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Adaptive designs

Adaptive trial designs have been proposed for a number of
important applications:

Sample size modification,

Treatment selection and testing (seamless Phase 2/3 trials),

Population selection and testing (enrichment designs).

There are usually options to choose from within such a design.

How should one make such choices and assess the end result?
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Choosing an adaptive design

The first requirement for any Phase 3 trial is to protect the type I
error rate.

This can be a complex problem when there are multiple null
hypotheses under consideration — and multiple parameters, so the
type I error rate must be controlled over a high-dimensional region.

One then wishes to be efficient, gaining high power with low
sample size.

Question

How should one make decisions:

At interim analyses,

At the final analysis.
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Outline of talk

1. Sample size modification

A two-stage trial design with delayed response,

Optimising a sample size modification rule.

2. Seamless Phase 2/3 designs

Designs that protect family-wise error rate,

Optimising decision rules and sample size allocation.

3. Enrichment designs

Adaptive enrichment in response to interim data.

Optimising the decision rule for when to enrich.

4. Conclusions
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1. Deriving an efficient rule for sample size modification

All designs have overall power and Eθ(N) curves.

Power curve Eθ(N) curves
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Designs with similar power curves can be compared in terms of
their average sample size functions, Eθ(N).

Even if they are uncertain about the likely treatment effect,
investigators can usually specify values of θ under which early
stopping is most desirable.

Thus, we shall define efficiency in terms of power and Eθ(N).
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An example with a delayed response

We consider the design of a clinical trial that forms Example 1 of
Mehta & Pocock (Statistics in Medicine, 2011)

“Adaptive increase in sample size when interim results
are promising: A practical guide with examples”.

In this example, response is measured some time after treatment.

Thus, at an interim analysis, many patients have been treated but
are yet to produce a response.

Delayed responses are common — and not easily dealt with by
standard group sequential tests (but see Hampson & Jennison,
JRSS B, 2013).

For an extended discussion of Mehta & Pocock’s example, see
Jennison & Turnbull (Statistics in Medicine, 2015).
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Example 1 of Mehta & Pocock (MP)

MP’s Example 1 concerns a Phase 3 trial of a new treatment for
schizophrenia, comparing the new drug to an active control.

The efficacy endpoint is improvement in the Negative Symptoms
Assessment score from baseline to week 26.

Responses are

YBi ∼ N(µB, σ2), i = 1, 2, . . . , on the new treatment,

YAi ∼ N(µA, σ2), i = 1, 2, . . . , on the control arm,

where σ2 = 7.52.

The treatment effect is

θ = µB − µA.

and we estimate θ by

θ̂ = µ̂B − µ̂A = Y B − Y A.
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Mehta & Pocock’s Example 1

The initial plan is for n2 = 442 patients, 221 on each treatment.

In testing H0: θ ≤ 0 vs θ > 0 at the final analysis, we reject H0 if

Z2 =
θ̂(n2)√
{4σ2/n2}

> 1.96.

This design and analysis gives type I error rate 0.025 and power
0.8 at θ = 2.

Higher power, e.g., power 0.8 at θ = 1.6, would be desirable.

The sponsors will increase sample size if interim results are
“promising”.

An interim analysis is planned after observing n1 = 208 responses.

At this time a further 208 subjects will have been admitted to the
trial, but treated for less than 26 weeks.
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Increasing the sample size

At the interim analysis with n1 = 208 observed responses, the
estimated treatment effect is

θ̂1(n1) = Y B(n1)− Y A(n1)

and

Z1 =
θ̂1(n1)√
{4σ2/n1}

.

A further 208 subjects will have been treated for less than 26
weeks. So at least 416 responses will be observed in due course.

MP use the values of θ̂1(n1) and Z1 in choosing a new total
sample size — between the original 442 and a maximum of 884.

In deciding whether to increase the sample size, MP consider
conditional power of the original test with n2 = 442 observations
under θ = θ̂1(n1), given the observed value of Z1.
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Increasing the sample size

Definition

The conditional power CPθ(z1) is the probability the final test,
with 442 observations, rejects H0, given Z1 = z1 and effect size θ,

CPθ(z1) = Pθ{Z2 > 1.96 |Z1 = z1}.

