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Choosing the sample size for a trial

Let θ denote the effect size of a new treatment, i.e., the difference
in mean response between the new treatment and the control.

Sample size is determined by:

Type I error rate α, and

Treatment effect size θ = ∆ at which power 1− β is to be
achieved.

Dispute may arise over the choice of ∆.

Should investigators use:

The minimum effect of interest ∆1, or

The anticipated effect size ∆2 ?
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Choosing the sample size for a trial

Power curves for designs with sample sizes of 500 and 1000.
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With 1000 subjects, there is good power at the minimum clinically
significant effect, ∆1.

With only 500 subjects, a high power is achieved at the more
optimistic ∆2.

If θ = ∆2, a sample size of 1000 is unnecessarily high.
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Designing a trial with good power and sample size

In designing a clinical trial, we aim to

Protect the type I error rate,

Achieve sufficient power,

Use as small a sample size as possible.

Adaptive designs in this context often have the form:

Start with a fixed sample size design,

Examine interim data,

Add observations to improve power where most appropriate.

In contrast, Group Sequential designs require one to:

Specify the desired type I error and power function,

Set maximum sample size a little more than the fixed sample size,

Stop the trial early if data support this.
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Designing a clinical trial

Power curve Eθ(N) curves
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All designs, including adaptive designs, have overall power curves.

Designs with similar power curves can be compared in terms of
their average sample size functions, Eθ(N).

Even if there is uncertainty about the likely treatment effect,
investigators should be able to specify the values of θ under which
early stopping is most desirable.
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Adaptive design or GST?

Jennison & Turnbull (JT) have compared group sequential tests
(GSTs) and adaptive designs. See, for example, papers in

Statistics in Medicine (2003, 2006),

Biometrika (2006), Biometrics (2006)

JT conclude that:

GSTs are excellent

They do what is required with low expected sample sizes,

Error spending versions handle unpredictable group sizes, etc.

Adaptive designs can be as good as GSTs

However, many published adaptive designs require higher
expected sample sizes to achieve the same power as good GSTs.
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Re-visiting the Group Sequential vs Adaptive question

The paper by Mehta & Pocock (Statistics in Medicine, 2011)

“Adaptive increase in sample size when interim results
are promising: A practical guide with examples”

has re-opened this question.

Conclusions of Mehta & Pocock (MP) are counter to the findings
we have reported.

An important feature:

In MP’s first example, response is measured some time after
treatment.

Thus, at an interim analysis, many patients have been treated
but are yet to produce a response.

Delayed responses are common — and not easily dealt with by
standard GSTs.
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Outline of talk

1. Mehta & Pocock’s Example 1

2. Mehta & Pocock’s design for this example

3. Alternative fixed and group sequential designs

4. Improving designs in Mehta & Pocock’s framework

5. Extending the framework

6. Relation to delayed response GSTs (Hampson & Jennison,

JRSS B, 2013)

7. Conclusions
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1. Mehta & Pocock’s Example

MP’s Example 1 concerns a Phase 3 trial of a new treatment for
schizophrenia, comparing the new drug to an active control.

The efficacy endpoint is improvement in the Negative Symptoms
Assessment score from baseline to week 26.

Responses are

YBi ∼ N(µB, σ2), i = 1, 2, . . . , on the new treatment,

YAi ∼ N(µA, σ2), i = 1, 2, . . . , on the control arm,

where σ2 = 7.52.

The treatment effect is

θ = µB − µA.

and we estimate θ by

θ̂ = µ̂B − µ̂A = Y B − Y A.
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Mehta & Pocock’s Example

The initial plan is for a total of n2 = 442 patients, 221 on each
treatment.

In testing H0: θ ≤ 0 vs θ > 0 at the final analysis, we reject H0 if

Z2 =
θ̂(n2)√
{4σ2/n2}

> 1.96.

This design and analysis gives type I error rate 0.025 and power
0.8 at θ = 2.

Higher power, e.g., power 0.8 at θ = 1.6, would be desirable.

But, the sponsors will only increase sample size if interim results
are “promising”.

An interim analysis is planned after observing n1 = 208 responses.
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Increasing the sample size

At the interim analysis with n1 = 208 observed responses, the
estimated treatment effect is

θ̂1(n1) = Y B(n1)− Y A(n1)

and
Z1 =

θ̂1(n1)√
{4σ2/n1}

.

At this analysis, a further 208 subjects will have been treated for
less than 26 weeks. Their responses will be observed in due course.

As recruitment continues, we use the value of Z1 in choosing a
new total sample size — between the original figure of 442 and a
maximum of 884.

In deciding whether to increase the sample size, MP consider
conditional power of the original test with n2 = 442 observations,
given the observed value of Z1.
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Increasing the sample size

Definition

The conditional power CPθ(z1) is the probability the final test,
with 442 observations, rejects H0, given Z1 = z1 and effect size θ,

CPθ(z1) = Pθ{Z2 > 1.96 |Z1 = z1}.

MP’s adaptive design is based on conditional power under θ = θ̂1.

