ̂k denote the estimate of θ based on data at analysis k.

The information for θ at analysis k is

Ik = {Var(θ̂k)}−1, k = 1, . . . ,K.

Canonical joint distribution of θ̂1, . . . , θ̂K

In many situations, θ̂1, . . . , θ̂K are approximately multivariate
normal,

θ̂k ∼ N(θ, {Ik}−1), k = 1, . . . ,K,

and

Cov(θ̂k1 , θ̂k2) = Var(θ̂k2) = {Ik2}−1 for k1 < k2.
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Canonical joint distribution of score statistics

The preceding result about the joint distribution of θ̂1, . . . , θ̂K can
be demonstrated directly for:

θ a single normal mean,

θ = µA − µB, comparing two normal means.

The results also apply when θ is a parameter in:

a general normal linear model,

a model fitted by maximum likelihood (large sample theory),

a Cox proportional hazards regression model for survival data.

Thus, theory supports general comparisons, including:

crossover trials, studies with longitudinal data,

analyses with covariate adjustment.
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Canonical joint distribution of score statistics

The general theory implies that score statistics, Sk = Zk
√
Ik, are

multivariate normal with

Sk ∼ N(θ Ik, Ik), k = 1, . . . ,K.

The score statistics have the “independent increments” property

Cov(Sk − Sk−1, Sk′ − Sk′−1) = 0 for k 6= k′.

It can be helpful to know that the score statistics behave as
Brownian motion with drift θ observed at times I1, . . . , IK .

References:

Jennison & Turnbull, JASA, 1997,

Scharfstein et al, JASA, 1997.
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An optimal stopping problem

Consider a trial designed to test H0: θ ≤ 0 vs θ > 0, with:

Type I error rate α,

Power 1− β at θ = δ,

Up to K analyses.

A fixed sample test needs information

Ifix = {Φ−1(α) + Φ−1(β)}2/δ2.

We set the maximum information to be

Imax = R Ifix,

where R > 1, with equal increments between analyses.
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Optimal group sequential tests

The error rates impose two constraints on the 2K − 1 boundary
points — leaving a high dimensional space of possible boundaries.
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We shall look for a boundary that minimises

{E0(I) + Eδ(I)}/2.

Chris Jennison Optimal Group Sequential and Adaptive Designs



Computations for group sequential tests
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We need to be able to calculate the probabilities of basic events
such as

a1 < Z1 < b1, a2 < Z2 < b2, Z3 > b3.

Combining such probabilities gives key properties, such as

Prθ{Reject H0} and Eθ(I).

l
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Numerical integration

We can write probabilities as nested integrals, e.g.,

Pr{a1 < Z1 < b1, a2 < Z2 < b2, Z3 > b3} =

∫ b1

a1

∫ b2

a2

∫ ∞
b3

f1(z1) f2(z2|z1) f3(z3|z2) dz3 dz2 dz1.

Applying numerical integration, we replace each integral by a sum
of the form ∫ b

a
f(z) dz =

n∑
i=1

w(i) f(z(i)),

where z(1), . . . , z(n) is a grid of points from a to b.
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Numerical integration

Thus, we have

Pr{a1 < Z1 < b1, a2 < Z2 < b2, Z3 > b3} ≈
n1∑
i1=1

n2∑
i2=1

n3∑
i3=1

w1(i1) f1(z1(i1)) w2(i2)f2(z2(i2)|z1(i1))

w3(i3) f3(z3(i3)|z2(i2)).

Multiple integrations and summations will arise, e.g., for an
outcome at analysis k,

n1∑
i1=1

. . .

nk∑
ik=1

w1(i1) f1(z1(i1)) w2(i2)f2(z2(i2)|z1(i1))

. . . wk(ik) fk(zk(ik)|zk−1(ik−1)).
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Numerical integration

In the multiple summation

n1∑
i1=1

n2∑
i2=1

. . .

nk∑
ik=1

w1(i1) f1(z1(i1)) w2(i2)f2(z2(i2)|z1(i1))

. . . wk(ik) fk(zk(ik)|zk−1(ik−1)),

the structure of the k nested summations is such that the
computation required is of the order of k − 1 double summations.

Using Simpson’s rule with 100 to 200 grid points per integral can
give accuracy to 5 or 6 decimal places.