MP’s adaptive design is based on conditional power under θ = θ̂1.

They divide the range of z1 into three regions:

Favourable CP
θ̂1

(z1) ≥ 0.8 Continue to n2 = 442,

Promising 0.365 ≤ CP
θ̂1

(z1) < 0.8 Increase n2,

Unfavourable CP
θ̂1

(z1) < 0.365 Continue to n2 = 442.

Mehta & Pocock refer to this as the “Promising Zone” approach.
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Protecting the type I error rate

When the final sample size is n∗2, MP carry out a standard test,
rejecting H0 if

Z2(n∗2) =
θ̂(n∗2)√
{4σ2/n∗2}

> 1.96.

The “Promising Zone” and sample size rule are defined so that
sample size changes can only decrease the type I error rate.

For proof that the type I error rate is protected, see

Chen, DeMets & Lan, Statistics in Medicine (2004),

Gao, Ware & Mehta, J. Biopharmaceutical Statistics (2008).

In general, changes to sample size may increase or decrease the
type I error rate — use of the Chen, DeMets & Lan result restricts
the values of θ̂1(n1) for which sample size can be increased.
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The MP design

In their “promising zone”, MP increase n2 to achieve conditional
power 0.8 under θ = θ̂1, truncating this value to 884 if it is larger
than that.
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Comparison with the distribution of θ̂1 under θ = 1.6 shows that
increases in n2 occur in a region of quite small probability.

(The distribution of θ̂1 under other values of θ is shifted but has
the same variance.)
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Properties of the MP design

The increase in n2 in the “promising zone” has increased the
power curve a little.
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Given the limited range of values of θ̂1 for which n2 is increased,
only a small improvement in power can be expected.

Although it was stated that power 0.8 at θ = 1.6 would be
desirable, power at this effect size has only risen from 0.61 to 0.66.
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Properties of the MP design

The cost of higher power is an increase in expected sample size,
E(N).
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MP adaptive design   

Fixed N=442 

Aiming for higher conditional power under θ = θ̂1 or raising the
sample size beyond 884 gives small increases in power at the cost
of large increases in E(N).
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Alternatives to the MP design

Here are sample size rules for two other trial designs that achieve
the same power as MP’s design.
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1. A fixed sample size design with 490 observations.

2. A group sequential test that stops after with a sample size of
416 or 514 (but only 208 responses are available when making the
decision at the first analysis).
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Comparison of designs

Power curve Eθ(N) curves
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GSD R=1.05 

All three designs have essentially the same power curve.

Clearly, it is possible to improve on the MP design’s Eθ(N) curve.

How should we go about finding an efficient design for specific
objectives?
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Deriving an efficient sample size rule

We specify γ, a “rate of exchange” between sample size and power.

Focusing, for now, on properties under θ = θ̃ = 1.6, we shall aim
to maximise

Pθ=θ̃ (Reject H0) − γE
θ̃
(N).

Consider the class of two-stage designs with:

An interim analysis after n1 = 208 responses are observed,

Total sample size n∗2 chosen in the range (416, 884), based on θ̂1,

After stage 2, a normal combination test, rejecting H0 if

1√
2
Z1 +

1√
2
Z2 > 1.96,

where Z1 and Z2 are based on stage 1 and stage 2 data,
respectively.
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Deriving an efficient sample size rule

Suppose Z1 = z1 and the total sample size is set at n∗2. Denote
the conditional power of the combination test under θ = θ̃, given
Z1 = z1 and this choice of n∗2, by

CP
θ̃
(z1, n∗2) = P

θ̃
{ 1√

2
Z1 +

1√
2
Z2 > 1.96 | Z1 = z1, n

∗
2}.

We aim to find the sample size function n∗2(z1) that maximises
Pθ=θ̃ (Reject H0) − γE

θ̃
(N), which can be written as∫

{CP
θ̃
(z1, n∗2(z1))− γn∗2(z1)} fθ̃(z1) dz1,

where f
θ̃
(z1) denotes the density of Z1 under θ = θ̃.

