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1. Group sequential monitoring of clinical trials

Reference: “Group Sequential Methods with Applications to Clinical Trials”,

Jennison & Turnbull, 2000 (hereafter, JT).

Suppose a new treatment is being compared to a placebo or positive control in a

Phase III trial.

The treatment effect θ represents the advantage of the new treatment over the

control, with a positive value meaning that the new treatment is effective.

We wish to test the null hypothesis H0: θ ≤ 0 against θ > 0 with

Pθ=0{Reject H0} = α,

Pθ=δ{Reject H0} = 1 − β.

Standardised test statistics Z1, Z2, . . . , are computed at interim analyses and

these are used to define a stopping rule for the trial.
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Group sequential tests

A typical boundary for a one-sided test has the form:
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Crossing the upper boundary leads to early stopping for a positive outcome,

rejecting H0 in favour of θ > 0.

Crossing the lower boundary implies stopping for “futility” with acceptance of H0.

Here, the trial stops to reject H0 at the third of five analyses.
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Joint distribution of parameter estimates

Reference: JT, Sec. 3.5 and Ch. 11.

Let θ̂k denote the estimate of θ based on data at analysis k.

The information for θ at analysis k is

Ik = {Var(θ̂k)}−1, k = 1, . . . , K.

Canonical joint distribution of θ̂1, . . . , θ̂K

In many situations, θ̂1, . . . , θ̂K are approximately multivariate normal,

θ̂k ∼ N(θ, {Ik}−1), k = 1, . . . , K,

and

Cov(θ̂k1 , θ̂k2) = Var(θ̂k2) = {Ik2}−1 for k1 < k2.
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Sequential distribution theory

The joint distribution of θ̂1, . . . , θ̂K can be demonstrated directly for:

θ a single normal mean,

θ = µA − µB, comparing two normal means.

The canonical distribution also applies when θ is a parameter in:

a general normal linear model,

a general model fitted by maximum likelihood (large sample theory).

Thus, theory supports general comparisons, including:

crossover studies,

analysis of longitudinal data,

comparisons adjusted for covariates.
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Canonical joint distribution of θ̂1, . . . , θ̂K

A single normal mean

Suppose X1, X2, . . . are independent N(θ, σ2) responses.

For n1 < n2, define

θ̂1 =
X1 + . . . + Xn1

n1

and θ̂2 =
X1 + . . . + Xn1 + . . . + Xn2

n2

.

The joint distribution of θ̂1 and θ̂2 is bivariate normal.

Marginally

θ̂1 ∼ N(θ, I1
−1) and θ̂2 ∼ N(θ, I2

−1),

where

I1 =
n1

σ2
and I2 =

n2

σ2
.
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Canonical joint distribution of θ̂1, . . . , θ̂K

It remains to check the covariance:

Cov(θ̂1, θ̂2) = Cov

(
X1 + . . . + Xn1

n1

,
X1 + . . . + Xn1 + . . . + Xn2

n2

)

= Cov

(
X1 + . . . + Xn1

n1

,
X1 + . . . + Xn1

n2

)

=
1

n1 n2

Var(X1 + . . . + Xn1)

=
σ2

n2

= {I2}−1

= Var(θ̂2).
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Canonical joint distribution of z-statistics

In testing H0: θ = 0, the standardised statistic at analysis k is

Zk =
θ̂k√

Var(θ̂k)
= θ̂k

√Ik.

For this,

(Z1, . . . , ZK) is multivariate normal,

Zk ∼ N(θ
√Ik, 1), k = 1, . . . , K,

Cov(Zk1 , Zk2) =
√
Ik1/Ik2 for k1 < k2.
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Canonical joint distribution of score statistics

The score statistics, Sk = Zk

√Ik, are also multivariate normal with

Sk ∼ N(θ Ik, Ik), k = 1, . . . , K.

The score statistics possess the “independent increments” property,

Cov(Sk − Sk−1, Sk′ − Sk′
−1) = 0 for k 6= k′.

