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1. Group sequential tests

Suppose two treatments are to be compared in a Phase III trial.

The treatment effect θ represents the advantage of Treatment A over Treatment B,

with a positive value meaning that Treatment A is more effective.

In a group sequential trial, data are examined on a number of occasions during the

course of the study.

These analyses may be at pre-specified time points — or they may be conducted

when certain numbers of observations become available.

Standardised test statistics Z1, Z2, . . . , are computed at interim analyses and

these are used to define a stopping rule for the trial.
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Pocock’s repeated significance test ( Biometrika , 1977)

To test H0: θ = 0 against θ 6= 0, where θ represents the treatment difference.

Stop to reject H0 at analysis k if

|Zk| > c.

If H0 is not rejected by analysis K , stop and accept H0.
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Reject H0

Reject H0

Accept H0
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O’Brien & Fleming’s test ( Biometrics , 1979)

To test H0: θ = 0 against θ 6= 0, where θ represents the treatment difference.

Stop to reject H0 at analysis k if

|Zk| > c′
√

K

k
.

If H0 is not rejected by analysis K , stop and accept H0.
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A one-sided hypothesis test

Suppose a new treatment is being compared to a placebo or positive control in a

Phase III trial.

Now, the treatment effect θ represents the advantage of the new treatment over the

control, with a positive value meaning that the new treatment is effective.

We wish to test the null hypothesis H0: θ ≤ 0 against θ > 0 with

Pθ=0{Reject H0} = α,

Pθ=δ{Reject H0} = 1 − β.

Standardised test statistics Z1, Z2, . . . , are computed at interim analyses and

these are used to define a stopping rule for the trial.
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Group sequential one-sided tests

A typical boundary for a one-sided test has the form:
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Reject H0

Accept H0

Crossing the upper boundary leads to early stopping for a positive outcome,

rejecting H0 in favour of θ > 0.

Crossing the lower boundary implies stopping for “futility” with acceptance of H0.
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Joint distribution of parameter estimates

Reference: Sec. 3.5 and Ch. 11 of “Group Sequential Methods with Applications

to Clinical Trials”, Jennison & Turnbull, 2000 (hereafter, JT).

Let θ̂k denote the estimate of θ based on data at analysis k.

The information for θ at analysis k is

Ik = {Var(θ̂k)}−1, k = 1, . . . , K.

Canonical joint distribution of θ̂1, . . . , θ̂K

In many situations, θ̂1, . . . , θ̂K are approximately multivariate normal,

θ̂k ∼ N(θ, {Ik}
−1), k = 1, . . . , K,

and

Cov(θ̂k1
, θ̂k2

) = Var(θ̂k2
) = {Ik2

}−1 for k1 < k2.
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Sequential distribution theory

The joint distribution of θ̂1, . . . , θ̂K can be demonstrated directly for:

θ a single normal mean,

θ = µA − µB, comparing two normal means.

The canonical distribution also applies when θ is a parameter in:

a general normal linear model,

a general model fitted by maximum likelihood (large sample theory).

Thus, theory supports general comparisons, including:

crossover studies,

analysis of longitudinal data,

comparisons adjusted for covariates.
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Survival data

The canonical joint distributions also arise for

a) estimates of a parameter in Cox’s proportional hazards regression model

b) log-rank statistics (score statistics) for comparing two survival curves

— and to Z-statistics formed from these.

For survival data, observed information is roughly proportional to the number of

failures.

Special types of group sequential test are needed to handle unpredictable and

unevenly spaced information levels: see error spending tests.

Reference:

“Group-sequential analysis incorporating covariate information”, Jennison and

Turnbull (J. American Statistical Association, 1997).
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Computations for group sequential tests
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In order to find Pθ{Reject H0}, etc., we need to calculate the probabilities of basic

events such as

a1 < Z1 < b1, a2 < Z2 < b2, Z3 > b3.
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Computations for group sequential tests
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Accept H0

Probabilities such as Pθ{a1 < Z1 < b1, a2 < Z2 < b2, Z3 > b3} can be

computed by repeated numerical integration (see JT, Ch. 19).

Combining such probabilities yields properties of a group sequential boundary.

Constants and group sizes can be chosen to define a test with a specific type I error

probability and power.
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One-sided tests: The Pampallona & Tsiatis family

Pampallona & Tsiatis (J. Statistical Planning and Inference, 1994).

To test H0: θ ≤ 0 against the one-sided alternative θ > 0 with type I error

probability α and power 1 − β at θ = δ.

-
Ik

6
Sk

•

•

•
•

•

•

•

Reject H0

Accept H0

The computational methods just described can be used to define tests with

parametric stopping boundaries meeting the design criteria.

For the P & T design with parameter ∆, boundaries on the score statistic scale are

ak = Ik δ − C2 I
∆

k , bk = C1 I
∆

k .
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One-sided tests with a non-binding futility boundary

Regulators are not always convinced a trial monitoring committee will abide by the

stopping boundary specified in the study protocol.
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The sample path shown above leads to rejection of H0. Since such paths are not

included in type I error calculations, the true type I error rate is under-estimated.

If a futility boundary is deemed to be non-binding, the type I error rate should be

computed ignoring the futility boundary.

For planning purposes, power and expected sample size should be computed

assuming the futility boundary will be obeyed.

Constants can be computed in this way for, say, a Pampallona & Tsiatis test.
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Error spending tests

Since the sequence I1, I2, . . . is often unpredictable, it is good to have a group

sequential design that can adapt to the observed information levels.

Lan & DeMets (Biometrika, 1983) presented two-sided tests of H0: θ = 0 against

θ 6= 0 which “spend” type I error as a function of observed information.

Maximum information design with error spending function f(I):

-
IImax

6
f(I)

α

  !!
""
##
""
!!  

The boundary at analysis k is set to give cumulative type I error probability f(Ik).

The null hypothesis, H0, is accepted if Imax is reached without rejecting H0.
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One-sided error spending tests

For a one-sided test of H0: θ ≤ 0 against θ > 0 with

Type I error probability α at θ = 0,

Type II error probability β at θ = δ,

we need two error spending functions.
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IImax
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α

  !!"
"#
#
""
!!  