For details of efficient sets of grid points, see Ch. 19 of Group
Sequential Methods with Applications to Clinical Trials by
Jennison and Turnbull (2000).
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Finding optimal group sequential tests

Recall, we want a group sequential test of H0: θ ≤ 0 vs θ > 0 with

Prθ=0{Reject H0} = α,

Prθ=δ{Accept H0} = β,

Analyses at Ik = (k/K) Imax, k = 1, . . . ,K,

Minimum possible value of {E0(I) + Eδ(I)}/2.

We deal with constraints on error rates by introducing Lagrangian
multipliers to create the unconstrained problem of minimising

{E0(I) + Eδ(I)}/2 + λ1Prθ=0{Reject H0}+ λ2 Prθ=δ{Accept H0}.

We shall find a pair of multipliers (λ1, λ2) such that the solution
has type I and II error rates α and β, then this design will solve the
constrained problem too.
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Bayesian interpretation of the Lagrangian approach

Suppose we put a prior on θ with Pr{θ = 0} = Pr{θ = δ} = 0.5
and specify costs of

1 per unit of information observed,

2λ1 for rejecting H0 when θ = 0,

2λ2 for accepting H0 when θ = δ.

Then, the total Bayes risk is

{E0(I)+Eδ(I)}/2+λ1 Prθ=0{Reject H0}+λ2 Prθ=δ{Accept H0},

just as in the Lagrangian problem.

An advantage of the Bayes interpretation is that it can give insight
into solving the problem by using “Dynamic Programming” or
“Backwards Induction”.
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Solution by Dynamic Programming

Denote the posterior distribution of θ given Zk = zk at analysis k
by

p(k)(θ|zk), θ = 0, δ.

At the final analysis, K

There is no further sampling cost, so compare decisions

Reject H0: E(Cost) = 2λ1 p
(K)(0|zK),

Accept H0: E(Cost) = 2λ2 p
(K)(δ|zK).

The boundary point aK is the value of zK where these expected
losses are equal.

The optimum decision rule is to reject H0 for ZK > aK .
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Dynamic Programming

At analysis K − 1

-

IIK−1 IK

6
Zk

•aK×
ZK−1

If the trial stops at this analysis, there is no further cost of
sampling and the expected additional cost is

Reject H0: 2λ1 p
(K−1)(0|zK−1),

Accept H0: 2λ2 p
(K−1)(δ|zK−1).
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At analysis K − 1

If the trial continues to analysis K, the expected additional cost is

1× (IK − IK−1)

+ 2λ1 p
(K−1)(0|zK−1)Prθ=0{ZK > aK |ZK−1 = zK−1}

+ 2λ2 p
(K−1)(δ|zK−1)Prθ=δ{ZK < aK |ZK−1 = zK−1}.

We can now define the optimal boundary points:

Set bK−1 to be the value of zK−1 where

E(Cost of continuing) = E(Cost of stopping to reject H0).

Set aK−1 to be the value of zK−1 where

E(Cost of continuing) = E(Cost of stopping to accept H0).
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At analysis K − 1

-
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Before leaving analysis K − 1, we set up a grid of points for use in
numerical integration over the range aK−1 to bK−1.

For each point, we sum over the posterior distribution of θ to
calculate

β(K−1)(zK−1) = E(Additional cost when continuing |ZK−1 = zK−1).

We are now ready to move back to analysis K − 2.
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Analyses 1 to K − 2

We work back through analyses k = K − 2, K − 3, . . . , 1.
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At each analysis, we find the optimal stopping boundary using
knowledge of the optimal stopping rule at future analyses.

Then, for a grid of values of zk, compute

β(k)(zk) = E(Additional cost when continuing |Zk = zk)

to use in evaluating the option of continuing at analysis k − 1.
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Solving the original problem

For any given (λ1, λ2) we can find the Bayes optimal design and
compute its type I and II error rates.

We now search for a pair (λ1, λ2) for which type I and type II error
rates of the optimal design equal α and β, respectively.

The resulting design will be the optimal group sequential test, with
the specified frequentist error rates, for our original problem.

Notes

1. The method of solving the overall problem demonstrates
explicitly that good frequentist procedures should be similar to
Bayes procedures.

2. The prior and costs in the final Bayes problem are a means to
an end, rather than “true” costs of type I and type II errors, or
costs of treating patients in the trial.
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Properties of optimal designs

Tests with α = 0.025, 1− β = 0.9, K analyses, Imax = R Ifix,

equal group sizes, minimising {E0(I) + Eδ(I)}/2.

