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1. Markov chain Monte Carlo sampling (MCMC)

Aim: To sample from a complex distribution π(x) on the state
space Ω by running a Markov chain with limiting distribution π.

Typically, X is high-dimensional and π not particularly tractable.

The minimal requirement is that π(x) can be evaluated up to a
multiplicative constant.

Method: Create a Markov chain on Ω with transition matrix P
satisfying

π P = π.

Let πn denote the distribution of the state Xn after n transitions
from an initial state x0.

Then, if the Markov chain is irreducible and aperiodic,

πn → π as n→∞.
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A couple of comments

(i) Notation:

The distribution π(x) may be discrete or continuous.

In the discrete case, the transition matrix P = (Pij) where

Pij = P (Xn+1 = j |Xn = i).

In the continuous case, P (xn, xn+1) specifies the conditional

density of Xn+1 given Xn = xn.

(ii) Generality:

I shall describe methods and results for the continuous case.

To obtain formulae for the discrete case, replace integrals by sums.
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Detailed balance

It is convenient to create a Markov chain with limiting distribution
π by defining P to have detailed balance with respect to π, i.e.,

π(x)P (x, y) = π(y)P (y, x) for all x, y in Ω.

The key property π P = π follows since∫
Ω
π(x)P (x, y) dx =

∫
Ω
π(y)P (y, x) dx = π(y).

Examples of this construction are:

Metropolis-Hastings samplers, based on the work

of Metropolis et al. (1953) and Hastings (1970),

The Gibbs sampler, introduced by Geman & Geman (1984).

Chris Jennison and Adriana Ibrahim Search and Jump MCMC Sampling



The Metropolis-Hastings algorithm

From Xn = x, generate a proposal y from the kernel q(x, y),

Calculate the “acceptance probability” for this proposal

α(x, y) = min{1, π(y) q(y, x)

π(x) q(x, y)
},

With probability α(x, y), accept and move to Xn+1 = y,

With probability 1− α(x, y), reject and stay at Xn+1 = x.

Detailed balance: We need to show, for all x 6= y,

π(x) q(x, y)α(x, y) = π(y) q(y, x)α(y, x).

It is straightforward to check this holds for the two cases

π(x) q(x, y) > π(y) q(y, x) and π(x) q(x, y) < π(y) q(y, x).
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The Gibbs sampler

Suppose the sample space of the target distribution is Ω = Rk.

Let X(−i) denote the vector of elements of X excluding X(i).

Denote the conditional distribution of X(i) given X(−i) = x(−i)
when X ∼ π by

πX(i)|X(−i)(x(i) |x(−i)).

So πX(i)|X(−i) is a 1-dimensional PDF or discrete mass function.

Denote by Pi the transition matrix when X is modified by replacing

X(i) with a new value sampled from πX(i)|X(−i)(x(i) |x(−i)).

In one cycle of the “Gibbs sampler”, X(1), . . . , X(k) are updated
in turn: the transition matrix for the full cycle is P = P1 . . . Pk.

It is easy to show πPi = π for i = 1, . . . , k and, hence, πP = π.

Chris Jennison and Adriana Ibrahim Search and Jump MCMC Sampling



A variety of “move types”

We may wish to use several “types” of move, indexed by a
parameter φ ∈ Φ, with transition matrix Pφ for move type φ.

If each Pφ satisfies detailed balance, we can deduce π Pφ = π.

Transitions can be made using a fixed sequence of move types φ.

Alternatively, the move type for each transition may be selected at
random (independently of the current state x).

In either case, the chain has limiting distribution π, as long as the
chain is irreducible and aperiodic.

We shall consider cases where one type of move produces
small displacements in X, while other moves are designed to
make larger jumps around the sample space Ω.
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2. Mixing problems

Efficient MCMC sampling needs πn to converge rapidly to π.

Problem 1. Multiple modes
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To move between modes, updating one element of x at a time,
requires a visit to a state with very low π(x) — and there is very
little probability of accepting such a move.