They divide the range of z1 into three regions:

Favourable CP
θ̂1

(z1) ≥ 0.8 Continue to n2 = 442,

Promising 0.365 ≤ CP
θ̂1

(z1) < 0.8 Increase n2,

Unfavourable CP
θ̂1

(z1) < 0.365 Continue to n2 = 442.

When increasing sample size in the promising zone, the final test of
H0 must protect the type I error rate at level α.
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The Chen, DeMets & Lan method

References:

Chen, DeMets & Lan, Statistics in Medicine (2004),

Gao, Ware & Mehta, J. Biopharmaceutical Statistics (2008).

Suppose at interim analysis 1, the final sample size is increased to
n∗2 > n2 and a final test is carried out without any adjustment.

Thus, H0 is rejected if

Z2(n∗2) =
θ̂(n∗2)√
{4σ2/n∗2}

> 1.96.

Chen, DeMets & Lan (CDL) show that if n2 is only increased when

CP
θ̂1

(z1) > 0.5,

then the type I error probability will not increase.

(In general, changes to sample size may increase or decrease the
type I error rate.)
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Gao’s extension of the CDL method

Gao et al. extended the CDL method to lower values of θ̂1, as long
as a sufficiently high value is chosen for the final sample size, n∗2.
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With an upper limit of n∗2 = 884, the final sample sizes permitted
by the CDL+Gao approach are as shown in the figure.

Now, n2 can be increased when CP
θ̂1

(z1) is as low as 0.365.
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2. The MP design

In their “promising zone”, MP increase n2 to achieve conditional
power 0.8 under θ = θ̂1, truncating this value to 884 if it is larger
than that.
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Density of θ̂1(θ = 1.6)

Comparison with the distribution of θ̂1 under θ = 1.6 shows that
increases in n2 occur in a region of quite small probability.

The distribution of θ̂1 under other values of θ is shifted but has the
same variance.
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Properties of the MP design

The increase in n2 in the “promising zone” has increased the
power curve a little.
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Given the limited range of values of θ̂1 for which n2 is increased,
only a small improvement in power can be expected.

Although it was stated that power 0.8 at θ = 1.6 would be
desirable, power at this effect size has only risen from 0.61 to 0.66.
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Properties of the MP design

The cost of higher power is an increase in expected sample size.
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Aiming for higher conditional power under θ = θ̂1 or raising the
sample size beyond 884 gives small increases in power at the cost
of large increases in E(N).
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3. Alternatives to the MP design

Suppose we are satisfied with the overall power function attained
by MP’s design: the same power can be achieved by other designs.

A fixed sample design

Emerson et al. (Statistics in Medicine, 2011) note that the same
power is achieved by a fixed sample size study with 490 subjects.

This is an attractive option since, for effect sizes θ between 0.8 and
2.0, the expected sample size of the MP design is greater than 490.

There is more to the sample size distribution than Eθ(N)

High variance in N is usually regarded as undesirable, so the wide
variation in N for the MP design is a negative feature.

Perhaps variation in N is viewed more positively when investors in
a small bio-tech company are thinking of adding resource to a
study when it is most helpful?
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A group sequential test

Despite the delayed response, we can still consider a group
sequential design.

Suppose an interim analysis takes place after 208 observed
responses. If the trial stops at this analysis, the sample size is
taken as 416, counting all subjects treated thus far even though
only 208 have provided a response.

We apply an error spending design in the ρ-family (JT, Ch. 7):

At analysis 1 after 208 responses

If Z1 ≥ 2.54 Stop, reject H0

If Z1 ≤ 0.12 Stop, accept H0

If 0.12 < Z1 < 2.54 Continue

At analysis 2 after 514 responses

If Z2 ≥ 2.00 Reject H0

If Z2 < 2.00 Accept H0
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Sample size rules for MP, fixed and group seq. designs

Sample size for the MP design varies between 442 and 884.

The fixed sample size design has 490 observations.

The group sequential test stops with a sample size of 416 or 514.

Since 514 = 490× 1.05, it has an “inflation factor” of R = 1.05.
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Comparison of designs

Power curves Eθ(N) curves
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M−P adaptive design   
Fixed N=490 
GST R=1.05 

All three designs have essentially the same power curve.

It is clearly possible to improve on the MP design’s Eθ(N) curve.

NB, Mehta & Pocock discuss two-stage group sequential designs
but they only present an example with much higher power (and,
thus, higher sample size).
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Can we improve the design within the MP framework?

Why does the MP design have high Eθ(N) for its achieved power?

Mehta & Pocock describe their method as adding observations in
situations where they will do the most good:

This seems a good idea, but the results are not so great,

Can we work out how to do this effectively?
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4. Deriving efficient sample size rules in the

MP framework

Continuing with MP’s example, we retain the basic elements of the
MP design.

The interim analysis takes place after 208 observed responses.

A final sample size n∗2 is chosen based on θ̂1 (or equivalently Z1).
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Allowable values of N for CDL+Gao framework Values of n∗2 ∈ [442, 884] that
satisfy the CDL+Gao conditions
are allowed.