Minimum values of {E0(I) + Eδ(I)}/2, as a percentage of Ifix
R Minimum

K 1.01 1.05 1.1 1.2 1.3 over R

2 80.8 74.7 73.2 73.7 75.8 73.0 at R=1.13

5 72.2 65.2 62.2 59.8 59.0 58.8 at R=1.38

10 69.2 62.2 59.0 56.3 55.1 54.2 at R=1.6

20 67.8 60.6 57.5 54.6 53.3 51.7 at R=1.8

Observe: E(I)↘ as K ↗ but with diminishing returns,

E(I)↘ as R↗ up to a point.
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Generalisations

Solutions can be obtained for a variety of related problems:

Other optimality criteria such as a weighted sum∑
i

wiEθi(I)

or an integral ∫
f(θ)Eθ(I) dθ

Optimising a set of fixed group sizes in a group sequential test

Data dependent group sizes in a group sequential test

Group sequential tests for a delayed response

Testing for either superiority or non-inferiority
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Sample size re-estimation
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Sample size re-estimation

In a group sequential trial, the final sample size depends on the
observed data.

“Sample size re-estimation” gives another route to a similar end.

Example 1 of Mehta & Pocock (Statistics in Medicine, 2011)
concerns a Phase 3 trial of a new treatment for schizophrenia,
comparing the new drug to an active control.

The efficacy endpoint is improvement in the Negative Symptoms
Assessment score from baseline to week 26.

Responses are

YBi ∼ N(µB, 7.5
2), i = 1, 2, . . . , on the new treatment,

YAi ∼ N(µA, 7.5
2), i = 1, 2, . . . , on the control arm,

and the treatment effect is θ = µB − µA.
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Sample size re-estimation

The initial plan is for n2 = 442 patients, 221 on each treatment.

In testing H0: θ ≤ 0 vs θ > 0 at the final analysis, we reject H0 if

Z2 =
θ̂(n2)√
{4σ2/n2}

> 1.96.

This design and analysis gives type I error rate 0.025 and power
0.8 at θ = 2.

Higher power, e.g., power 0.8 at θ = 1.6, would be desirable.

The sponsors are willing to increase sample size if interim results
are “promising”.

An interim analysis is planned after observing n1 = 208 responses.

Delayed response: At this time a further 208 subjects will have
been admitted to the trial, but treated for less than 26 weeks.
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Sample size re-estimation

We consider the following variation on Mehta & Pocock’s
“Promising zone” design.

At the interim analysis with n1 = 208 observed responses, the
estimated treatment effect is

θ̂1 = Y B(1 : n1/2)− Y A(1 : n1/2)

and

Z1 =
θ̂1√

{4σ2/n1}
.

In the remainder of the trial a further n∗2−n1 observations provide

θ̂2 = Y B(n1/2 + 1 : n∗2/2)− Y A(n1/2 + 1 : n∗2/2)

and

Z2 =
θ̂2√

{4σ2/(n∗2 − n1)}
.
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Sample size re-estimation

At the end of the trial, we test H0: θ ≤ 0 with a combination
test, rejecting H0 if

1√
2
Z1 +

1√
2
Z2 > 1.96.

In this framework, we are free to vary n∗2 and the final test will still
have one-sided type I error rate α = 0.025.

Given the 208 subjects “in the pipeline”, we must take n∗2 ≥ 416,
but we can increase n∗2 beyond the planned value of 442 in order to
increase power.

Questions:

What is an efficient way to choose n∗2 based on the observed θ̂1?

How should we formulate the problem to pose this question in a
precise way?
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Problem formulation (Jennison & Turnbull, SiM, 2015)

We specify γ, a “rate of exchange” between sample size and power.

Focusing on properties under θ = θ̃ = 1.6, we aim to maximise

Pθ=θ̃ (Reject H0) − γE
θ̃
(N). (1)

Denote the conditional power under θ = θ̃ of the combination test,
given Z1 = z1 and a total sample size of n∗2, by

CP
θ̃
(z1, n

∗
2) = P

θ̃
{ 1√

2
Z1 +

1√
2
Z2 > 1.96 | Z1 = z1, n

∗
2}.

We aim to find the sample size function n∗2(z1) that maximises (1).
This objective can be written as∫

{CP
θ̃
(z1, n

∗
2(z1))− γn∗2(z1)} fθ̃(z1) dz1,

where f
θ̃
(z1) denotes the density of Z1 under θ = θ̃.
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Problem formulation

In order to maximise∫
{CP

θ̃
(z1, n

∗
2(z1))− γn∗2(z1)} fθ̃(z1) dz1,

for each z1, we need to choose n∗2(z1) to maximise

CP
θ̃
(z1, n

∗
2(z1))− γn∗2(z1).