If updating several elements of x together, the proposal must land
near the middle of the other mode in order to be accepted.
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Mixing problems

Problem 2. Very thin region of support for π
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Traversing the modal region of π with updates of X(1) and X(2)
requires a great many small steps.
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3. Mode jumping method of Tjelmeland & Hegstad (2001)

Suppose the modes of π are small and in a high-dimensional space.

We can create a proposal kernel q(x, y) that generates large jumps
but the proposal y is unlikely to be at the centre of another mode.
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The current state x will have fairly high π(x) but π(y) is small, so

α(x, y) = min{1, π(y) q(y, x)

π(x) q(x, y)
} ≈ 0.
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The mode jumping method of Tjelmeland & Hegstad (2001)
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T & H’s algorithm makes mode-jumping proposals by:

1. A large step from x to x1 = x+ φ,

2. Hill climbing from x1 to x2,

3. Sample y from h(x2, y), an approximation to π(y) at x2.
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Achieving detailed balance in T & H’s algorithm
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4. Construct a reverse step to y1 = y − φ,

5. Hill climbing from y1 to y2,

6. Fit a local approximation h(y2, x) to π(x) at y2,

7. Accept the move from x to y with probability

α(x, y) = min{1, π(y)h(y2, x)

π(x)h(x2, y)
}.
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T & H’s proof of detailed balance
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The “large step” move of type φ includes a random choice of +φ
or −φ. In the proof of detailed balance, the forward move with +φ
is paired with the reverse move with −φ and vice versa.

Computationally, the return path has to be constructed in order to
compute α(x, y) and accept or reject the proposal.

The deterministic hill climbing step may be replaced by a stochastic
optimisation step (Richard Sharp, University of Bath PhD Thesis).
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T & H’s method: An example

π(x)1/5
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In this 2-D distribution,

both X(1) and X(2)

range from 0 to 100.

Problems are likely

to grow with

dimensionality.

The distribution to be sampled, π, has 7 highly compact modes,
each bivariate normal or a transformed bivariate normal.

Plotting π raised to the power 1/5 reduces the “spikiness” and
makes a more meaningful plot.
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T & H’s method: An example

The support of each mode of π is very small — a standard MCMC
sampler has very little chance of proposing a jump to a new mode.

A specialised mode-jumping method is needed.

We applied the T & H method with iterations comprising 20 local
updates and 1 mode-jumping step.

Local updates:

Proposals have N(0, 0.012) displacements in X(1) and X(2).

Mode jumping:

Jumps have N(0, 502) displacements in X(1) and X(2),

Quasi-Newton hill climbing using numerical second derivatives,

Fitting a bivariate normal distribution at the top of the hill.
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T & H’s method: An example
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Details of the density of π (in colour) and the approximating
bivariate normal density (in black) at four of the modes.
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Performance of T & H’s method

The T & H method does manage to sample from this challenging
distribution:

Mode jumping rate 1.1%

Evaluations of π per iteration:

Local steps 20

Mode jumping steps 125

The low success rate for mode-jumping steps is attributable to:

Use of local approximations to make proposals at each mode,

Reverse steps not returning to the original mode,

Different weights for the 7 modes (0.05 to 0.4).

Note that in mode-jumping steps, the algorithm climbs the same
hills over and over again.

How can this performance be improved?
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4. A two-stage approach to mode jumping

Ibrahim and Jennison have proposed a two-stage approach.

Stage 1

Search for modes using multiple runs of local optimisation
from random (or systematically spaced) starting points,

Apply cluster analysis to reduce the results to a set of distinct
modes and select a representative member of each cluster,

Fit a local approximation to π at each mode.

Stage 2

Run an MCMC sampler with a mixture of local updates and
mode jumping steps between the modes found in Stage 1.
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Details of the two-stage approach to mode jumping

Our aim is to present a generic, widely applicable method.

Stage 1

Searching for modes

Local optimisation can be by simulated annealing with a fast
cooling schedule — a small modification of an MCMC sampler.

Since we do not require detailed balance, the search process is
simpler than that built into the T & H algorithm.

Many runs should be conducted to ensure all modes are found.

Modelling modes

A multivariate normal approximation to the target distribution at a
mode provides an estimate of the overall probability of the mode.