It can be helpful to know that the score statistics behave as Brownian motion with

drift θ observed at times I1, . . . , IK .
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Survival data

The canonical joint distributions also arise for

a) estimates of a parameter in Cox’s proportional hazards regression model

b) log-rank statistics (score statistics) for comparing two survival curves

— and to Z-statistics formed from these.

For survival data, observed information is roughly proportional to the number of

failures.

Special types of group sequential test are needed to handle unpredictable and

unevenly spaced information levels: see error spending tests.

Reference:

“Group-sequential analysis incorporating covariate information”, Jennison and

Turnbull (J. American Statistical Association, 1997).
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Computations for group sequential tests
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In order to find Pθ{Reject H0}, etc., we need to calculate the probabilities of basic

events such as

a1 < Z1 < b1, a2 < Z2 < b2, Z3 > b3.
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Computations for group sequential tests
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Probabilities such as Pθ{a1 < Z1 < b1, a2 < Z2 < b2, Z3 > b3} can be

computed by repeated numerical integration (see JT, Ch. 19).

Combining such probabilities yields properties of a group sequential boundary.

Constants and group sizes can be chosen to define a test with a specific type I error

probability and power.
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Example of one-sided tests: The Pampallona & Tsiatis family

Pampallona & Tsiatis (J. Statistical Planning and Inference, 1994).

To test H0: θ ≤ 0 against the one-sided alternative θ > 0 with type I error

probability α and power 1 − β at θ = δ.
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The computational methods just described can be used to define tests with

parametric stopping boundaries meeting the design criteria.

For the P & T test with parameter ∆, boundaries on the score statistic scale are

ak = Ik δ − C2 I ∆
k , bk = C1 I ∆

k .
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One-sided tests with a non-binding futility boundary

Regulators are not always convinced a trial monitoring committee will abide by the

stopping boundary specified in the study protocol.
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The sample path shown above leads to rejection of H0. Since such paths are not

included in type I error calculations, the true type I error rate is under-estimated.

If a futility boundary is deemed to be non-binding, the type I error rate should be

computed ignoring the futility boundary.

For planning purposes, power and expected sample size should be computed

assuming the futility boundary will be obeyed.

Constants can be computed in this way for, say, a Pampallona & Tsiatis test.
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Benefits of group sequential testing

In order to test H0: θ ≤ 0 against θ > 0 with type I error probability α and power

1 − β at θ = δ, a fixed sample size test needs information

Ifix =
{Φ−1(1 − α) + Φ−1(1 − β)}2

δ2
.

Information is (roughly) proportional to sample size in many clinical trial settings.

A group sequential test with K analyses will need to be able to continue to a

maximum information level IK which is greater than Ifix.

The benefit is that, on average, the sequential test can stop earlier than this and

expected information on termination, Eθ(I), will be considerably less than Ifix,

especially under extreme values of θ.

We term the ratio R = IK/Ifix the “inflation factor” for a group sequential design.
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Benefits of group sequential testing

In specifying a group sequential test’s boundary, one can aim to minimise the

expected information Eθ(I) under effect sizes of θ of most interest, subject to a

fixed number of analyses K and inflation factor R.

Eales & Jennison (Biometrika, 1992) and Barber & Jennison (Biometrika, 2002)

report on designs optimised for criteria of the form
∑

i wiEθi
(I) or

∫
f(θ) Eθ(I) dθ,

where f is a normal density.

These optimal group sequential designs can be used in their own right.

They also serve as benchmarks for other methods which may have additional useful

features.
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Computing optimal GSTs

In optimising a group sequential test, we create a Bayes sequential decision

problem, placing a prior on θ and defining costs for sampling and for making

incorrect decisions.

Such a problem can be solved rapidly by dynamic programming.

We then search for the combination of prior and costs such that the solution to the

(unconstrained) Bayes decision problem has the specified frequentist error rates α

at θ = 0 and β at θ = δ.