Here, the optimisation can be done by numerical calculation under
a range of possible values for n∗2.

Combining these results for different values of z1 gives the
optimised sample size rule n∗2(z1).
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Maximising CP
θ̃
(z1, n

∗
2)− γ(n∗2 − 442)

Plots for θ̃ = 1.6, γ = 0.245/(4σ2) and θ̂1 = 0.75
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Combined objective

The function CP
θ̃
(z1, n

∗
2)− γ(n∗2 − 442) attains its maximum

at n∗2 = 589.

Chris Jennison Optimal Group Sequential and Adaptive Designs



Maximising CP
θ̃
(z1, n

∗
2)− γ(n∗2 − 442)

Plots for θ̃ = 1.6, γ = 0.245/(4σ2) and θ̂1 = 1.25
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For θ̂1 = 1.25, conditional power rises less steeply as n∗2 increases.

Now, the function CP
θ̃
(z1, n

∗
2)− γ(n∗2 − 442) has its maximum

at n∗2 = 570.
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Optimal sample size rule

Optimal sample size rule for combination test design

with n∗
2 in (416, 884), θ̃ = 1.6, γ = 0.245/(4σ2)
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With γ = 0.245/(4σ2), overall power is 0.658 at θ = 1.6 (the
same as for the MP Promising Zone design).

By construction, the procedure has minimum Eθ=1.6(N) among all
normal combination test designs with n1 = 208 and n∗2 ≥ 416
that achieve the same power.

Chris Jennison Optimal Group Sequential and Adaptive Designs



Properties of the optimal sample size rule

Combination test design with optimal sample

size rule: n∗
2 ≥ 416, θ̃ = 1.6, γ = 0.245/(4σ2)

Power curve Eθ(N) curves
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The optimised design has the same power curve as a fixed sample
size design with 490 patients — and lower Eθ(N) at all θ values.
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Other options

1. We could reduce the value of γ, leading to an increase in
sample size and higher power.

2. We could optimise other criteria, replacing E
θ̃
(N) in

Pθ=θ̃ (Reject H0) − γE
θ̃
(N) by a weighted sum or integral,∑

i

wiEθi(N) or

∫
w(θ)Eθ(N) dθ.

In the integral case, treating the power function in a similar way,
we seek to maximise∫

w(θ)Pθ (Reject H0) dθ − γ

∫
w(θ)Eθ(N) dθ.

If w(θ) is a prior distribution, representing investigators’ beliefs
about likely values of θ, we have a Bayes decision problem.
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Other options

Suppose we wish to maximise∫
w(θ)Pθ (Reject H0) dθ − γ

∫
w(θ)Eθ(N) dθ.

For each z1, we must choose n∗2(z1) to maximise

CP (z1, n
∗
2(z1))− γn∗2(z1),

where CP (z1, n
∗
2(z1)) is the conditional power integrated over the

posterior distribution of θ given the stage 1 data summary z1.

By working within the class of inverse normal combination tests,
we automatically protect the type I error rate at level α.

We can choose γ to meet a specific power condition. Since the set
of possible power curves is essentially a one-parameter family,
precisely how power appears in the objective function is not crucial.
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Other options

3. Additional constraints can be included in the design process:

One could set an upper limit on values for n∗2.

Investors may only wish to consider an increase in sample size
when results are deemed to be sufficiently “promising”.

4. The sample size rule can be simplified by allowing just two
possible values for n∗2.

When optimised, this simpler design can achieve almost the same
Eθ(N) function as designs with a more general form of n∗2(z1).

Such a design is an example of a “Delayed Response Group
Sequential Design”; see Hampson & Jennison, (JRSS, B, 2013).
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2. Optimising a Phase 2/3 seamless design

During Phase 2 and Phase 3 of the drug development process,

The final decision is made on the treatment specification,
including the dose level,

The selected treatment is tested against control.

A seamless Phase 2/3 trial design combines these two phases:

In stage 1

Compare K “treatments” against control

Select the best treatment and, if it has performed sufficiently
well, proceed to stage 2.

In stage 2

Compare the selected treatment against the control.
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Optimising a Phase 2/3 seamless design

After both stages are completed, we test the null hypothesis that
the selected treatment is no better than the control.