These weights can be used in defining proposal probabilities.
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Details of the two-stage approach to mode jumping

Stage 2
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Mode i
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Current state: x

Nearest mode to x: Mode i

Propose to jump from Mode i
to Mode j (probability Pij)

Sample y from hj(y), the local
approximation to π at Mode j

Check y is nearest to Mode j
— if not, reject y.

For detailed balance within jump moves between Modes i and j,
accept the move from x to y with probability

α(x, y) = min{1, π(y)Pji hi(x)

π(x)Pij hj(y)
}.
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Applying our two-stage approach to the previous example

We applied our approach as follows:

Initial search for modes:

We carried out 500 runs of simulated annealing with a logarithmic
cooling schedule over 50 iterations, followed by hill climbing.

We applied cluster analysis to the 500 mode locations and chose
the mode in each cluster with highest π(x).

We fitted a bivariate normal distribution at each mode and found
associated weights wi.

Sampling

Iterations comprised 20 local updates and 1 mode-jumping step —
as in our application of the T & H method.

In mode jumping, we took Pij ∝ wj for j 6= i.
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Performance of the two-stage method

2-stage method T & H

Mode jumping rate 47% 1.1%

Computation

Initial search

Function calls to π 500× 120 0

Sampling: calls to π per iteration

Local steps 20 20

Mode jumping steps 1 125

Total function calls in 105 iterations

Initial exploration 6× 104 0

Sampling 2× 106 14× 106

Other performance measures also show an efficiency gain of ∼ 300.
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What about asymptotic theory?

When a standard MCMC algorithm is run for N steps, we have
theory for the convergence of πn, the distribution of XN , and
estimates of Eπ(g(X)) based on X1, . . . , XN as N →∞.

Consider the two-stage method with N1 runs of the initial search
and a sampling phase of length N2, and let both N1 and N2 →∞.

Standard results hold for the sampling phase as N2 →∞,
conditional on having found all the modes.

Overall properties as N1 and N2 →∞ follow from the fact that

Pr{Fail to find all modes} ∼ e−λN1 for some λ > 0.

Note: T & H suggest a hybrid approach with an initial search,
then more jump steps in the sampling stage.

However, for a fixed amount of computing, performing all the
mode searching up-front has clear advantages.
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5. Example: Phosphate levels at an archaeological site

Besag, York & Mollie (1991) analyse data from an archaeological
site in Laconia, Greece (see Cavanagh et al, 1988).

Log phosphate levels
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Question marks denote

missing values

High phosphate levels (brighter pixels) suggest human activity.

The aim is to identity regions of human activity, with the
expectation that this occurs in localised areas.

A Bayesian analysis can give a probability of activity in each pixel.
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Phosphate levels at an archaeological site

Let X = {X(i)} be an array of binary variables, with X(i) = 1
indicating human activity at pixel i.

As a prior distribution for X, Besag et al. assume a binary random
field model

P (x) ∝ exp(−βν),

where ν is the number of pairs (i, j) of neighbouring pixels
(horizontally, vertically or diagonally) with x(i) 6= x(j).

Given X, log phosphate levels Y (i) are assumed to be independent
with

Y (i) ∼

{
N(4.0, σ2) if X(i) = 0,

N(4.5, σ2) if X(i) = 1.

We wish to sample π, the posterior distribution of X given Y .

The case β = 0.78 and σ2 = 0.125 gives a challenging problem.
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Sampling the posterior distribution, π(X)

We can run a Gibbs sampler, updating each pixel in turn.

Trial runs show that π has four main modes:
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In the bottom left,
an area of activity

is present or absent,

In the top right,
an area of activity
is large or small.

Demo: The Gibbs sampler deals poorly with the bottom left area.

We would like to apply our two-stage approach to this problem.
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Applying the two-stage approach to sample π(X)

We can find modes of π by multiple runs of fast simulated
annealing, then use cluster analysis to identify the major modes.

Since each element of X is 0 or 1, we cannot fit a multivariate
normal approximation to π at each mode.

Instead, we create a proposal Y by performing one cycle of Gibbs
sampling from the new mode (Richard Sharp, Bath PhD Thesis).

Multiplying the conditional probabilities for each pixel update gives
the probability hj(y) of reaching state y after starting at Mode j.