-
IImax

6
g(I)
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Type I error probability α is spent according to the function f(I), and type II error

probability β according to g(I).
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One-sided error-spending tests

Analysis 1:

Observed information I1.

Reject H0 if Z1 > b1, where

Pθ=0{Z1 > b1} = f(I1).

Accept H0 if Z1 < a1, where

Pθ=δ{Z1 < a1} = g(I1).

-
I1

k

6
Zk

•
b1

•

a1

16



'

&

$

%

One-sided error-spending tests

Analysis 2: Observed information I2

Reject H0 if Z2 > b2, where

Pθ=0{a1 < Z1 < b1, Z2 > b2} = f(I2) − f(I1)

— note that, for now, we assume the futility boundary is binding.

Accept H0 if Z2 < a2, where

Pθ=δ{a1 < Z1 < b1, Z2 < a2} = g(I2) − g(I1).

-
I1 I2

k

6
Zk

•
b1

•
b2

•

a1

•

a2
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One-sided error-spending tests

Analysis k: Observed information Ik

Find ak and bk to satisfy

Pθ=0{a1 <Z1 <b1, . . . , ak−1 <Zk−1 <bk−1, Zk > bk} = f(Ik)−f(Ik−1),

and

Pθ=δ{a1 <Z1 <b1, . . . , ak−1 <Zk−1 <bk−1, Zk < ak} = g(Ik)−g(Ik−1).

-
Ik

k

6
Zk

•
•

• •
bk

•

•

•

• ak
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One-sided error-spending tests: Non-binding futility bou ndary

If the futility boundary is treated as non-binding, computation of the error-spending

efficacy boundary only involves the type I error spending function f(I).

Analysis 1:

Observed information I1.

Reject H0 if Z1 > b1, where

Pθ=0{Z1 > b1} = f(I1).

-
I1

k

6
Zk

•
b1
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One-sided error-spending tests: Non-binding futility bou ndary

Analysis k: Observed information Ik

Reject H0 if Zk > bk, where

Pθ=0{Z1 < b1, . . . , Zk−1 < bk−1, Zk > bk} = f(Ik) − f(Ik−1).

-
Ik

k

6
Zk

•

b1
•

• •
bk
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One-sided error-spending tests: Non-binding futility bou ndary

The futility boundary can be added through a type II error spending function g(I).

For k = 1, . . . , K − 1:

At analysis k with observed information Ik , set ak to satisfy

Pθ=δ{a1 <Z1 <b1, . . . , ak−1 <Zk−1 <bk−1, Zk < ak} = g(Ik)−g(Ik−1).

For k = K : Set aK = bK .

-
IK

k

6
Zk

•

b1
•

• • •
bK

• a1

•

•

•

= aK
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Example: An error spending test with normal response

Consider a two-treatment comparison with responses XAi∼ N(µA, σ2) and

XBi∼ N(µB, σ2) on treatments A and B, respectively. Let θ = µA − µB .

Suppose it is desired to test H0: θ ≤ 0 against θ > 0 with

Type I error rate α = 0.025,

Power 1 − β = 0.9 at θ = δ = 0.4.

We shall apply a ρ-family error spending design with ρ = 2.

This test spends type I error probability as

f(I) = α min {1, (I/Imax)
2}

and type II error probability as

g(I) = β min {1, (I/Imax)
2}.
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One-sided error spending test with non-binding futility bo undary

Information

Suppose it is known that σ2 = 0.64.

When the total numbers of observations are nA on treatment A and nB on

treatment B, the estimated treatment effect has variance

Var(θ̂) =

(
1

nA
+

1

nB

)
σ2 =

(
1

nA
+

1

nB

)
0.64

and the Fisher information for θ is

I = {Var(θ̂)}−1.

It is this information that appears in the error spending functions.

Assuming 5 equally spaced analyses, calculation shows the ρ-family error spending

test with ρ = 2 and a non-binding futility boundary needs Imax = 74.39

(nA = nB = 95) to satisfy type I error and power requirements.
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Applying a ρ-family error spending test

Suppose that at analysis 1 we observe θ̂1 = 0.10 based on nA = nB = 20

observations per treatment. Thus,

Var(θ̂1) =

(
1

20
+

1

20

)
0.64 = 0.064

and the Fisher information for θ at this analysis is

I1 = 0.064−1 = 15.6.

Since Imax = 74.39, the type I and II error probabilities to be spent are

f(I1) = 0.025 (15.6/74.39)2 = 0.00110,

g(I1) = 0.1 (15.6/74.39)2 = 0.00440.

It follows that boundary values are a1 = −1.038 and b1 = 3.061 on the Z-scale.
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Applying a ρ-family error spending test

Applying the stopping boundary at the first analysis

The standard error of θ̂1 is 0.0641/2 = 0.253.

Hence

Z1 =
θ̂1

s.e. (θ̂1)
=

0.10

0.253
= 0.395.

The boundary values are a1 = −1.038 and b1 = 3.061.

Since a1 < Z1 < b1, the trial continues to the next analysis.

Successive analyses proceed along the same lines . . . .
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Applying a ρ-family error spending test

After further analyses using a non-binding futility boundary, for the data and

testing boundary shown below the trial stops to reject H0 at analysis 4.

Analysis Cumulative Ik Boundary θ̂k s.e. (θ̂k) Zk

k sample size ak , bk

(nA + nB)

1 40 15.6 −1.038, 3.061 0.10 0.253 0.395

2 76 29.7 −0.032, 2.721 0.06 0.184 0.327

3 114 44.5 0.769, 2.475 0.21 0.150 1.401

4 152 59.4 1.441, 2.282 0.31 0.130 2.389

5 190 74.2 2.113, 2.113 (0.33) (0.116) (2.843)
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A ρ-family error spending test with binding futility boundary

Suppose the same trial is conducted with a binding futility boundary (using the

same f and g with Imax = 74.39).

