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Motivation

Consider how you would formulate a hypothesis testing problem
when designing a clinical trial.

Should the formulation be different when the trial concerns
treatments for members of a small population?

We shall consider how to find efficient group sequential designs for
a traditional testing formulation and optimality criterion.

We then propose a different formulation for small populations.

We obtain qualitatively designs in the two cases, raising questions
about some fundamental issues.
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Plan of talk
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An optimal stopping problem

Numerical evaluation of stopping boundaries

Finding optimal group sequential designs

Designs for rare diseases
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For further reading, see Jennison and Turnbull (Kuwait J. of
Science, 2013)
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And for even more, see
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1. Monitoring clinical trials

A clinical trial is run to compare a new treatment with an existing
treatment or placebo.

As the trial progresses, a Data and Safety Monitoring Board
(DSMB) monitors patient recruitment, treatment administration,
and the responses observed at interim points.

The DSMB can take actions in view of safety variables or
secondary endpoints, for example, to drop a treatment arm with a
high dose level if this appears unsafe.

Response on the primary endpoint may indicate that early
termination of the study is desirable — for either a positive or
negative conclusion.
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The need for special methods

Multiple looks at accumulating data can lead to over-interpretation
of interim results.

Armitage et al. (JRSS, A, 1969) report the overall type I error rate
when applying repeated significance tests at level α = 0.05 to
accumulating data:

Number of tests Error rate

1 0.05
2 0.08
3 0.11
5 0.14

10 0.19

Clearly, a different approach is needed to avoid inflation of the
type I error rate.
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Formulating the problem

Let θ denote the “effect size”, a measure of the improvement in
the new treatment over the standard.

We shall test the null hypothesis H0: θ ≤ 0 against θ > 0.

Then, rejecting H0 allows us to conclude the new treatment is
better than the standard.

We allow type I error probability α for rejecting H0 when it is
actually true.

We specify power 1− β for the probability of (correctly) rejecting
H0 when θ = δ. Here, δ is, typically, the minimal clinically
significant treatment difference.

The trial design, including the method of analysis and stopping
rule, must be set up to attain these error rates.
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An early example: The BHAT trial

DeMets et al. (Cont. Clin. Trials, 1984) report on the Beta-Blocker
Heart Attack Trial, that compared propanolol with placebo.

An “O’Brien and Fleming” stopping boundary was defined with
overall type I error probability 0.025.
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The trial stopped after the 6th of 7 planned analyses.
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Group sequential tests: Stopping for futility

Adding a lower boundary allows stopping when there is little
chance of a positive conclusion.
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Rosner & Tsiatis (Statistics in Medicine, 1989) carried out
retrospective analyses of 72 cancer studies of the U.S. Eastern
Co-operative Oncology Group.

Had group sequential stopping rules been applied, early stopping
(mostly to accept H0) would have occurred in ∼80% of cases.
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Requirements for clinical trial designs

We seek designs which:

Achieve specified type I error rate and power,

Stop early, on average, under key parameter values,

Can be applied to a variety of response types.

We shall present distribution theory which shows that a common
set of methods can be applied to many data types.

To define efficient tests, we shall formulate and solve an optimal
stopping problem.
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2. Sequential distribution theory

Our interest is in the parameter for the treatment effect, θ.

Let θ̂k denote the estimate of θ based on data at analysis k.

The information for θ at analysis k is

Ik = {Var(θ̂k)}−1, k = 1, . . . ,K.

Canonical joint distribution of θ̂1, . . . , θ̂K

In many situations, θ̂1, . . . , θ̂K are approximately multivariate
normal,

θ̂k ∼ N(θ, {Ik}−1), k = 1, . . . ,K,

and

Cov(θ̂k1 , θ̂k2) = Var(θ̂k2) = {Ik2}−1 for k1 < k2.
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Sequential distribution theory

The preceding result about the joint distribution of θ̂1, . . . , θ̂K can
be demonstrated directly for:

θ a single normal mean,

θ = µA − µB, comparing two normal means.

The results also apply when θ is a parameter in:

a general normal linear model,

a model fitted by maximum likelihood (large sample theory),

a Cox proportional hazards regression model for survival data.

Thus, theory supports general comparisons, including:

crossover trials, studies with longitudinal data,

analyses with covariate adjustment.
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Canonical joint distribution of score statistics

The general theory implies that score statistics, Sk = Zk
√
Ik, are

multivariate normal with

Sk ∼ N(θ Ik, Ik), k = 1, . . . ,K.