As before, we maintain detailed by accepting a jump from state x
near Mode i to state y near Mode j with probability

α(x, y) = min{1, π(y)Pji hi(x)

π(x)Pij hj(y)
}.

Demo: Applying the two-stage approach.
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Gibbs sampling the posterior image distribution, π(X)

Starting at Mode 3:

Mode index sequence

0 100 200 300 400 500

1

2

3

4

Iteration

M
od

e

One iteration is 5 cycles of Gibbs sampling

Starting at Mode 2:

Mode index sequence
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One iteration is 5 cycles of Gibbs sampling

Jumps are rare between Modes 1 and 2 (activity in bottom left
area) and Modes 3 and 4 (no activity in bottom left).
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Applying the two-stage approach to sample π(X)

Image modes used
in jump moves
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One iteration: 5 cycles of Gibbs

sampling + 1 jump move

There are frequent jumps between Modes 1 and 2 (activity in
bottom left area) and Modes 3 and 4 (no activity in bottom left).

Chris Jennison and Adriana Ibrahim Search and Jump MCMC Sampling



Comments on the two-stage approach to sample π(X)

Application is straightforward, requiring extensions of the Gibbs
sampler for searching and jumping, plus use of cluster analysis.

The method can be further developed to make use of spatial
properties of the distribution π(x) by extracting “image elements”
from the modal images:
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In jump steps, we “add” or “subtract” these elements, then

It is not necessary to find all modes initially — each local
feature should be present and absent in two different modes,

In the jump steps we only need to apply Gibbs sampling
around the updated “element”.
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6. Example: Electron density in the ionosphere

Khorsheed, Hurn & Jennison (2011) discuss estimation of the
electron density in the ionosphere, which is important for making
precise GPS measurements.
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Measurements between a
satellite and ground receivers
provide line integrals of
electron content.

Khorsheed et al. use a Bayesian
analysis to solve the inverse
problem and, hence, create
a map of electron density.

The direction of the line integrals in the data are between about
60◦ and vertical — making an under-determined system and a
challenging inverse problem.
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Example: Electron density in the ionosphere

The physics of the ionosphere implies that vertically, electron
densities follow “Chapman profiles” which have, approximately, the
shape of normal densities.

Let X be the set of the 66 parameters defining 22 vertical profiles.
We expect these parameters to vary smoothly in space and reflect
this in the prior model of a Bayesian analysis.

For inference, we wish to sample π(x), the posterior distribution
of X given satellite-to-receiver data Y .

We found the Metropolis-Hastings MCMC algorithm to move very
slowly around the distribution π, with runs from different starting
points becoming stuck at different end points.

Further investigations led us to conclude that π(x) was almost
completely confined to a (non-linear) subspace of around 20
dimensions, rather than 66.
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Example: Electron density in the ionosphere

For certain values of parameters in the prior model, the sub-space
supporting most of π(x) was almost linear.

In this case

We explored this sub-space in a long initial MCMC run with
very many small steps,

We found principal components of the data points generated,

We used these to define an efficient MCMC sampler with large
updates within “the subspace” and small orthogonal steps.

A further challenge remains:

For other smoothing parameters, the sub-space is curved and the
directions of principal components vary with X.

Computing the matrix of numerical second derivatives of
log{π(x)} is time-consuming: we would rather not do this
repeatedly to find good directions for every MCMC step.
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7. Search and jump sampling for “thin” distributions

Example:

Consider the 2-D random variable X = (X(1), X(2)), which we
write in polar co-ordinates as (R, θ).

Suppose θ has the marginal distribution

fθ(θ) =
1 + 0.5 sin(2θ)

2π
for θ ∈ (0, 2π)

and conditional on θ, R is normally distributed as

R | θ ∼ N

(
1 + θ

2π
, σ2

)
.

Then, for a small value of σ2, X lies close to the spiral curve
(r, θ) = ((1 + θ)/(2π), θ), for θ ∈ (0, 2π).
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Example: A distribution with “thin” support

Marginal density of θ
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Here σ2 = 0.0052 and the region in which π is significantly
non-zero is very thin.