The resulting design solves both the Bayes decision problem and the original

frequentist problem.

Note: Although the Bayes decision problem is introduced as a computational

device, this derivation demonstrates that an efficient frequentist procedure should

also be good from a Bayesian perspective.
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Benefits of group sequential testing

One-sided tests with binding futility boundaries, minimising {E0(I) + Eδ(I)}/2

for equal group sizes, α = 0.025, 1 − β = 0.9, K analyses, Imax = R Ifix.

Minimum values of {E0(I) + Eδ(I)}/2, as a percentage of Ifix

R Minimum

K 1.01 1.05 1.1 1.2 1.3 over R

2 80.8 74.7 73.2 73.7 75.8 73.0 at R=1.13

3 76.2 69.3 66.6 65.1 65.2 65.0 at R=1.23

5 72.2 65.2 62.2 59.8 59.0 58.8 at R=1.38

10 69.2 62.2 59.0 56.3 55.1 54.2 at R=1.6

20 67.8 60.6 57.5 54.6 53.3 51.7 at R=1.8

Note: E(I) ց as K ր but with diminishing returns,

E(I) ց as R ր up to a point.
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Error spending tests

Since the sequence I1, I2, . . . is often unpredictable, it is good to have a group

sequential design that can adapt to the observed information levels.

Lan & DeMets (Biometrika, 1983) presented two-sided tests of H0: θ = 0 against

θ 6= 0 which “spend” type I error as a function of observed information.

Maximum information design with error spending function f(I):
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The boundary at analysis k is set to give cumulative type I error probability f(Ik).

The null hypothesis, H0, is accepted if Imax is reached without rejecting H0.
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One-sided error spending tests

For a one-sided test of H0: θ ≤ 0 against θ > 0 with

Type I error probability α at θ = 0,

Type II error probability β at θ = δ,

we need two error spending functions.

-
IImax

6
f(I)

α

  !!"
"#
#
""
!!  

-
IImax

6
g(I)
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#
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Type I error probability α is spent according to the function f(I), and type II error

probability β according to g(I).
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One-sided error-spending tests

Analysis 1:

Observed information I1.

Reject H0 if Z1 > b1, where

Pθ=0{Z1 > b1} = f(I1).

Accept H0 if Z1 < a1, where

Pθ=δ{Z1 < a1} = g(I1).
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22



'

&

$

%

One-sided error-spending tests

Analysis 2: Observed information I2

Reject H0 if Z2 > b2, where

Pθ=0{a1 < Z1 < b1, Z2 > b2} = f(I2) − f(I1)

— note that, for now, we assume the futility boundary is binding.

Accept H0 if Z2 < a2, where

Pθ=δ{a1 < Z1 < b1, Z2 < a2} = g(I2) − g(I1).
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One-sided error-spending tests

Analysis k: Observed information Ik

Find ak and bk to satisfy

Pθ=0{a1 <Z1 <b1, . . . , ak−1 <Zk−1 <bk−1, Zk > bk} = f(Ik)−f(Ik−1),

and

Pθ=δ{a1 <Z1 <b1, . . . , ak−1 <Zk−1 <bk−1, Zk < ak} = g(Ik)−g(Ik−1).
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Remarks on error spending tests

1. Computation of (ak, bk) does not depend on future information levels,

Ik+1, Ik+2, . . . .

2. A “maximum information design” continues until a boundary is crossed or an

analysis with Ik ≥ Imax is reached.

If necessary, patient accrual can be extended to reach Imax.

-×
I1

×
I2

×
I3

×
I4

×
I5

×
I6

Imax

Information

If a maximum of K analyses is specified, the study terminates at analysis K

with f(IK) defined to be α. Then, aK is chosen to give cumulative type I

error probability α and we set bK = aK .
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Remarks on error spending tests

3. The value of Imax can be chosen so that boundaries converge at the final

analysis under a typical sequence of information levels, e.g.,

Ik = (k/K) Imax, k = 1, . . . , K.