The score statistics have the “independent increments” property

Cov(Sk − Sk−1, Sk′ − Sk′−1) = 0 for k 6= k′.

It can be helpful to know that the score statistics behave as
Brownian motion with drift θ observed at times I1, . . . , IK .

References:

Jennison & Turnbull, JASA, 1997; Scharfstein et al, JASA, 1997.
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3. An optimal stopping problem

Consider a trial designed to test H0: θ ≤ 0 vs θ > 0, with:

Type I error rate α,

Power 1− β at θ = δ,

Up to K analyses.

A fixed sample test needs information

Ifix = {Φ−1(α) + Φ−1(β)}2/δ2.

We set the maximum information to be

Imax = R Ifix,

where R > 1, with equal increments between analyses.
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Optimal group sequential tests

The error rates impose two constraints on the 2K − 1 boundary
points — leaving a high dimensional space of possible boundaries.
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We shall look for a boundary with an optimality property,
specifically, minimising

{E0(I) + Eδ(I)}/2.
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4. Computations for group sequential tests
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We need to be able to calculate the probabilities of basic events
such as

a1 < Z1 < b1, a2 < Z2 < b2, Z3 > b3.

Combining such probabilities gives key properties, such as

Prθ{Reject H0} and Eθ(I).
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Numerical integration

We can write probabilities as nested integrals, e.g.,

Pr{a1 < Z1 < b1, a2 < Z2 < b2, Z3 > b3} =

∫ b1

a1

∫ b2

a2

∫ ∞
b3

f1(z1) f2(z2|z1) f3(z3|z2) dz3 dz2 dz1.

Applying numerical integration, we replace each integral by a sum
of the form ∫ b

a
f(z) dz =

n∑
i=1

w(i) f(z(i)),

where z(1), . . . , z(n) is a grid of points from a to b.
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Numerical integration

Thus, we have

Pr{a1 < Z1 < b1, a2 < Z2 < b2, Z3 > b3} ≈

n1∑
i1=1

n2∑
i2=1

n3∑
i3=1

w1(i1) f1(z1(i1)) w2(i2)f2(z2(i2)|z1(i1))

w3(i3) f3(z3(i3)|z2(i2)).

Multiple integrations and summations will arise, e.g., for an
outcome at analysis k,

n1∑
i1=1

. . .

nk∑
ik=1

w1(i1) f1(z1(i1)) w2(i2)f2(z2(i2)|z1(i1))

. . . wk(ik) fk(zk(ik)|zk−1(ik−1)).
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Numerical integration

In the multiple summation

n1∑
i1=1

n2∑
i2=1

. . .

nk∑
ik=1

w1(i1) f1(z1(i1)) w2(i2)f2(z2(i2)|z1(i1))

. . . wk(ik) fk(zk(ik)|zk−1(ik−1)),

the structure of the k nested summations is such that the
computation required is of the order of k − 1 double summations.

Using Simpson’s rule with 100 to 200 grid points per integral can
give accuracy to 5 or 6 decimal places.

For details of efficient sets of grid points, see Ch. 19 of Group
Sequential Methods with Applications to Clinical Trials by
Jennison and Turnbull (2000).
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5. Finding optimal group sequential tests

Recall, we want a group sequential test of H0: θ ≤ 0 vs θ > 0 with

Prθ=0{Reject H0} = α,

Prθ=δ{Accept H0} = β,

Analyses at Ik = (k/K) Imax, k = 1, . . . ,K,

Minimum possible value of {E0(I) + Eδ(I)}/2.

We deal with constraints on error rates by introducing Lagrangian
multipliers to create the unconstrained problem of minimising

{E0(I) + Eδ(I)}/2 + λ1Prθ=0{Reject H0}+ λ2 Prθ=δ{Accept H0}.

We shall find a pair of multipliers (λ1, λ2) such that the solution
has type I and II error rates α and β, then this design will solve the
constrained problem too.

Chris Jennison Optimising Group Sequential Designs



Bayesian interpretation of the Lagrangian approach

If we put a prior on θ with Pr{θ = 0} = Pr{θ = δ} = 0.5 and
specify costs of

1 per unit of information observed,

2λ1 for rejecting H0 when θ = 0,

2λ2 for accepting H0 when θ = δ,

then, the total Bayes risk is

{E0(I)+Eδ(I)}/2+λ1 Prθ=0{Reject H0}+λ2 Prθ=δ{Accept H0},

just as in the Lagrangian problem.