We have raised π to the power 1/500 in order to make a readable
contour plot.
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Example: A distribution with thin support

A Metropolis-Hastings sampler updating X(1) and X(2) in turn
makes very slow progress around the distribution π.

In implementing our two-stage method:

We create a sample of points by making short runs of a
Metropolis-Hastings sampler with decreasing step lengths,

We apply cluster analysis to produce a set of “skeleton”
points covering the main area of support of π,

At each skeleton point, we calculate numerical second
derivatives of log{π(x)} and find eigen-vectors to use as
proposal directions, with the variance of step lengths based
on the associated eigen-values (or a local 1-D exploration if
the eigen-value is negative).

Demo:

Chris Jennison and Adriana Ibrahim Search and Jump MCMC Sampling



Example: A distribution with thin support

Progress of a simple

Metropolis-Hastings sampler

over 500,000 iterations
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Step lengths have to be small in order to propose states with
reasonably high values of π(x) (acceptance rate = 29%).

Even though fθ(θ) stays well away from zero, there is only one
transition between modes at θ = π/4 and θ = 5π/4 in 500,000
iterations — and no visit at all to the mode at θ = 2π.
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Eigen-vector sampling for a distribution with thin support

Skeleton points,

eigen-vector directions,

s.d.s for M-H proposals
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Results from 500 short

M-H runs yielded 105

clusters.

Jump directions of 11 of

the 105 skeleton points

are displayed

For each move:

Find the nearest skeleton point,

Propose a move with increment based on that point’s
eigen-vector directions and associated s.d.s,

Construct reverse move and find M-H acceptance probability,

Accept or reject the proposed move.
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Eigen-vector sampling for a distribution with thin support

Progress of eigen-vector

sampler over

50,000 iterations
 

X(1)

X
(2

)

−2 −1 0 1 2

−
2

−
1

0
1

2

Sequence of θ values

in 50,000 iterations

0 10000 20000 30000 40000 50000

0

1

2

3

4

5

6

 

Iteration

 

Moves are local but in optimised directions, as described above.

Step lengths used in creating proposals were tuned to give the best
possible performance (acceptance rate = 17%).

The whole state space is visited, with some repetition, in one tenth
of the run length of the simple M-H sampler.

Chris Jennison and Adriana Ibrahim Search and Jump MCMC Sampling



Search and jump sampling for a distribution with thin support

In a jump move:

Current state is x,

Choose a skeleton point,

Draw a proposal, y, from the local
bivariate normal approximation to π,

Considering moves to y via the 20
nearest skeleton points, calculate the
M-H acceptance probability,

Accept or reject the proposed move.

Progress of the

jump sampler over

5,000 iterations
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Local moves and jump steps were applied alternately.

Acceptance rates were 17% for local moves, 46% for jump steps.
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Search and jump sampling for a distribution with thin support

Sequence of θ values

in first 100 iterations
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Jumps between the skeleton points lead to excellent mixing of the
Markov chain.

After just 5,000 iterations, the estimate of fθ(θ) is already quite
accurate.
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8. Discussion

We have proposed a two-stage “search and jump” algorithm for
MCMC sampling of multi-modal distributions.

There are other methods designed to do this, such as simulated
tempering (Marinari & Parisi, 1992, and Geyer & Thompson,
1995) or tempered transitions (Neal, 1996).

Tjelmeland & Hegstad’s (2001) method is very different in that it
moves directly between modes without pausing at intermediate,
low probability states.

We have taken a further, radical step in separating the exploration
and sampling stage, with substantial efficiency gains as a result.
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Discussion

Swendsen & Wang (1987) proposed their algorithm for sampling a
binary random field, the problem faced in our image analysis
example.

Our two-stage method simplifies matters by separating the search
for modes from the sampling process and avoids known problems
experienced by the Swendsen-Wang algorithm.

There is much current interest in MCMC sampling on (or close to)
manifolds (e.g., Girolami & Calderhead, 2011). Our search and
jump methods offer an innovative approach to this problem.

Another potential area of application of our methods is in sampling
a distribution with a state space of variable dimension. (Brooks,
Giudici & Roberts (2003) have noted the difficulties in creating
acceptable “reversible jump” for dimension changing steps.)
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