The upper boundary is now lower — but only noticeably so at analyses 4 and 5:

Analysis Cumulative Ik Boundary θ̂k s.e. (θ̂k) Zk

k sample size ak , bk

(nA + nB)

1 40 15.6 −1.038, 3.061 0.10 0.253 0.395

2 76 29.7 −0.032, 2.721 0.06 0.184 0.327

3 114 44.5 0.769, 2.475 0.21 0.150 1.401

4 152 59.4 1.441, 2.277 0.31 0.130 2.389

5 190 74.2 2.041, 2.041 (0.33) (0.116) (2.843)
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A ρ-family error spending test with binding futility boundary

With a non-binding futility boundary, power under θ = 0.4 is 0.900.

With a binding futility boundary, the lower efficacy boundary gives higher power:

when θ = 0.4, the power is 0.906.

Alternatively, if a binding futility boundary is used, the trial can be designed with

Imax = 72.26 to give power 0.900 when θ = 0.4.

The ρ-family error spending function with ρ = 2 spends error slowly at the first few

analyses. The boundaries are wide, making it difficult to cross one boundary and

then the other, so the differences between binding and non-binding cases are small.

These differences can be greater when error is spent more rapidly, e.g., for a

ρ-family error spending design with ρ = 1.
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2. Analysis on termination of a group sequential trial (JT, C h. 8)

A group sequential test’s sample space is all possible pairs (k, Zk) on termination.

The figure shows this sample space for a Pampallona & Tsiatis test with ∆ = 0,

K = 4 analyses, type I error rate α = 0.025 and power 1 − β = 0.8 at θ = 1.
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−1

−2

−3

Frequentist inference is based on probabilities over the sample space of the study.
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The need for special methods

Suppose our 4 stage study with a Pampallona & Tsiatis boundary ends at stage 3

with Z3 = 2.6. It is tempting to quote a 1-sided P-value of

P{N(0, 1) > 2.60} = 0.0047.

But then, we would also get a P-value ≤ 0.0047 by

stopping at stage 1 with Z1 > 3.90,

stopping at stage 2 with Z2 > 2.76,

stopping at stage 3 with Z3 > 2.60,

stopping at stage 4 with Z4 > 2.60,

and the total probability under θ = 0 of a “P-value” ≤ 0.0047 would be 0.0076.

So, this “P-value” is not distributed as U(0, 1).
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Analysis on termination

For proper frequentist inference, we first order the sample space.
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We shall define P-values and confidence intervals with respect to this ordering.
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A P-value on termination

The P-value for H0: µA = µB is the probability under H0 of seeing an outcome

as extreme as that observed.
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So, on stopping at analysis 3 with Z3 = 2.60, the 1-sided P-value for H0: θ ≤ 0 is

Pθ=0{Terminate with Z1 ≥ 3.90 or Z2 ≥ 2.76 or Z3 ≥ 2.60} = 0.0063.
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A P-value on termination

With the above definition, based on a specific ordering of the sample space:

The P-value has a U(0, 1) distribution under H0.

If the group sequential test has one-sided type I error probability α,

the P-value is ≤ α precisely when the test stops with rejection of H0,

i.e., in the part of the sample space coloured red.

The P-value will tend to take low values when the parameter θ is

large and positive.
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A confidence interval on termination

Suppose the test terminates at analysis k∗ with Zk∗ = Z∗.

A 100(1 − 2α)%, equal-tailed confidence interval for θ contains precisely those

values θ for which the observed outcome (k∗, Z∗) is in the middle (1− 2α) of the

probability distribution of outcomes under θ.

This can be seen to be the interval (θ1, θ2) where

Pθ=θ1
{An outcome above (k∗, Z∗)} = α

and

Pθ=θ2
{An outcome below (k∗, Z∗)} = α.

This follows from the relation between a 100(1 − 2α)% lower confidence limit

for θ and the family of level 2α, two-sided tests of hypotheses H : θ = θ̃.
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A confidence interval on termination

Example:

If the trial stops at analysis 3 with Z3 = 2.6, the 95% confidence interval for θ is

(0.22, 1.77)

using our specified ordering.

In contrast:

The “naive” fixed sample CI would be (0.25, 1.78).

However, it is not appropriate to use this fixed sample interval as this fails to take

account of the sequential stopping rule.

Consequently, the coverage probability of this fixed sample interval is not 1 − 2α.
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Consistency of hypothesis testing and CI on termination

Suppose a group sequential study is run to test H0: θ ≤ 0 vs θ > 0 with

one-sided type I error probability α.

Then, a 1 − 2α, equal-tailed confidence interval on termination should lie

completely above θ = 0 if and only if H0 is rejected.

This happens automatically if outcomes for which we reject H0 are at the top end of

the sample space ordering — and any sensible ordering does this.

Why the naive approach does not work

Note that a naive 1 − 2α level CI on termination lies completely above θ = 0 if an

unadjusted α level, one-sided significance test rejects H0.

Because of the multiple testing effect, the probability of such an outcome is greater

than the desired level α.
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Estimating θ after a group sequential test

- k

6
Zk q q q q

q q q
In a balanced two-treatment comparison, the maximum likelihood estimate (MLE)

of θ on termination of the trial is

θ̂M =

nk∑

i=1

(XAi − YBi)/nk.

For large, positive values of θ, high values of θ̂ lead to early stopping, while lower

values lead to collection of more data and the chance for θ̂ to increase.

This results in an upward bias of the MLE, so Eθ(θ̂M ) > θ for larger values of θ.

Similarly, Eθ(θ̂M ) < θ for lower values of θ.
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Bias of the MLE of θ after a 4 group Pampallona & Tsiatis test

The bias of the MLE can be calculated as a function of the true effect size, θ.
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In our example, sample size is chosen to give power 0.8 for detecting a treatment

effect of 1, and the bias of the MLE is around 0.1 at values of θ just above 1.
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Correcting the bias of the MLE

Denote the bias function of the MLE by

b(θ) = Eθ(θ̂M ) − θ.

Whitehead (Biometrika, 1986) suggested correcting the MLE by subtracting an

estimate of its bias.

Since the true θ is unknown, the bias of the MLE is estimated by b(θ̂M ).

The adjusted estimator is then

θ̂adj = θ̂M − b(θ̂M ).

39



'

&

$

%

Bias of the MLE of θ after a 4 group Pampallona & Tsiatis test

Simulation results show that Whitehead’s adjusted estimator has much smaller bias

than the MLE on which it is based.