So, for each z1, we need to choose n∗2(z1) to maximise

CP
θ̃
(z1, n∗2(z1))− γn∗2(z1).
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Plots for θ̃ = 1.6, γ = 0.245/(4σ2) and θ̂1 = 0.75
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The function CP
θ̃
(z1, n∗2)− γ(n∗2 − 442) attains its maximum

at n∗2 = 589.

MP’s design has n∗2 = 442 when θ̂1 = 0.75 — the Chen, DeMets
& Lan construction does not allow n2 to increase for this value
of θ̂1, which lies below the “promising zone”.

Chris Jennison Improving Adaptive Designs



Plots for θ̃ = 1.6, γ = 0.245/(4σ2) and θ̂1 = 1.25
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Now, the function CP
θ̃
(z1, n∗2)− γ(n∗2 − 442) has its maximum

at n∗2 = 570.

In this case, MP’s design takes the maximum permitted value of
n∗2 = 884.
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Optimal sample size rule for combination test design

with n∗
2 in (416, 884), θ̃ = 1.6, γ = 0.245/(4σ2)
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Density of  θ̂1  (θ = 1.6) 

With γ = 0.245/(4σ2), overall power is 0.658 at θ = 1.6, the same
as for the MP design.

By construction, the procedure has minimum Eθ=1.6(N) among all
normal combination test designs with n1 = 208 and n∗2 ≥ 416
that achieve the same power.
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Optimal sample size rule for combination test design

with n∗
2 in (416, 884), θ̃ = 1.6, γ = 0.245/(4σ2)

Power curve Eθ(N) curves
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CT Min E(N) at  θ = 1.6
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MP adaptive design 

CT Min E(N) at  θ = 1.6, min n2
∗ =416  

Our optimised design has essentially the same power curve as the
MP design and lower Eθ(N) at all θ values.

In fact, optimising over general designs test with n1 = 208 and
n∗2 ≥ 416 leads to barely perceptible reductions in Eθ=1.6(N).
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Other options

1. We could increase sample size further and achieve higher
power, now we can do this efficiently.

2. We could optimise other criteria, replacing E
θ̃
(N) in

Pθ=θ̃ (Reject H0) − γE
θ̃
(N) by a weighted sum or integral,∑

i

wiEθi
(N) or

∫
w(θ)Eθ(N) dθ.

In the integral case, treating the power function in a similar way,
we seek to maximise∫

w(θ)Pθ (Reject H0) dθ − γ

∫
w(θ)Eθ(N) dθ.

If w(θ) is a prior distribution, representing investigators’ beliefs
about likely values of θ, we have a Bayes decision problem.
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Other options

Suppose we wish to maximise∫
w(θ)Pθ (Reject H0) dθ − γ

∫
w(θ)Eθ(N) dθ.

For each z1, we must choose n∗2(z1) to maximise

CP (z1, n∗2(z1))− γn∗2(z1),

where CP (z1, n∗2(z1)) is the conditional power integrated over the
posterior distribution of θ given the stage 1 data summary z1.

By working within the class of normal combination tests, we
automatically protect the type I error rate at level α.

As before, we can choose γ so that a specific power condition is
met — and after such calibration, we will return to almost exactly
the same power curve as before.
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Comments on this example

Controlling the frequentist type I error rate

Use of the combination test guarantees control of type I error for
any sample size rule.

We can optimise within this framework.

Solving a Bayes decision problem

First, specify a “gain function” or “utility” to be maximised.

This may involve a prior distribution for unknown parameters.

Then, optimise within the class of permitted rules.

An outer layer

Consider varying the “framework” or constraints that were set in
the initial formulation of the problem.
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2. Optimising a Phase 2/3 seamless design

During Phase 2 and Phase 3 of the drug development process,

The final decision is made on the treatment specification,
including the dose level,

The selected treatment is tested against control.

A seamless Phase 2/3 trial design combines these two phases:

In stage 1

Compare K “treatments” against control

Select the best treatment and, if it has performed sufficiently
well, proceed to stage 2.

In stage 2

Compare the selected treatment against the control.
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Optimising a Phase 2/3 seamless design

After both stages are completed, we test the null hypothesis that
the selected treatment is no better than the control.