4. The ρ-family provides a convenient choice of error spending functions.

In the case of one-sided tests, type I error probability is spent as

f(I) = α min {1, (I/Imax)
ρ}

and type II error probability as

g(I) = β min {1, (I/Imax)
ρ}.

The value of ρ determines the inflation factor R = Imax/Ifix.

Barber & Jennison (Biometrika, 2002) show ρ-family tests have excellent

efficiency properties when compared with designs for the same number of

analyses K and inflation factor R.
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One-sided error-spending tests: Non-binding futility bou ndary

If the futility boundary is treated as non-binding, computation of the error-spending

efficacy boundary only involves the type I error spending function f(I).

Boundary values, b1, b2, . . . , are calculated one by one as the trial proceeds.

Analysis k: Observed information Ik

Reject H0 if Zk > bk, where

Pθ=0{Z1 < b1, . . . , Zk−1 < bk−1, Zk > bk} = f(Ik) − f(Ik−1).
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One-sided error-spending tests: Non-binding futility bou ndary

The futility boundary can be added through a type II error spending function g(I).

For k = 1, . . . , K − 1:

At analysis k with observed information Ik , set ak to satisfy

Pθ=δ{a1 <Z1 <b1, . . . , ak−1 <Zk−1 <bk−1, Zk < ak} = g(Ik)−g(Ik−1).

For k = K : Set aK = bK .
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= aK
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2. The problem of delayed responses

Reference: Hampson & Jennison (HJ), (JRSS B, 2013)

Example: Cholesterol reduction after 4 weeks of treatment

In their Example A, HJ describe a group sequential trial where there is a delay of

four weeks between the start of treatment and observation of the primary endpoint.

The recruitment rate is around 4 patients per week, so at each interim analysis we

expect about 16 subjects to have started treatment but not yet given a response.

We refer to these as patients as being “in the pipeline”.

If a group sequential test reaches its conclusion at an interim analysis, we still

expect investigators to follow up pipeline subjects and observe their responses.

How should these data be analysed?
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The problem of delayed responses

A possible outcome for the cholesterol reduction trial
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Suppose Z3 = 2.4, exceeding the boundary value of 2.3.

The trial stops but, with the pipeline data included, Z = 2.1.

Can the investigators claim significance at level α?
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Short term information on “pipeline” subjects

Example: Prevention of fracture in postmenopausal women

In their Example D, HJ consider a study where the primary endpoint is occurrence

of a fracture within five years.

Changes in bone mineral density (BMD) are measured after one year.

It is expected that these two variables are correlated.

How might we use the BMD data to gain information from subjects who have been

followed for between one and five years?

Would fitting a Kaplan-Meier curve for time to first fracture also help — remember

that inference is about the binary outcome defined at five years?
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Incorporating delayed observations after a GST terminates

1. Whitehead (Controlled Clinical Trials, 1992) proposed a “deletion” method.

The analysis k at which termination occurs is “deleted” and one behaves as if

analysis k originally had information Ĩk, appropriate to the final set of responses.

A boundary value b̃k is computed and H0 rejected if the final statistic Z̃k ≥ b̃k .

2. Hall & Ding (Univ. Rochester, Technical Report, 2002) applied a combination test

(Bauer & Köhne, Biometrics, 1994) to the two sets of data obtained before and after

the GST terminates.

Sorriyarachchi et al. (Biometrics, 2003) investigated these methods and found they

perform poorly with respect to power:

The deletion method is conservative and can lead to lower power than a GST

which ignores the additional data,

With a moderate number of pipeline subjects, Hall & Ding’s method leads to

greater loss of power than the deletion method.
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Incorporating delayed observations after a GST terminates

The methods of Whitehead (1992) and Hall & Ding (2002) are based on applying a

GST as if response were immediate, then trying to deal with additional pipeline data

once this GST has terminated.

A more systematic approach is to recognise that there will be pipeline data when

designing the trial.

Interestingly, T. W. Anderson (JASA, 1964) recognised this issue, well before the

advent of modern group sequential methods.

