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Type I error rate inflation

The key issue addressed in the presentations is how to avoid
inflation of the Type I error rate.

This may occur when sample size is modified in response to:

An interim estimate of response variance,

An interim estimate of treatment effect,

Other interim information that could be a

surrogate for the treatment effect.

I shall illustrate these points in examples of adaptive designs with
sample size re-estimation.

Ch. 14 of Group Sequential Methods with Applications to Clinical
Trials (Jennison & Turnbull, 2000) contains similar examples.
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Type I error rate inflation

Case 1: Normal response with unknown variance, σ2.

A trial compares a new treatment with control.

The treatment effect, θ, is the difference in mean responses.

We test H0: θ ≤ 0 vs θ > 0 with type I error rate set at α = 0.025.

A provisional sample size is set to meet a specified power
requirement, assuming an initial estimate of σ2.

At an interim analysis, an estimate σ̂ 2
(1) is calculated from the

interim data and total sample size is re-calculated using this
estimate in the sample size formula.

Low values of σ̂ 2
(1) lead to low total sample sizes.

High values of σ̂ 2
(1) lead to higher total sample sizes which dilute

the excess in this estimate over the true σ2.

Overall, this produces a downwards bias in the final estimate of σ2.
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The role of asymptotic theory

The final estimate of σ2 is used in the t-test for a treatment
difference: the downwards bias in this estimate of σ2 increases the
probability of rejecting H0: θ ≤ 0.

Using an unblinded estimate of σ2 at the interim analysis, based
on 20 to 30 degrees of freedom, the type I error rate rises from
0.025 to around 0.028.

Both Glimm and Proschan & Nason mention asymptotic results.

As the number of degrees of freedom for estimating σ2 at the
interim analysis tends to infinity, we can suppose σ̂ 2

(1) ≈ σ
2 and the

source of type I error inflation disappears.

In reality, we still need to know whether our sample size is large
enough for this theory to apply, so computations for small sample
sizes remain important.
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The role of asymptotic theory

In other types of adaptive design, one wishes to maximise the
benefits of adaptation by adapting as early as possible.

For example, in a multi-arm study, it is desirable to drop a poorly
performing treatment before further subjects are randomised to
that treatment.

In an adaptive enrichment design, if recruitment is to be restricted
to a subpopulation, making this change early will give the greatest
increase in the number of subjects from this subpopulation.

So, by design, such adaptation decisions are liable to be made
when there is substantial noise in the data — and asymptotic
theory may not be helpful.
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Unblinded estimation of σ2

Back to Case 1: Normal response with unknown variance, σ2.

Suppose we calculate σ̂ 2
(1) from pooled data.

With n1 observations per treatment and θ̂(1) and s2(1) the usual

unblinded estimates of θ and σ2, the blinded estimate of σ2 is

σ̂ 2
(1) =

(2n1 − 2) s2(1) + (n1/2) θ̂
2

(1)

2n1 − 1
.

Remarkably, conditional on knowing the total sum of squares

(2n1 − 2) s2(1) + (n1/2) θ̂
2

(1),

the interim t-statistic
θ̂(1)√

(2 s2(1)/n1)

has the standard t(2n1−1) distribution under θ = 0.
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Unblinded estimation of σ2

The second stage sample size, n2, is chosen based on the pooled
variance estimate σ̂ 2

(1), which is independent of

t1 =
θ̂(1)√

(2 s2(1)/n1)

The final t-statistic is of the form

t̃ =
a θ̂(1) + b θ̂(2)√
(c s2(1) + d s2(2))

(1)

where a/c is fixed but b and d depend on n2 (with b/d ≈ a/c).

It is observed that a final test based on t̃ has type I error rate very
close to the target α (Friede & Miller, Applied Statistics, 2012).

It would be nice to prove mathematically that (1) implies type I
error rate should be closer to α than in the unblinded case.
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Type I error rate inflation

Case 2: Binary response.

The primary endpoint is a binary outcome with success probabilities
p1 and p2 on the new treatment and control, respectively.