An advantage of the Bayes interpretation is that it can give insight
into solving the problem by techniques of “Dynamic Programming”
or “Backwards Induction”.
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Solution by Dynamic Programming

Denote the posterior distribution of θ given Zk = zk at analysis k
by

p(k)(θ|zk), θ = 0, δ.

At the final analysis, K

There is no further sampling cost, so compare decisions

Reject H0: E(Cost) = 2λ1 p
(K)(0|zK),

Accept H0: E(Cost) = 2λ2 p
(K)(δ|zK).

The boundary point aK is the value of zK where these expected
losses are equal.

The optimum decision rule is to reject H0 for ZK > aK .
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Dynamic Programming

At analysis K − 1

-

IIK−1 IK

6
Zk

•aK×
ZK−1

If the trial stops at this analysis, there is no further cost of
sampling and the expected additional cost is

Reject H0: 2λ1 p
(K−1)(0|zK−1),

Accept H0: 2λ2 p
(K−1)(δ|zK−1).
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At analysis K − 1

If the trial continues to analysis K, the expected additional cost is

1× (IK − IK−1)

+ 2λ1 p
(K−1)(0|zK−1)Prθ=0{ZK > aK |ZK−1 = zK−1}

+ 2λ2 p
(K−1)(δ|zK−1)Prθ=δ{ZK < aK |ZK−1 = zK−1}.

We can now define the optimal boundary points:

Set bK−1 to be the value of zK−1 where

E(Cost of continuing) = E(Cost of stopping to reject H0).

Set aK−1 to be the value of zK−1 where

E(Cost of continuing) = E(Cost of stopping to accept H0).
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At analysis K − 1
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Before leaving analysis K − 1, we set up a grid of points for use in
numerical integration over the range aK−1 to bK−1.

For each point, we sum over the posterior distribution of θ to
calculate

β(K−1)(zK−1) = E(Additional cost when continuing |ZK−1 = zK−1).

We are now ready to move back to analysis K − 2.
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Analyses 1 to K − 2

We work back through analyses k = K − 2, K − 3, . . . , 1.

-

I

6
Z

Ik

×
Zk ×

bk+1

×
ak+1

•

•

•
•

•

At each analysis, we find the optimal stopping boundary using
knowledge of the optimal stopping rule at future analyses.

Then, for a grid of values of zk, compute

β(k)(zk) = E(Additional cost when continuing |Zk = zk)

to use in evaluating the option of continuing at analysis k − 1.
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Solving the original problem

Now, for any given (λ1, λ2) we can find the Bayes optimal design
and compute its type I and II error rates.

We add another layer to the problem and search for a pair (λ1, λ2)
for which type I and type II error rates of the optimal design equal
α and β respectively.

The resulting design will be the optimal group sequential test, with
the specified frequentist error rates, for our original problem.

Notes

1. The method of solving the overall, constrained problem
provides an explicit demonstration that good frequentist
procedures should be similar to Bayes procedures.

2. The prior and costs in the final Bayes problem may not reflect
investigators’ beliefs about the treatment effect, costs of type I and
type II errors, or costs of treating patients in the trial.
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Properties of optimal designs

Tests with α = 0.025, 1− β = 0.9, K analyses, Imax = R Ifix,

equal group sizes, minimising {E0(I) + Eδ(I)}/2.

Minimum values of {E0(I) + Eδ(I)}/2, as a percentage of Ifix

R Minimum
K 1.01 1.05 1.1 1.2 1.3 over R

2 80.8 74.7 73.2 73.7 75.8 73.0 at R=1.13

5 72.2 65.2 62.2 59.8 59.0 58.8 at R=1.38

10 69.2 62.2 59.0 56.3 55.1 54.2 at R=1.6

20 67.8 60.6 57.5 54.6 53.3 51.7 at R=1.8

Observe: E(I)↘ as K ↗ but with diminishing returns,

E(I)↘ as R↗ up to a point.
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Generalisations

Other optimality criteria such as a weighted sum∑
i

wiEθi(I)

or an integral ∫
f(θ)Eθ(I) dθ

Optimising a set of fixed group sizes in a group sequential test

Data dependent group sizes in a group sequential test

Group sequential tests for a delayed response

Testing for either superiority or non-inferiority
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6. Design of trials for rare diseases

Joint work with Sebastian Jobjörnsson, Carl-Fredrik Burman and
Stephen Senn

In the case of a rare disease, patient numbers may not be high
enough to conduct a clinical trial with low type I error probability
and high power.