For our example:
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Estimating the treatment effect on a secondary endpoint

after a group sequential test

Stopping boundary for

the primary endpoint
- k

6
Zk q q q q

q q q
Denote the treatment effect on the primary endpoint by θ1.

Suppose the trial terminates with rejection of H0: θ1 ≤ 0 in favour of θ1 > 0.

On stopping, data on a secondary endpoint are analysed to estimate the treatment

effect, θ2, on this endpoint.

For an individual subject, the primary and secondary responses are correlated.

The group sequential design leads to bias in the MLE θ̂1 — and the correlation in

responses implies that bias is passed on to the MLE θ̂2.
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Estimation for a secondary endpoint after a group sequentia l test

Suppose responses for an individual subject are bivariate normal with correlation ρ.

For a patient on Treatment A,

Primary endpoint X1 ∼ N(µA1, σ2

1),

Secondary endpoint X2 ∼ N(µA2, σ2

2).

Similarly, for a patient on Treatment B,

Primary endpoint X1 ∼ N(µB1, σ2

1),

Secondary endpoint X2 ∼ N(µB2, σ2

2).

The primary treatment effect is

θ1 = µA1 − µB1

and the secondary treatment effect is

θ2 = µA2 − µB2.
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Estimation for a secondary endpoint after a group sequentia l test

Consider a group sequential design where the bias in the MLE θ̂1 is

b1(θ) = Eθ(θ̂1) − θ1

when the true treatment effects are θ = (θ1, θ2).

Note that Eθ(θ̂1) depends on θ1 and not on θ2.

Whitehead (Biometrics, 1986) shows that the MLE, θ̂2, has bias

b2(θ) = Eθ(θ̂2) − θ2 = ρ

√
σ2

2

σ2
1

b1(θ)

when the true treatment effects are θ = (θ1, θ2).

Since this bias is a multiple of b1(θ), it depends on θ1 — and not on θ2.

We can follow the same approach as for the primary endpoint and adjust the

MLE, θ̂2, by subtracting an estimate of its bias, (ρ σ2/σ1) b1(θ̂).
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Estimation for a secondary endpoint: Example

As previously, suppose a trial is designed for the primary endpoint using a

Pampallona & Tsiatis test with ∆ = 0, 4 analyses, type I error rate α = 0.025 and

power 0.8 at θ1 = 1.

Assume responses are bivariate normal with correlation ρ = 0.6 and σ2
1/σ2

2 = 2.

The plot, for the case θ1 = 1.8 and θ2 = 2, shows the correlation between the

MLEs, θ̂1 and θ̂2, on termination of the Pampallona & Tsiatis test.
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Estimation for a secondary endpoint: Example
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The plot shows the bias in the MLE θ̂2 is largely eliminated in the adjusted

estimator

θ̂2 − ρ

√
σ2

2

σ2
1

b1(θ̂).
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3. Testing multiple endpoints in a single group sequential t rial

Consider a trial comparing treatments A and B where the treatment effect for the

primary endpoint is θ1.

The trial has a group sequential design with a Pampallona & Tsiatis test with

∆ = 0, 4 analyses, α = 0.025 and power 0.8 at θ1 = 1.

If the trial has a positive outcome, rejecting H1: θ1 ≤ 0 in favour of θ1 > 0,

a secondary endpoint with treatment effect θ2 is analysed.

The investigators believe it is appropriate to carry out a fixed sample size, level α

test of H2: θ2 ≤ 0 against θ2 > 0.

Suppose that for an individual patient, the primary and secondary responses are

bivariate normal with correlation ρ.

Is this approach to testing the two endpoints valid?

Hung, Wang and O’Neill (J. Biopharm. Statis., 2007) explain why it is not valid.
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Testing a secondary endpoint after a group sequential test

The plot shows the overall probability of rejecting H2: θ2 ≤ 0 (which requires

rejection of H1 first), when θ2 = 0. Values of θ1 range from below 0 to above 3.

As ρ increases, the type I error rate for testing H2 exceeds the nominal 0.025.
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The type I error rate for the test of H2 is inflated for the same reason that the MLE

of θ2 is biased upon conclusion of a group sequential test of θ1.
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Testing multiple hypotheses

A clinical trial may involve

Co-primary endpoints

Positive outcomes required for at least one endpoint

Positive outcomes required on all endpoints

Secondary endpoints, tertiary endpoints, . . .

The trial may have

Multiple treatments,

Pre-defined sub-populations of patients.

The trial design may be

Of fixed sample size,

Group sequential.

48



'

&

$

%

The familywise error rate

Suppose we have h null hypotheses, Hi: θi ≤ 0 for i = 1, . . . , h.

A testing procedure yields a decision to accept or reject each of the h hypotheses.

The procedure’s familywise error rate under a set of values (θ1, . . . , θh) is

Pr{Reject Hi for some i with θi ≤ 0} = Pr{Reject any true Hi}.

The familywise error rate is controlled strongly at level α if this error rate is at

most α for all possible combinations of θi values. Then

Pr{Reject any true Hi} ≤ α for all (θ1, . . . , θh).

Using such a procedure, we can choose to focus on a parameter θi∗ and claim

significance for a test of the null hypothesis Hi∗ , without having to worry that this

choice of hypothesis was based on observed data.
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Bonferroni adjustment

Carlo Bonferroni (1892–1960) is associated with a simple, but very useful, result.

Suppose we have h null hypotheses and test each one at significance level α/h.

Then, if all h null hypotheses are true,

Pr{Reject at least one of H1 . . . Hh}

≤ Pr{Reject H1} + . . . + Pr{Reject Hh} = h
α

h
= α.

If only some of the h null hypotheses are true,

Pr{Reject at least one true Hi} < α.

So we have strong control of the familywise error rate .

We start by considering applications in fixed sample size study designs . . .
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A Bonferroni test for co-primary endpoints

Example: Co-primary endpoints

A trial compares a new treatment against control with respect to two endpoints

Endpoint 1: Core MACE (Major Adverse Cardiac Event — CV-related death,

nonfatal stroke, or nonfatal myocardial infarction)

Endpoint 2: Expanded MACE (Core MACE plus hospitalization for

unstable angina or coronary revascularization).