To attain power at a specified treatment difference, p1 − p2 = δ,
the required sample size depends on the sum of variances

p1(1− p1) + p2(1− p2) ≈ 2 p̄ (1− p̄),

where p̄ = (p1 + p2)/2.

Sample size can be modified in response to the interim estimate of
p̄(1) and when p̄ is away from 0.5 there is, typically, a small
inflation of the type I error rate for similar reasons to Case 1.

However, the estimate of p̄ is the same whether data are blinded or
unblinded — so estimating p̄ from blinded data does not protect
against inflation of the type I error rate.
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Sample size modification in response to θ̂(1)

Case 3: Normal response (known variance) with sample size
modification in response to θ̂(1)

It is well understood that such sample size modification can lead to
type I error rate inflation.

Here is a simple example:

We plan a study with total sample size n but conduct an interim
analysis after observing n/2 observations.

We compute the test statistic Z1 based on the interim data, and

If Z1 > 1, continue as planned,

If Z1 < 1, increase the total sample size to 1.5n.

Naively, we analyse the final set of data as if it were from a fixed
sample size trial.
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Sample size modification in response to θ̂(1)

The adaptive increases of sample size has a systematic effect.

Suppose θ = 0, so the null hypothesis is true:

If early data give a low θ̂, we increase the total
sample size and dilute these data.

If early data give a high θ̂, we retain the original
sample size.

As a consequence, the actual type I error rate = 0.0287.

Suppose the sample size is modified in response to a secondary
endpoint that is correlated with the primary endpoint.

Wittes suggests this should not have a substantial effect on type I
error rate. Is that so?
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Sample size modification based on a secondary endpoint

We can adapt our example:

Plan a study with total sample size n. Conduct an interim analysis
after observing n/2 observations of a secondary endpoint.

Compute the standardised statistic Z̃1 for the secondary endpoint
based on the interim data, and

If Z̃1 > 1, continue as planned,

If Z̃1 < 1, increase the total sample size to 1.5n.

Analyse the primary endpoint as if the final data were from a fixed
sample size trial.

If the secondary endpoint has mean 0 and correlation ρ with the
primary endpoint, we have

ρ 0.4 0.6 0.8 1

Error rate 0.0261 0.0269 0.0280 0.0287
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Sample size modification based on the observed event rate

Wittes discusses the case of a study with a survival endpoint where
investigators believe they know the hazard rate on the control arm.

Suppose the (blinded) overall event rate is low: this suggests there
is improved survival on the new treatment.

Let θ be the log hazard ratio between new treatment and control.

Can sample size modification based on overall event rate be akin
to modification based on θ̂(1) — and so inflate type I error rate?

I wanted to run simulations to assess possible type I error inflation.

Simulating under θ = 0, suppose we see a low overall hazard rate.
This cannot tell us θ > 0 !

Under θ = 0, the distribution of θ̂(1) given the total number of
events at an interim analysis is (approximately) normal, mean zero.

I conclude: No grounds for type I error rate to be inflated here.
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Using external information on nuisance parameters

Mütze proposes a meta-analysis of “similar” trials to give a prior
distribution for a nuisance parameter, such as response variance.

There have been similar proposals to use historical data on a
control treatment to reduce numbers on a new trial’s control arm

A key feature of the meta-analysis is to capture the variability seen
in previous studies of the mean response on control.

Applying the same principles to historical data on a nuisance
parameter, why not simply trust the results of the meta-analysis?
If you do trust these results, why “robustify” the prior by mixing it
with a more dispersed distribution?

An important distinction: Historical data on the mean response on
control are used in testing for a treatment effect, while historical
data on nuisance parameters guide the data collection process.
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Some concluding comments

Much of the discussion in the talks has been about whether the
“conventional” analysis of the final set of data is valid.

The conventional analysis can be “calibrated” by conducting the
final hypothesis test at level α′ < α where α′ is chosen so that
inflation raises the actual type I error rate to at most α.

An alternative solution is to use a combination test.

Typically, the power of a combination test is about the same as
that of a calibrated version of the conventional test.

The combination test loses some efficiency through not using the
sufficient statistic.

However, the conventional test loses power since calibration is
driven by the worst case scenario and type I error is controlled
conservatively in other situations.
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