The methods of Hampson & Jennison (JRSS, B, 2013) follow the same basic

structure as proposed by Anderson:

With delayed response data, a trial comes to an end in two stages

1. Stop recruitment of any more subjects,

2. After responses have been observed for all recruited subjects,

make a decision to accept or reject H0.

33



'

&

$

%

3. Defining a group sequential test with delayed responses

We assume:

The primary endpoint is measured a fixed time after treatment commences,

The endpoint will be known (eventually) for all treated subjects,

If recruitment is stopped, it cannot be re-started.

Consider a trial where responses are observed time ∆t after treatment.
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��
Number
recruited Number of

responses

Interim
analysis

∆t tmax

At each analysis, patients arriving in the last ∆t units of time are “in the pipeline”.
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Boundaries for a Delayed Response GST

At interim analysis k, the observed information level is Ik = {Var(θ̂k)}−1.
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•

•

•

•

b1

a1

c1

If Zk > bk or Zk < ak at analysis k, we cease enrolment of patients and

follow-up all recruited subjects.

At the subsequent decision analysis, denote the observed information by Ĩk

and reject H0 if Z̃k > ck.
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Delayed Response Group Sequential Tests (DR GSTs)

For a particular sequence of observed responses, we apply boundary points at a

sequence of information levels of the form

I1, . . . , Ik, Ĩk.

In the example below, recruitment ceases at the second analysis and the final

decision is made with extra “pipeline” data bringing the information up to Ĩ2.
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Calculations for a Delayed Response GST

The type I error rate, power and expected sample size of a Delayed Response GST

depend on joint distributions of test statistic sequences:

{Z1, . . . , Zk, Z̃k}, k = 1, . . . , K − 1,

and

{Z1, . . . , ZK−1, Z̃K}.

Each sequence is based on accumulating data sets.

Given {I1, . . . , Ik, Ĩk}, the sequence {Z1, . . . , Zk, Z̃k} follows the

canonical distribution we saw earlier for the sequence of Z-statistics in a GST with

immediate responses (JT, Ch. 11).

Thus, properties of Delayed Response GSTs can be calculated using numerical

routines devised for standard group sequential designs.
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The value of information from pipeline subjects

When recruitment is terminated at interim analysis k with Zk > bk or Zk < ak,

current data suggest the likely final decision.

However, the pipeline data provide further information to use in this decision.

The pipeline data will occasionally produce a “reversal”, with the final decision

differing from that anticipated when recruitment was terminated.

We could observe:
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Here, accrual stops at analysis 1 because of unpromising results, but H0 is

rejected when the pipeline data are observed.
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The value of information from pipeline subjects

Or, recruitment may cease with promising data only for H0 to be accepted.
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Note that there is no option of “banking” the good evidence at analysis 1 — we are

assuming all pipeline subjects will eventually be observed.

Decisions based on more data ought to be more accurate: perhaps the pipeline

data have helped to avoid a false positive conclusion here.

An optimised design will place boundary points to achieve high power for the

permitted type I error rate, α.
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4. Optimising a Delayed Response GST

We specify the type I error rate α and power 1 − β to be attained at θ = δ.

We set maximum sample size nmax, number of stages K , and analysis schedule.

Let r be the fraction of nmax in the pipeline at each interim analysis.

Let N denote the total number of subjects recruited.

Objective:

Given α, β, δ, nmax, K and r, we find the Delayed Response GST minimising

F =

∫
Eθ(N) f(θ) dθ

where f(θ) is the density of a N(δ/2, (δ/2)2) distribution.

Other weighted combinations of Eθ(N) can also be used.
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Computing optimal Delayed Response GSTs

We follow the same approach as for optimising a GST with immediate response.

We create a Bayes sequential decision problem, placing a prior on θ and defining

costs for sampling and for making incorrect decisions.

This problem can be solved rapidly by dynamic programming.