One-sided type I error probability α = 0.025 is divided between the endpoints.

With Z-statistics Z1 and Z2 for endpoints 1 and 2,

An effect on Core MACE is declared if Z1 > Φ−1(1 − α/2) = 2.24,

An effect on Expanded MACE is declared if Z2 > Φ−1(1 − α/2) = 2.24.
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Example: Co-primary endpoints

This Bonferroni procedure can be represented graphically as:

1 2

? ?

α/2 α/2

Familywise type I error is protected conservatively as there is a positive correlation

between the two tests, due to the common aspects of the two endpoints.

Suppose we have rejected H1, might it be permissible to test H2 at significance

level α rather than α/2 ?

If H1 is false, we only need to worry about type I errors concerning H2.

If H1 is true, we have already made a type I error, so it will not increase the

familywise error rate if we make another!
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Bonferroni procedure with recycling (the Holm procedure)

We can represent a new version of the Bonferroni procedure, which “recycles” error

probability after rejecting H1 or H2, as:

1 2

? ?

α/2 α/2

-�

Proof that FWER is protected

If H1 and H2 are both true,

FWER = Pr{Reject H1 or H2}

≤ Pr{Z1 > Φ−1(1 − α/2)} + Pr{Z2 > Φ−1(1 − α/2)}

≤ α/2 + α/2 = α.
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Bonferroni procedure with recycling (the Holm procedure)

1 2

? ?

α/2 α/2

-�

Proof that FWER is protected (continued)

If H1 is true and H2 is false,

FWER = Pr{Reject H1} ≤ Pr{Z1 > Φ−1(1 − α)} = α.

Similarly, if H2 is true and H1 is false,

FWER = Pr{Reject H2} ≤ Pr{Z2 > Φ−1(1 − α)} = α.

If H1 and H2 are both false,

A type I error cannot be made so FWER = 0.
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A hierarchical testing or “gatekeeping” procedure

Example: Primary and secondary endpoints

Consider a trial where

The null hypothesis H1 concerns the primary endpoint,

The null hypothesis H2 relates to a secondary endpoint.

Suppose H2 will only be tested if H1 has already been rejected — O’Neill

(Controlled Clinical Trials, 1997) states this is the only time one should test H2.

We test H1 first at significance level α. If H1 is rejected, we continue to test H2

at significance level α.

1

2

?

?

α

H1, primary endpoint

H2, secondary endpoint
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Example: Primary and secondary endpoints

1

2

?

?

α

H1, primary endpoint

H2, secondary endpoint

Proof that FWER is protected

If H1 is true, a family-wise error occurs if H1 is rejected (regardless of H2),

FWER = Pr{Reject H1} = Pr{Z1 > Φ−1(1 − α)} = α.

If H1 is false and H2 is true,

FWER = Pr{Reject H1 and then reject H2}

≤ Pr{Z2 > Φ−1(1 − α)} = α.

If H1 and H2 are both false, a type I error cannot be made and FWER = 0.
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Co-primary and secondary endpoints

Suppose we wish to test a secondary endpoint if a positive result is obtained on

either primary endpoint.

To do this, we recycle family wise error probability from the primary endpoints.

The secondary endpoint is tested at significance level α/2 if just one of H1 and

H2 is rejected, and at level α if both H1 and H2 are rejected.

We can represent this testing procedure as:

1 2

3

? ?

α/2 α/2

@@R ��	

H1, H2 co-primary endpoints

H3, secondary endpoint
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Co-primary and secondary endpoints

1 2

3

? ?

α/2 α/2

@@R ��	

H1, H2 co-primary endpoints

H3, secondary endpoint

There are eight different combinations of true and false values for H1, H2 and H3.

Taking these eight cases in turn, it is quite easy to prove that FWER is at most α,

whichever set of null hypotheses is true.

Questions?

1. Can we add more “recycling” to reduce conservatism and increase power?

2. Can we opt to recycle error between H1 and H2 before testing H3 at all?
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Closed testing procedures

In constructing and validating more elaborate forms of multiple testing, we can

make use of “closed testing procedures” (Marcus et al, Biometrika, 1976).

The closed testing procedure

Suppose we have h null hypotheses, Hi: θi ≤ 0 for i = 1, . . . , h.

For each subset I of {1, . . . , h}, define the intersection hypothesis

HI = ∩i∈I Hi

which states that all hypotheses Hi are true, for i ∈ I .

Construct a level α test of each intersection hypothesis HI , i.e., a test which rejects

HI with probability at most α whenever all hypotheses specified in HI are true.

The simple hypothesis Hj : θj ≤ 0 is rejected overall if, and only if, HI is rejected

for every set I containing index j.
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Closed testing procedures

Proof that a closed testing procedure provides strong contr ol of the FWER

at level α

Let Ĩ be the set of indices of all true hypotheses Hi.

For a familywise error to be committed, HĨ must be rejected.

Since HĨ is true,

Pr{Reject HĨ} = α.

Thus,

Pr{Reject Hj for at least one j ∈ Ĩ} ≤ Pr{Reject HĨ} = α,

so the probability of a familywise error is no greater than α.

60



'

&

$

%

The Bonferroni test with recycling as a closed testing proce dure

1 2

? ?

α/2 α/2

-�

Let P1 and P2 denote P-values

for simple tests of H1 and H2.

Write H1,2 for the intersection

hypothesis, H1 ∩ H2.

Using the closed testing procedure with the following set of tests is equivalent to the

Bonferroni test with recycling.

Hypothesis Reject if

H1 P1 ≤ α

H2 P2 ≤ α

H1,2 min(P1, P2) ≤ α/2

E.g., to reject H1 overall we need individual tests to reject both H1 and H1,2, i.e.,

P1 ≤ α and min(P1, P2) ≤ α/2.
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Testing co-primary and secondary endpoints as a

closed testing procedure

1 2

3

? ?

α/2 α/2

@@R ��	

H1, H2 co-primary endpoints

H3, secondary endpoint

Let P1, P2 and P3 denote P-values for simple tests of H1, H2 and H3.