Since this treatment was selected based on data that will also be
used in the final analysis, care must be taken to avoid inflating the
overall type I error rate.

Design issues

We would like to optimise:

1 The way in which data on all treatments are combined in the
final hypothesis test,

2 The way in which the total sample size is divided between the
two stages.
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Optimising a Phase 2/3 seamless design

Denote the K treatment effects vs control by θ1, . . . , θK .

Stage 1

Randomise m1 subjects to each of the K treatments and the
control and observe their responses.

Denote the estimated treatment effects by θ̂1,i, i = 1, . . . ,K.

Treatment i∗ with the highest θ̂1,i is selected for stage 2.

Stage 2

Treatment i∗ is compared against control, with m2 observations on
each. The estimated treatment effect is θ̂2,i∗ .

Conclusion

A final decision is made, based on θ̂1,1, . . . , θ̂1,K and θ̂2,i∗ .

Chris Jennison Improving Adaptive Designs



Optimising a Phase 2/3 seamless design

There are K null hypotheses, Hi: θi ≤ 0 , i = 1, . . . ,K.

If dose i∗ is selected for Phase 3, we focus on testing Hi∗ : θi∗ ≤ 0.

Family-wise error

We want strong control of the family-wise error rate. Then, for
all vectors θ = (θ1, . . . , θK),

Pr{Reject any true Hi} ≤ α.
Power

When some θi are greater than zero, we can define power as

Pr{Select treatment j with maximum θi and reject Hj : θj ≤ 0}.

More generally, we can define a gain function or utility that is
positive when Hi∗ is rejected, whichever treatment is selected, but
the gain increases with θi∗ .
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Optimising a Phase 2/3 seamless design

The family-wise error rate can be controlled by using a “closed
testing procedure”.

This requires level α tests of each null hypothesis Hi, and of all
intersections of sets of these hypotheses.

Each of these tests can be constructed as a combination test
across the two stages of the trial.

Then, general theory implies that the family-wise type 1 error rate
is controlled at level α.

There are still choices to be made:

How should we test the intersection hypotheses in stage 1?

What type of combination test is best?

The best choice may depend on the K-dimensional parameter θ.
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Optimising a Phase 2/3 seamless design

Hampson & Jennison (Statistics in Medicine, 2013) found optimal
final decision rules that maximise power when θ = δ v, for various
choices of vector v.

Interestingly, two procedures were close to 100% efficient across a
wide range of scenarios.

1. In the framework we have described, use a Dunnett test for
each intersection hypothesis in stage 1 and combine Z values
across stages with a weighted normal combination test.

2. Use the procedure proposed by Thall, Simon and Ellenberg
(Biometrika, 1988).

We were surprised that procedures with such robust efficiency exist.

However, this deals conveniently with the problem that the best
choice of design may depend on a high-dimensional, unknown
vector θ.
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Optimising a Phase 2/3 seamless design

Hampson & Jennison also considered how best to divide a total
sample size between stage 1 (m1 observations on K treatments
and control) and stage 2 (m2 on selected treatment and control).

The choice that maximises power depends on the vector of
treatment effects, θ, with the largest treatment effect playing a
leading role.

If the highest treatment effect is large, one can afford a high m1,
increasing the probability of selecting this treatment.

If the highest treatment effect is smaller, a high m2 is needed to
give power in stage 2 when the best treatment is selected.

Advice:

Express your expectations as a distribution for θ and choose a
design with good average properties across this distribution.
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Benefits of Phase 2/3 seamless designs

Regulators require a seamless Phase 2/3 trial to be conducted as a
single trial, with a firewall between the data monitoring committee
and the investigators.

Efficiency gains from using “Phase 2”data in the final hypothesis
test must balance extra planning and organisational requirements.

With m1 observations on each treatment and control in stage 1
and m2 on the selected treatment and control in stage 2, what are
the benefits of using the stage 1 data in the final analysis?

Hampson & Jennison show that:

If only stage 2 data are used in the final analysis, then
in many plausible scenarios, m2 needs to be increased
by between 0.5m1 and 0.7m1, in order to achieve the
same power as the seamless design.
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Comments on this example

Controlling the frequentist type I error rate

Use of a closed testing procedure and combination tests guarantees
control of type I error.