We then search for the combination of prior and costs such that the solution to the

(unconstrained) Bayes decision problem has the specified frequentist error rates α

at θ = 0 and β at θ = δ.

The resulting design solves both the Bayes decision problem and the original

frequentist problem.

Again, the Bayes decision problem is introduced as a computational device, but the

derivation demonstrates the relationship between admissible frequentist designs

and Bayes procedures.
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An optimal design for the cholesterol treatment example

In the cholesterol treatment trial, the primary endpoint is reduction in serum

cholesterol after 4 weeks of treatment.

Responses are assumed normally distributed with variance σ2 = 2.

The treatment effect θ is the difference in mean response between the new

treatment and control.

An effect θ = 1 is regarded as clinically significant.

It is required to test H0: θ ≤ 0 against θ > 0 with

Type I error rate α = 0.025,

Power 0.9 at θ = 1.

A fixed sample test needs nfix = 85 subjects over the two treatments.
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An optimal design for the cholesterol treatment example

We consider designs with a maximum sample size of 96.

We assume a recruitment rate of 4 per week:

Data start to accrue after 4 weeks,

At each interim analysis, there will be 4 × 4 = 16 pipeline subjects,

so the “pipeline fraction” is r = 16/96 = 0.17.

Recruitment will close after 24 weeks.

Interim analyses are planned after n1 = 28 and n2 = 54 observed responses

and the final decision is based on:

ñ1 = 44 responses if recruitment stops at interim analysis 1,

ñ2 = 70 responses if recruitment stops at interim analysis 2,

ñ3 = 96 responses if there is no early stopping.
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An optimal design for the cholesterol treatment example

The following Delayed Response GST minimises F =
∫

Eθ(N) f(θ) dθ, where

f(θ) is the density of a N(0.5, 0.52) distribution.
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Both c1 and c2 are less than 1.96. If desired, these can be raised to 1.96 with little

change to the design’s power curve.
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An optimal design for the cholesterol treatment example

The figure shows expected sample size curves for

The fixed sample test with nfix = 85 patients,

The Delayed Response GST minimising F ,

The GST for immediate responses with analyses after 32, 64 and 96

responses, also minimising F .
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5. Efficiency loss when there is a delay in response

In general, a delay in response erodes the benefits of sequential testing.

Consider tests with α = 0.025, power 0.9 and response variance, σ2, such that

the fixed sample test needs nfix = 100 subjects.

Suppose a group sequential design has nmax = 1.1 nfix = 110.

The figure shows the minima of F =
∫

Eθ(N) f(θ) dθ, attained by optimal

Delayed Response GSTs with K analyses for a range of “pipeline” sizes.
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The reduction in average

Eθ(N) when the pipeline size

is 25 patients is around half the

reduction achieved by a GST

when response is observed

immediately.
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Using a short term endpoint to improve efficiency

Suppose a second endpoint, correlated with the primary endpoint, is available soon

after treatment.

For patient i on treatment T = A or B, let

YT,i = The short term endpoint,

XT,i = The long term endpoint.

Assume that we have a parametric model for the joint distribution of (YT,i, XT,i)

in which

E(XA,i) = µA, E(XB,i) = µB and θ = µA − µB .

We analyse all the available data at each interim analysis.
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Using a short term endpoint to improve efficiency

At an interim analysis, subjects are

• Unobserved,

• Partially observed (with just YT,i available),

• Fully observed (both YT,i and XT,i available).

We fit the full model to all the data available at analysis k, then extract

θ̂k and Ik = {Var(θ̂k)}−1.

Including the short term endpoint in the model increases the information, Ik, for

the long term endpoint.

The sequence of estimates {θ̂k} follows the standard joint distribution for a group

sequential trial with observed information levels {Ik}.

Thus, we can design a Delayed Response GST in the usual way.
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Using a short term endpoint to improve efficiency

Values of F achieved using a second, short-term endpoint
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Results are for the previous testing problem with K = 5 analyses.

The endpoints YT,i and XT,i are bivariate normal with correlation 0.9.