The procedure depicted above is equivalent to a closed testing procedure with

suitably defined tests of H1, H2 and H3, and the related intersection hypotheses.
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Co-primary and secondary endpoints: Closed testing proced ure

Tests of intersection hypotheses are:

Hypothesis Reject if

H1 P1 ≤ α/2

H2 P2 ≤ α/2

H3 P3 ≤ α

H1,2 min(P1, P2) ≤ α/2

H1,3 min(P1, P3) ≤ α/2

H2,3 min(P2, P3) ≤ α/2

H1,2,3 min(P1, P2) ≤ α/2

E.g., to reject H3 overall needs rejection of H3, H1,3, H2,3 and H1,2,3, i.e.,

P3 ≤ α, min(P1, P3) ≤ α/2, min(P2, P3) ≤ α/2, min(P1, P2) ≤ α/2,

which can be seen to agree with the procedure described earlier.
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Answer to Question 1: A closed testing

procedure with additional recycling

The tests of intersection hypotheses include:

Hypothesis Reject if

H1 P1 ≤ α/2

H2 P2 ≤ α/2

This indicates conservatism. We can replace these tests by

Hypothesis Reject if

H1 P1 ≤ α

H2 P2 ≤ α

and their type I error rates will still be at most α.

This modification corresponds to recycling error probability from the test of H3 back

to whichever of H1 and H2 has not been rejected at level α/2.

The extra opportunities to reject H1 and H2 give greater power.
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Co-primary and secondary endpoints: A closed testing

procedure with additional recycling

We can represent the testing procedure with additional recycling graphically.

1 2

3

?

@@R ���

?

@@I ��	

α/2 α/2

H1, H2 co-primary endpoints

H3, secondary endpoint

The additional lines in the graph indicate that:

If P1 ≤ α/2 and P3 ≤ α/2, then H2 is tested at level α,

If P2 ≤ α/2 and P3 ≤ α/2, then H1 is tested at level α.
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Answer to Question 2: Recycling between

primary endpoints first

We may prefer to gain maximum power for tests of the co-primary endpoints before

testing the secondary endpoint at all.

This is achieved by recycling error probability from H1 to H2, and vice versa,

before allocating any error probability to a test of H3.

A graphical representation is:

1 2

3

?
-

�
�	

?
�

@
@@R

α/2 α/2

H1, H2 co-primary

endpoints

H3, secondary

endpoint

One half of the type I error

probability is cycled through

H1, H2 and on to H3.

The other half is cycled

through H2, H1 and H3.
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More complex procedures

As we add more options, and get more creative, we can produce some quite

complex procedures.

It is still necessary to check that the familywise type I error rate is protected.

At the same time, we should try to avoid excessive conservatism.

We also want to be able to construct testing procedures that fit with:

A logical sequence for considering hypotheses, e.g., primary endpoint

before secondary endpoint,

The relative impact of decisions to reject different hypotheses,

The perceived chance of being able to reject each hypothesis.
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General methodology

Two papers, published simultaneously, describe an elegant and understandable

way to describe complex multiple testing procedures.

These procedures are closed testing procedures in which the tests of intersection

hypotheses are weighted Bonferroni tests.

The papers are:

“A recycling framework for the construction of Bonferroni-based multiple

tests” by Burman, Sonesson and Guilbaud, Statistics in Medicine, 2009.

and

“A graphical approach to sequentially rejective multiple test procedures” by

Bretz, Maurer, Brannath and Posch, Statistics in Medicine, 2009.

The following diagrams give a flavour of what is possible and the graphical

representations of multiple testing procedures used in the two papers .
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A figure from Burman et al. (2009)

(a) and (b) A parallel gatekeeping procedure (equivalent versions)

(c) and (d) A fallback procedure (equivalent versions)
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A figure from Bretz et al. (2009)
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Multiple testing procedures and group sequential designs

We have just described multiple testing procedures in the context of a fixed sample

size trial design.

Here, the sample space is simple and it is straightforward to define a Z-statistic or

determine a P-value for each null hypothesis.

We can follow the same principles to test multiple hypotheses when a study is

conducted group sequentially — but we shall need to define any P-values with

proper attention to the sequential sampling frame.

In particular, the definition of a P-value should not change in response to observed

data, either on the endpoint in question or other, correlated endpoints.

These considerations underlie discussion in the paper

“Statistical considerations for testing multiple endpoints in group sequential

or adaptive clinical trials” by Hung, Wang and O’Neill, J. Biopharmaceutical

Statistics, 2007.
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Testing a secondary endpoint after a group sequential test

In our earlier example, a trial compares two treatments with regard to their effect on

a primary endpoint, then a secondary endpoint is analysed if a positive result is

obtained for the primary endpoint.

Denoting the treatment effect on the primary endpoint by θ1, a group sequential test

is conducted of H1: θ1 ≤ 0 vs θ1 > 0.

If H1 is rejected by the group sequential test, the secondary endpoint, with

treatment effect θ2, is analysed.

We supposed that investigators chose to conduct a fixed sample size, level α test of

H2: θ2 ≤ 0 against θ2 > 0 using the data available for the second endpoint.

The investigators claim type I error probability α is passed from the test of H1

to the test of H2, just as in a “gatekeeping” procedure.

Does general theory ensure the familywise type I error rate is protected?
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Testing a secondary endpoint after a group sequential test

We have already seen plots of the overall probability of rejecting H2: θ2 ≤ 0 when

θ2 = 0 which show that familywise error rate is not protected at level α = 0.025.
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For ρ > 0, Pr{Reject H2} > α for sufficiently high values of θ1.
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Why the “gatekeeping” argument does not apply

In the proposed design, H2 is tested if H1 is rejected.

The test of H2 is based on the set of measurements of the secondary endpoint at

analysis j = 1, 2, 3, or 4, depending on when H1 is rejected.

Each analysis j = 1, . . . , 4 will give a different value for P2, P2(j) say.

The plan is to reject H2 if P2(j) ≤ α when H1 is rejected at analysis j.

If a single value of j were specified and the trial always continued to analysis j

(so we learn the value of P2(j)), we would have

P2(j) ∼ U(0, 1) under θ2 = 0.