Since this treatment was selected based on data that will also be
used in the final analysis, care must be taken to avoid inflating the
overall type I error rate.

Design issues

We would like to optimise:

1 The way in which data on all treatments are combined in the
final hypothesis test,

2 The way in which the total sample size is divided between the
two stages.
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Optimising a Phase 2/3 seamless design
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Optimising a Phase 2/3 seamless design

Denote the K treatment effects vs control by θ1, . . . , θK .

Stage 1

Randomise m1 subjects to each of the K treatments and the
control and observe their responses.

Denote the estimated treatment effects by θ̂1,i, i = 1, . . . ,K.

Treatment i∗ with the highest θ̂1,i is selected for stage 2.

Stage 2

Treatment i∗ is compared against control, with m2 observations on
each. The estimated treatment effect is θ̂2,i∗ .

Conclusion

A final decision is made, based on θ̂1,1, . . . , θ̂1,K and θ̂2,i∗ .
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Optimising a Phase 2/3 seamless design

There are K null hypotheses, Hi: θi ≤ 0 , i = 1, . . . ,K.

If dose i∗ is selected for Phase 3, we focus on testing Hi∗ : θi∗ ≤ 0.

Family-wise error

We want strong control of the family-wise error rate. Then, for
all vectors θ = (θ1, . . . , θK),

Prθ{Reject any true Hi} ≤ α.
Power

When some θi are greater than zero, we can define power as

Pr{Select treatment j with maximum θi and reject Hj : θj ≤ 0}.

More generally, we can define a gain function or utility that is
positive when Hi∗ is rejected, whichever treatment is selected, but
the gain increases with θi∗ .
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Optimising a Phase 2/3 seamless design

The family-wise error rate can be controlled by using a Closed
Testing Procedure.

This requires level α tests of each null hypothesis Hi, and of all
intersections of sets of these hypotheses.

Each of these tests can be constructed as a combination test
across the two stages of the trial.

Then, general theory implies that the family-wise type 1 error rate
is controlled at level α.

There are still choices to be made:

How should we test the intersection hypotheses in stage 1?

What type of combination test is best?

The best choice may depend on the K-dimensional parameter θ.
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Optimising a Phase 2/3 seamless design

Hampson & Jennison (Statistics in Medicine, 2013) found optimal
final decision rules that maximise power when θ = δ v, for various
choices of vector v.

Interestingly, two procedures were close to 100% efficient across a
wide range of scenarios.

1. In the framework we have described, use a Dunnett test for
each intersection hypothesis in stage 1 and combine Z values
across stages with a weighted normal combination test.

2. Use the procedure proposed by Thall, Simon and Ellenberg
(Biometrika, 1988).

We were surprised that procedures with such robust efficiency exist.

However, this deals conveniently with the issue that the best
design may depend on a high-dimensional, unknown vector θ.

Chris Jennison Optimal Group Sequential and Adaptive Designs



Optimising a Phase 2/3 seamless design

Hampson & Jennison also considered how best to divide a total
sample size between stage 1 (m1 observations on K treatments
and control) and stage 2 (m2 on selected treatment and control).

The choice that maximises power depends on the vector of
treatment effects, θ, with the largest treatment effect playing a
leading role.

If the highest treatment effect is large, one can afford a high m1,
increasing the probability of selecting this treatment.

If the highest treatment effect is smaller, a high m2 is needed to
give power in stage 2 when the best treatment is selected.

Advice:

Express your expectations as a distribution for θ and choose a
design with good average properties across this distribution.
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Optimal Stage 1 group sizes in a seamless design
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Benefits of Phase 2/3 seamless designs

Regulators require a seamless Phase 2/3 trial to be conducted as a
single trial, with a firewall between the data monitoring committee
and the investigators.

Efficiency gains from using “Phase 2”data in the final hypothesis
test must balance extra planning and organisational requirements.

With m1 observations on each treatment and control in stage 1
and m2 on the selected treatment and control in stage 2, what are
the benefits of using the stage 1 data in the final analysis?

Hampson & Jennison show that:

If only Phase 3 data are used in the final analysis,
then in many plausible scenarios, m2 needs to be
increased by between 0.5m1 and 0.7m1, in order to
achieve the same power as the seamless design.
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Comments on this example

Controlling the frequentist type I error rate

Use of a closed testing procedure and combination tests guarantees
control of type I error.

Optimising within this class of designs

We can, essentially, optimise the choice of closed testing procedure
and combination test for all treatment effect vectors, θ.