The parameter κ is the ratio of time to recording the short-term and long-term

endpoints, so κ = 1 equates to having no short-term endpoint.
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Using a short term endpoint to improve efficiency

Note: Although the short-term endpoint may itself be of clinical interest, the final

inference is about the primary endpoint alone.

The same approach can be used with repeated measurements as follow-up

continues for each patient.

Nuisance parameters, such as variances and the correlation between short-term

and long-term endpoints, can be estimated within the trial.

In HJ’s Example D, prevention of fracture in postmenopausal women, we could:

Fit a joint model for bone mineral density measured at one year and incidence

of fracture within five years,

Use censored time-to-event data on the fracture endpoint for subjects with less

than five years of follow-up.
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6. Error spending Delayed Response GSTs

In practice, information levels at interim analyses and decision analyses are

unpredictable.

In the error spending approach, the type I error probability to be spent by stage k is

defined through a function f(Ik).

Similarly, the type II probability to be spent by stage k is specified as g(Ik).

A target information level Imax is defined and recruitment stops when this is

reached (or will be reached with the responses from pipeline subjects).

HJ show how to construct error spending Delayed Response GSTs that protect

type I error rate exactly.

The attained power is close to its specified level as long as the information levels

take values similar to those assumed in planning the trial.
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The ρ-family of error spending functions

HJ recommend error spending functions of the form

f(I) = α min{1, (I/Imax)
ρ}, g(I) = β min{1, (I/Imax)

ρ}.

The efficiency of the resulting designs can be seen in our example with α = 0.025,

power 0.9, K = 5 stages, nfix = 100 and nmax = 110.

Values of F achieved by ρ-family error spending designs
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7. Further topics

A variety of optimality criteria

HJ show how designs can be optimised for criteria involving both the number of

subjects recruited and the time to a final decision.

The nature of a specific clinical trial will determine which approaches may be

possible, depending on whether:

All pipeline subjects must be followed to the response time,

Investigators may decide whether to wait and observe pipeline subjects,

Data from (some) pipeline subjects will not be “valid” and cannot be used.

Discussants of the HJ paper commented on the nature of “pipeline” data and HJ

categorised possible types of situation in their response.
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Further topics

Inference on termination

HJ explain how to construct p-values and confidence intervals, with the usual

frequentist properties, on termination of a Delayed Response GST.

These methods can also provide median unbiased point estimates.

The bias of maximum likelihood estimates can be reduced following the approach

which Whitehead (Biometrika, 1986) introduced for standard GSTs.

Non-binding futility boundaries

It is commonly required that a group sequential design should protect the type I

error rate, even if the trial may continue after crossing the “futility” boundary.

We are currently working to extend our error spending methods to the “non-binding”

case.
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Further topics

Adaptive choice of group sizes in a Delayed Response GST

There have been many proposals for “sample size re-estimation” in response to

interim treatment effect estimates.

With an immediate response, these designs can be regarded as GSTs with the

added feature that the size of each group is data-dependent.

HJ derived optimal “adaptive” versions of 2-group Delayed Response GSTs

designs. They found only minor benefits were achieved by adapting group sizes in

response to treatment effect estimates.

Faldum & Hommel (J. Biopharm. Statistics, 2007) and Mehta & Pocock (Statistics in

Medicine, 2011) present 2-group designs with sample size re-estimation and a

delayed response: we shall explore how the Mehta-Pocock designs compare to

HJ’s Delayed Response GSTs, both non-adaptive and adaptive.
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8. Conclusions

We have described group sequential tests for a delayed response (DR GSTs).

These designs offer (nearly) all the usual feature of GSTs for an immediate

response.

We can design DR GSTs to be as efficient as possible, subject to the specified

constraints.

Understanding the impact of a delayed response, we can take steps to improve

efficiency, for example, by using short term end-points to capture interim information

from pipeline subjects.

The methods are ready to be considered for application — which will, no doubt,

raise further challenges.
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