Then, rejecting H2 when P2(j) ≤ α would give a level α test.

Instead, the proposal is to reject H2 when P2(J) ≤ α where J is the random

variable denoting the analysis at which the trial terminates.

74



'

&

$

%

Why the “gatekeeping” argument does not apply

We have defined the random variable J as the analysis at which the trial stops.

The value taken by J depends on observations on the primary endpoint.

These observations are correlated with those on the secondary endpoint, so there

is dependence between J and the values P2(1), P2(2), P2(3) and P2(4).

The danger is that P2(J) is more likely to be one of the smaller values in the set

{P2(1), P2(2), P2(3), P2(4)}, increasing the probability that P2(J) ≤ α,

and H2 is rejected, above α.

The simulation results for our example show this does indeed happen.

Solution:

We must test H2 in a way which does not change in response to observed data,

either on the endpoint in question or other, correlated endp oints.
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A correct gatekeeping procedure

We need to specify a single test of H2 which can be applied whenever the trial

terminates.

GST of

H1

GST of

H2

?

?

α

The group sequential test of H1

determines the stopping time

for the trial

The group sequential test of H2 is

used for the secondary analysis

if and when H1 is rejected

The group sequential test of H2 provides a critical value at each analysis.

If the first test rejects H1 at analysis J , we compare data on the secondary

endpoint to the critical value given by the GST of H2 at analysis J .
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A correct gatekeeping procedure

Let {Z1,1, . . . , Z1,K} denote Z-statistics for testing H1: θ1 ≤ 0 at analyses

1, . . . , K when information for θ1 is I1,1, . . . , I1,K .

Similarly, let {Z2,1, . . . , Z2,K} be Z-statistics for testing H2: θ2 ≤ 0 at analyses

1, . . . , K when information for θ2 is I2,1, . . . , I2,K .

The GST of H1 stops at analysis k to

Reject H1 if Z1,k ≥ bk ,

Accept H1 if Z1,k < ak .

Boundary values are set to control type I error at level α under θ1 = 0, i.e.,

K∑

k=1

Pr{Z1,1 ∈ (a1, b1), . . . , Z1,k−1 ∈ (ak−1, bk−1), Z1,k > bk} = α.

77



'

&

$

%

A correct gatekeeping procedure

The GST of H2 rejects H2 at analysis k if Z2,k ≥ ck, where

K∑

k=1

Pr{Z2,1 < c1, . . . , Z2,k−1 < ck−1, Z2,k > ck} = α.

Since the stopping rule for the trial is based on the primary endpoint, the test of H2

does not need a futility boundary, which would imply early acceptance of H2.

In the overall procedure, if the GST of H1 stops to reject H1 at analysis k∗, then

we also reject H2 if

Z2,k∗ ≥ ck∗ .

A gatekeeping procedure using all of {Z2,1, . . . , Z2,K} could reject H2 if

Z2,k ≥ ck for any k ∈ {1, . . . , K}.

Hence, our overall procedure protects the familywise type I error rate conservatively.
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Further options

Conservatism in the overall procedure arises because the test of H1 may stop at

analysis k∗ when

Z2,k∗ < ck∗ ,

but
Z2,k ≥ ck for some k < k∗ or k > k∗.

This suggests options for reducing conservatism and increasing power:

1. Reject H2 if Z2,k ≥ ck for some k < k∗, even though Z2,k∗ < ck∗ .

However, ignoring the most recent data (and the sufficient statistic for θ2)

would cast doubt on the credibility of this decision.

2. Continue the trial in the hope that Z2,k ≥ ck at some future analysis k.

However, if the primary endpoint is also observed for future subjects, is there a

risk of “losing” the positive result on the primary endpoint ?

Several authors have considered option (2), where a positive result outcome for H1

is retained, whatever the additional information about θ1.
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Example: Testing primary and secondary endpoints

A trial compares two treatments with normally distributed responses.

The treatment effect is θ1 for the primary and θ2 for the secondary endpoint.

The trial is designed group sequentially with a Pampallona & Tsiatis test of the

primary endpoint using ∆ = 0, 4 analyses, α = 0.025 and power 0.8 at θ1 = 1.

If H1: θ1 ≤ 0 is rejected for the primary endpoint, we test the secondary endpoint:

when H1 is rejected at analysis k∗, the test of H2: θ2 ≤ 0 rejects H2 if

Z2,k∗ ≥ ck∗ .

Case A (Pocock):

ck = 2.361, k = 1, . . . , 4.

Case B (O’Brien & Fleming):

ck = 2.024

√
4

k
, k = 1, . . . , 4.

80



'

&

$

%

Type I error probability for testing H2

A: Pocock boundary for H2
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B: OBF boundary for H2
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Type I error probabilities are calculated under θ2 = 0, but they also depend on θ1

and the correlation, ρ, between the primary and secondary endpoints.

The test of H2 is particularly conservative under large values of θ1.
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Power for testing H2, ρ = 0.25

A: Pocock boundary for H2
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B: OBF boundary for H2
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We have supposed (without real loss of generality) that I2,k = 2 I1,k.

Power is shown as a function of θ2 for selected values of θ1 and ρ.

The value of θ1 has a large effect on the analysis at which a test of H2 may occur.

The Pocock boundary for H2 deals better with the trial’s uncertain termination time.
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Power for testing H2, ρ = 0.5

A: Pocock boundary for H2
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B: OBF boundary for H2
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We have supposed (without real loss of generality) that I2,k = 2 I1,k.

Power is shown as a function of θ2 for selected values of θ1 and ρ.

The value of θ1 has a large effect on the analysis at which a test of H2 may occur.

The Pocock boundary for H2 deals better with the trial’s uncertain termination time.
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GSTs and multiple hypothesis testing

1. There are methods available to test multiple hypotheses in a group sequential

design AND control the overall type I error probability.

2. Closed testing procedures encompass a variety of useful types of multiple

hypothesis test.

3. Graphical representations (SiM papers, 2009) can help investigators to select

— and understand — an appropriate procedure.

4. There are many options to choose from. A suitable choice will depend on the

importance to investigators of rejecting each null hypothesis and the likelihood of

each null hypothesis being true or false.