Moreover, for a very rare disease, almost all patients with the
disease may be in the trial.

Then, attention may focus on treating the patients in the trial as
well as possible — rather than providing overwhelming evidence
that one or other treatment is superior.

We can formulate a decision problem that has such a goal, and use
dynamic programming to solve this problem.
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Design of trials for rare diseases

-

-�
Trial phase

nT nM nH
Number of

patients

Consider the treatment of the next nH patients.

A group sequential clinical trial, with a maximum of nM patients,
will be conducted to compare treatments A and B.

On the conclusion of the trial, after observing responses for nT
patients, one treatment will be selected and administered to the
remaining nH − nT patients.

Here, H stands for “horizon”. The horizon is intended to represent
a future time point when a new treatment, which supersedes both
treatments A and B, is likely to have been developed.
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Design of trials for rare diseases: Problem formulation

As before, let θ denote the difference in E(Response) between
treatments A and B , with θ > 0 when B is superior to A.

We assume a prior for θ has been elicited.

We specify the objective of maximising the expected sum of the
responses for all nH patients.

Let NA and NB be random variables denoting the numbers of
patients receiving treatments A and B, so NA +NB = nH .

If the average of the expected responses on treatments A and B
is µ, we wish to maximise

E{NA(µ− θ/2)}+ E{NB(µ+ θ/2)}

= constant − 1

2
E(NAθ) +

1

2
E(NBθ),

where expectation is over the prior distribution of θ as well as the
distributions of NA and NB.
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Design of trials for rare diseases: Example

Suppose patient responses are independent, normally distributed
with variance σ2 = 5.

The prior distribution for θ is

θ ∼ N(0, 1).

The total number of patients to be treated is nH = 1000.

The trial stage has a maximum of nM = 400.

The trial is conducted group sequentially with a maximum of 10
analyses.

We have applied dynamic programming to find the optimal
stopping rule for the trial.
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Design of trials for rare diseases: Optimal stopping rule
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Anscombe (JASA, 1963) proposed the “horizon problem”.

Petkau (IMS Lecture Notes, Vol 42, 2003) presented group
sequential horizon designs.

Clinical trials for rare diseases could be a realistic application area
for horizon problem designs.
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Design of trials for rare diseases: Optimal stopping rule

Now suppose that for every patient in the trial, there is another
patient not in the trial, who receives treatment A.

The horizon of 1000 includes all patients, in or out of the trial.

Once the trial stage ends, all future patients receive the treatment
chosen in the trial.
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Design of trials for rare diseases: Optimal stopping rule

Again, we suppose that for every patient in the trial, there is
another patient not in the trial, who receives treatment A.

But now we increase the horizon to 2000 patients.

−
4

−
2

0
2

4

Stopping boundaries on the Z scale

Number of observed responses                                 

Z
k

80 160 240 320 400

Number
"treated"

= 800

Patient
horizon
=2000

Stop, select Treatment A

Stop, select Treatment B

Boundary points at  

analyses k=1,...,10  

Boundaries for Z values

are similar to those in the

first example, which had no

patients outside the trial

and a horizon of 1000.
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Design of trials for rare diseases: Optimal stopping rule

We return to the first example with no patients being treated
outside of the trial and a horizon of nH = 1000.

Rather than a “power curve”, we plot the probability of choosing
Treatment B as a function of θ.

When θ = 0, there is no difference between the two treatments
and Pr(Select Treatment B)=0.5.
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Pr(Select Treatment B)=0.5

Pr(Select Treatment B)=0.025

When θ = −0.62,

Pr(Choose Tr B)=0.025.

We might view this as a

level α = 0.025 test of

non-inferiority of B vs A, with

non-inferiority margin = 0.62.
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7. Conclusions

The monitoring of clinical trials poses a range of problems of
statistical inference and optimal design, but general
distribution theory provides a basis for generic methodology.

Using Dynamic Programming to solve specially constructed
Bayes decision problems provides a route to deriving optimal
frequentist group sequential designs.

Such optimal procedures serve as benchmarks for other
methods which have additional useful features.

The “horizon problem” formulation appears to be suited to
trials for rare diseases.

The resulting procedures are not easily interpreted as tests of
H0: θ = 0, but they may be viewed as testing between the
hypotheses θ = −δ∗ and θ = +δ∗ for certain δ∗.
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