However, the best choice of sample sizes in stage 1 and stage 2
does depend on the vector θ.

The Bayes solution is to specify a prior distribution for the unknown
θ and optimise performance integrated over this distribution.

An outer layer

If the optimised value of m1 leads to unacceptably low average
power, consider a higher total sample size for the two stages.
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3. Creating an efficient enrichment design

Switching to a sub-population in response to interim data

Consider a treatment developed to disrupt a disease’s biological
pathway. Patients with high levels of a biomarker for this pathway
should gain particular benefit.

In a clinical trial with enrichment we

Start by comparing the new treatment against control in the
full population.

Examine responses at an interim stage and decide whether to:

Stop for futility,

Continue recruiting from the full population,

Continue, but recruit only from the subgroup — and
increase their numbers.

Results may support a licence for the full population or just the
sub-population.
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Creating an efficient enrichment design

&%
'$
θ1 θ2Sub-population

(proportion λ1)

Rest of the population

(proportion λ2)

The treatment effect (difference in mean response between new
treatment and control) is θ1 in the sub-population and θ2 in the
complement of this sub-population.

The treatment effect over the full population is θ3 = λ1θ1 + λ2θ2.

We may wish to test either or both of:

The null hypothesis for the full population, H3: θ3 ≤ 0 vs θ3 > 0,

The null hypothesis for the sub-population, H1: θ1 ≤ 0 vs θ1 > 0.
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Creating an efficient enrichment design

As in the adaptive seamless Phase 2/3 design, we want to control
strongly the family-wise error rate.

Then, for all values of θ1 and θ3,

Pr{Reject any true Hi} ≤ α.

This can be achieved by a “closed testing procedure”, involving
level α tests of H1, H3 and the intersection hypothesis H1 ∩H3.

Each of these tests can be constructed as a combination test
across the two stages of the trial.

Then, general theory implies that the family-wise type 1 error rate
is controlled at level α.

This leaves freedom to define the rule for deciding whether or not
to enrich at the interim analysis.
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Creating an efficient enrichment design

At the interim analysis, there are three options.
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Continue recruiting in
the full population

Enrich and recruit only
from the sub−population

Stop altogether
for futility

Optimising this decision rule requires specification of:

Benefits from rejecting H1 or H3 for parameter values θ1 and θ3,

The costs saved when the trial stops for futility,

A prior distribution for (θ1, θ3).
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Creating an efficient enrichment design

At Bath, I have worked with Thomas Burnett on the derivation of
optimal adaptive designs for enrichment trials.

The computation can be demanding, but Thomas has developed
code to find optimal rules.

The appropriate adaptive decision rule depends strongly on the
prior for (θ1, θ3).

Once such a prior is specified, it is natural to compare simpler trial
designs, that do not involve adaptation:

Recruit from the full population throughout the trial,

Recruit only from the sub-population throughout the trial.
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Creating an efficient enrichment design

Thomas will present results about optimal enrichment trial designs
at the EAST User Group Meeting in Darmstadt in November.

He will show that for some examples of gain function and prior the
best adaptive design is superior to both simple, non-adaptive
designs — but this is not always the case.

Even when a fixed sample design may be Bayes optimal —
particularly when this is the design that restricts recruitment to the
sub-population throughout the trial — we expect investigators may
prefer an adaptive approach.

Not everyone has the same prior!
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Comments on this example

Controlling the frequentist type I error rate

Use of a closed testing procedure and combination tests guarantees
control of family-wise type I error.

Optimising within this class of designs

Given gain and cost functions, and a prior distribution for (θ1, θ3),
one can compute Bayes-optimal adaptive enrichment designs.

An outer layer

Other design features that merit investigation include:

Details of the closed testing procedure and combination tests.

The timing of the interim analysis.

Preferential sampling of one population when the proportions λ1
and λ2 are away from 0.5.
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4. Overall conclusions

Controlling the frequentist type I error rate

We can apply closed testing procedures and combination tests to
protect family-wise error in complex, high-dimensional settings.

We can then work on optimising other aspects of a given design.

Optimising within a class of designs

Before trying to optimise, we need to understand which properties
of a design are important to the investigators.

Typically, this is done through the elicitation of their gain function,
cost function, and prior distribution for unknown parameters.

Then, we can optimise by analysis, calculation or simulation.

An outer layer

Once we can optimise the central component of a design, we may
re-visit higher level aspects and question initial assumptions.
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