5. When testing multiple hypotheses in a group sequential trial design, the key

point is to use GSTs as the “testing rules” in the multiple testing scheme: if this is

not done correctly, FWER may be too high.
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GSTs and multiple hypothesis testing: further reading

Tang & Geller ( Biometrics , 1999) Closed testing procedures for group sequential

clinical trials with multiple endpoints.

One treatment vs control with multiple endpoints, or multiple treatments vs control

with a single endpoint.

In the closed testing procedure, each intersection hypothesis has its own GST.

Intersection hypotheses are tested systematically, starting with the intersection of

all k hypotheses, then intersections of (k − 1) hypotheses, etc.

Glimm, Maurer & Bretz ( Stat. in Med. , 2010) Hierarchical testing of multiple

endpoints in group-sequential trials.

GMB consider hierarchical testing of a secondary endpoint in a group-sequential

clinical trial that is mainly driven by a primary endpoint.

The “secondary” endpoint may actually be of prime interest and the primary

endpoint only a surrogate to indicate when to test the secondary endpoint.
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GSTs and multiple hypothesis testing: further reading

Tamhane, Mehta & Liu ( Biometrics , 2010) Testing a primary and a secondary

endpoint in a group sequential design.

TML reduce the conservatism in Tang & Geller’s method for the case of known

correlation, ρ, between endpoints.

For given GSTs of H1 and H2 and a known value of ρ, they calculate the overall

type I error rate for H2. They then calibrate the GST for the secondary endpoint

so the maximum overall type I error rate for H2, over all values of θ1, is α.

Tamhane, Wu & Mehta ( Stat. in Med. , 2012) Adaptive extensions of a two-stage

group sequential procedure for testing primary and secondary endpoints (I)

unknown correlation between endpoints.

TWM obtain an upper confidence bound, r, for the correlation ρ. They proceed

on the basis that ρ ≤ r, allocating fractions of α to (i) type 1 error for testing H2

assuming ρ ≤ r and (ii) the probability that ρ > r.
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GSTs and multiple hypothesis testing: further reading

Ye, Liu & Yao ( Statist. in Med. , 2012) A group sequential Holm procedure with

multiple primary endpoints.

In applying the Holm procedure to test h multiple hypotheses, one starts by

dividing the familywise type I error probability α between the h hypotheses.

If a hypothesis is rejected, its error probability is re-distributed to the others.

This process continues until no more hypotheses can be rejected.

YLY follow this approach with GSTs for each hypothesis — at the appropriate

collection of type I error rates.

Maurer & Bretz ( Statist. in Biopharm. Research , 2013) Multiple testing in group

sequential trials using graphical approaches.

M&B apply GSTs in multiple testing procedures with a graphical representation.

They give a thorough account of the details of this methodology, including the

issue of “concordance” and when a set of GSTs has this property.
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Co-primary endpoints

Earlier, we mentioned an example of a trial comparing a new treatment against

control with respect to two endpoints,

Endpoint 1: Core MACE (Major Adverse Cardiac Event — CV-related death,

nonfatal stroke, or nonfatal myocardial infarction)

Endpoint 2: Expanded MACE (Core MACE plus hospitalization for

unstable angina or coronary revascularization).

One possibility is that approval for the new treatment could be sought based on a

positive outcome on at least one endpoint.

In this case, the previously described methods are appropriate.

Suppose instead that a positive outcome is required on both endpoints in order for a

New Drug Application to be possible.

What are the multiple testing implications?

What can a group sequential design offer in this case?
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Co-primary endpoints

Suppose it is required to show a new treatment is effective on both endpoints.

Denote the treatment effects on the two endpoints by θ1 and θ2.

We wish to demonstrate that θ1 > 0 and θ2 > 0.

Formally we test the null hypothesis

H0: θ1 ≤ 0 or θ2 ≤ 0

against the alternative

HA: θ1 > 0 and θ2 > 0.

A type I error occurs if the new treatment is claimed to be effective,

i.e., if both H1: θ1 ≤ 0 and H1: θ2 ≤ 0 are rejected,

when either θ1 ≤ 0 or θ2 ≤ 0.
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Co-primary endpoints

The type I error probability must be controlled over all values (θ1, θ2) in the null

hypothesis H0: θ1 ≤ 0 or θ2 ≤ 0 , as shown below.
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The type I error is largest at (0,∞) or (∞, 0).

Hence, one can define separate level α tests of H0,1: θ1 ≤ 0 and H0,2: θ2 ≤ 0

and claim the new treatment is effective if both null hypotheses are rejected.
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Co-primary endpoints

Suppose a clinical trial is conducted in the hope of showing a treatment effect on

both of two co-primary endpoints.

The trial will test

H0: θ1 ≤ 0 or θ2 ≤ 0

against the alternative

HA: θ1 > 0 and θ2 > 0.

A group sequential design is possible — but this should only stop early for a positive

outcome when there is evidence of a treatment effect for both endpoints.

Jennison & Turnbull (Biometrics, 1993) proposed such a group sequential design

for a trial with efficacy and safety endpoints. (They used a non-inferiority criterion

for safety, and so had θ2 ≤ −δ rather than θ2 ≤ 0 in their null hypothesis.)
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Co-primary endpoints

Jennison & Turnbull’s (1993) group sequential designs for a bivariate response have

L-shaped boundaries at each analysis k.

The design is set up to achieve power at a specific pair of positive treatment effects.
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Recapitulation: Group sequential tests and multiple hypot heses

• It is natural to monitor clinical trials with a view to possible early stopping.

• Distribution theory and computation support a variety of group sequential

designs, including error spending tests, which control the type I error rate.

• Inference on termination can be conducted to give point estimates, p-values

and confidence intervals with the usual frequentist properties.

• Such inferences can be extended to secondary endpoints — and adjustment for

the stopping rule can be just as important for these inferences.

• When a trial is designed to test multiple endpoints:

Care needs to be taken when combining multiple testing procedures (set up

to protect FWER) with group sequential stopping rules.

A safe approach is (i) to describe the mutiple testing procedure graphically,

as per Burman et al. or Bretz et al. (2009), then (ii) specify group sequential

tests that can be applied at each node of the graph.
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