Optimising within this class of designs

We can, essentially, optimise the choice of closed testing procedure
and combination test for all treatment effect vectors, θ.

However, the best choice of sample sizes in stage 1 and stage 2
does depend on the vector θ.

The Bayes solution is to specify a prior distribution for the unknown
θ and optimise performance integrated over this distribution.

An outer layer

If the value of m1 appears unacceptably small, consider a higher
total sample size for the two stages.
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3. Creating an efficient enrichment design: Switching

to a sub-population in response to interim data

Consider a treatment developed to disrupt a disease’s biological
pathway. Patients with high levels of a biomarker for this pathway
should gain particular benefit.

In a clinical trial with enrichment we

Start by comparing the new treatment against control in the
full population.

Examine responses at an interim stage and decide whether to:

Stop for futility,

Continue recruiting from the full population,

Continue, but recruit only from the subgroup — and
increase their numbers.

Results may support a licence for the full population or just the
sub-population.
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Creating an efficient enrichment design

&%
'$
θ1 θ2Sub-population

(proportion λ1)

Rest of the population

(proportion λ2)

The treatment effect (difference in mean response between new
treatment and control) is θ1 in the sub-population and θ2 in the
complement of this sub-population.

The treatment effect over the full population is θ3 = λ1θ1 + λ2θ2.

We may wish to test either or both of:

The null hypothesis for the full population, H3: θ3 ≤ 0 vs θ3 > 0,

The null hypothesis for the sub-population, H1: θ1 ≤ 0 vs θ1 > 0.
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Creating an efficient enrichment design

As in the adaptive seamless Phase 2/3 design, we want to control
strongly the family-wise error rate.

Then, for all values of θ1 and θ3,

Pr{Reject any true Hi} ≤ α.

This can be achieved by a “closed testing procedure”, involving
level α tests of H1, H3 and the intersection hypothesis H1 ∩H3.

Each of these tests can be constructed as a combination test
across the two stages of the trial.

Then, general theory implies that the family-wise type 1 error rate
is controlled at level α.

This leaves freedom to define the rule for deciding whether or not
to enrich at the interim analysis.
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Creating an efficient enrichment design

At the interim analysis, there are three options.
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Continue recruiting in
the full population

Enrich and recruit only
from the sub−population

Stop altogether
for futility

Optimising this decision rule requires specification of:

Benefits from rejecting H1 or H3 for parameter values θ1 and θ3,

The costs saved when the trial stops for futility,

A prior distribution for (θ1, θ3).
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Creating an efficient enrichment design

PhD student Thomas Burnett, at Bath, has been working on the
derivation of optimal adaptive designs for enrichment trials.

The computation can be demanding, but Thomas has developed
code to find optimal rules.

The appropriate adaptive decision rule depends strongly on the
prior for (θ1, θ3).

Once such a prior is specified, it is natural to compare simpler trial
designs, that do not involve adaptation:

Recruit from the full population throughout the trial,

Recruit only from the sub-population throughout the trial.

For many examples of gain function and prior, the best adaptive
design is not necessarily superior to both simple designs.
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Comments on this example

Controlling the frequentist type I error rate

Use of a closed testing procedure and combination tests guarantees
control of type I error.

Optimising within this class of designs

Given gain and cost functions, and a prior distribution for (θ1, θ3),
one can compute Bayes-optimal adaptive enrichment designs.

An outer layer

Other design features that merit investigation include:

Details of the closed testing procedure and combination tests.

The timing of the interim analysis.

Preferential sampling of one population when the proportions λ1

and λ2 are away from 0.5.
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Overall conclusions

Controlling the frequentist type I error rate

We can apply closed testing procedures and combination tests to
protect family-wise error in complex, high-dimensional settings.

We can then work on optimising other aspects of a given design.

Optimising within a class of designs

Before trying to optimise, we need to understand which properties
of a design are important to the investigators.

Typically, this is done through the elicitation of their gain function,
cost function, and prior distribution for unknown parameters.

Then, we can optimise by analysis, calculation or simulation.

An outer layer

Once we can optimise the central component of a design, we may
re-visit higher level aspects and question initial assumptions.
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