At the final analysis, we reject
H0 if Z2 > 1.96, where Z2 is
calculated without adjustment
for adaptation.
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Efficient sample size rules in the MP framework

We shall assess the value of an increase in sample size in terms of
the conditional power that it achieves.

Suppose Z1 = z1 and we are considering a final sample size n∗2 with

Z2(n∗2) =
θ̂(n2)√
{4σ2/n2}

and conditional power under θ = θ̃

CP
θ̃
(z1, n∗2) = P

θ̃
{Z2(n∗2) > 1.96 |Z1 = z1}.

Setting γ as a “rate of exchange” between sample size and power,

we choose n∗
2 to optimise a combined objective

CP
θ̃
(z1, n∗

2) − γ(n∗
2 − 442).

We shall do this taking θ̃ = 1.6, a value where we wish to “buy”
additional power.

Chris Jennison and Bruce Turnbull Start Small then Ask for More?



An overall optimality property

The rule that maximises CP
θ̃
(z1, n∗2(z1))− γn∗2(z1) for every z1

also maximises, unconditionally,

Pθ=θ̃ (Reject H0) − γE
θ̃
(N).

This can be seen by writing Pθ=θ̃ (Reject H0)− γE
θ̃
(N) as∫

{CP
θ̃
(z1, n∗2(z1))− γn∗2(z1)} f

θ̃
(z1) dz1,

where f
θ̃
(z1) denotes the density of Z1 under θ = θ̃, and noting

that we have minimised the integrand for each z1.

We set γ = 0.14/(4σ2) to achieve the power of the MP design.

So, the resulting procedure will have minimum possible Eθ=1.6(N)
among all designs following the CDL+Gao framework that achieve
power 0.658 at θ = 1.6.
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Plots for θ̃ = 1.6, γ = 0.14/(4σ2) and θ̂1 = 1.5
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The objective CP
θ̃
(z1, n∗2)− γ(n∗2 − 442) has a maximum at

n∗2 = 654.

This value is similar to MP’s choice of n∗2 when θ̂1 = 1.5.
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Plots for θ̃ = 1.6, γ = 0.14/(4σ2) and θ̂1 = 1.3
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Conditional power
Combined objective

The conditional power curve is steeper and the optimum occurs at
a higher n∗2.

Now, CP
θ̃
(z1, n∗2)− γ(n∗2 − 442) is maximised at n∗2 = 707.

In this case, MP’s design takes the maximum permitted value of
n∗2 = 884.
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Optimal sample size rule for θ̃ = 1.6, γ = 0.14/(4σ2)
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CDL+Gao Min E(N) at 1.6 
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This rule gives power 0.658 at θ = 1.6, the same as the MP design.

Decisions about sample size are based on a consistent comparison
of the higher power and the cost of additional observations.

As θ̂1 decreases, sample size increases less steeply than for the MP
design.
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Efficient sample size rules in the MP framework

Power curves Eθ(N) curves
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CDL+Gao Min E(N) at 1.6 
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M−P adaptive design 
CDL+Gao Min E(N) at 1.6 

With the type I error rate fixed at 0.025, matching the MP design’s
power at one value of θ will match the whole power curve.

Our optimised design has the same power curve as the MP design
and lower Eθ(N) (just about) at all θ values.

The reductions in Eθ(N) are modest — but given the optimality
property of the sampling rule in the Mehta & Pocock framework,
this is as good as it gets.
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Further efficiency gains

Our new, optimised procedure still has higher Eθ(N) than the
two-stage GST that ignores (but is charged for) pipeline data.
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M−P adaptive design 
CDL+Gao Min E(N) at 1.6 
GST R=1.05
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Shapes of optimised sample size rules suggest it would help to
increase n∗2 at lower values of θ̂1 — but this is not permitted in the
CDL+Gao framework.

The Conditional Probability of Rejection principle or,
equivalently, using a Combination Test (Bauer & Köhne,
Biometrics, 1994) does allow such adaptations.
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5. The Conditional Probability of Rejection principle

Reference: Proschan & Hunsberger, (Biometrics, 1995)

On observing θ̂1, choose a new final sample size n∗2.

Then, set the critical value for Z2(n∗2) at the final analysis to
maintain the Conditional Probability of Rejection (CPR) under
θ = 0 in the original design.

The overall type I error rate is the integral of the conditional type I
error rate, and this remains the same.

This type of adaptation can also be regarded as a “weighted
inverse normal combination test” Bauer & Köhne (1994).

We can follow our previous strategy in this new framework and set
n∗2 to maximise CP

θ̃
(z1, n∗2)−γ(n∗2− 442). Again, we use θ̃ = 1.6.

The resulting design has the minimum value of E
θ̃
(N) among all

designs in this larger class achieving the same power under θ = θ̃.
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Optimal sample size rule for a CPR design with θ̃ = 1.6
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The rule with γ = 0.25/(4σ2) matches the MP test’s power of
0.658 at θ = 1.6.

Shapes of optimised sample size rules are very different from the
MP design.

The best opportunities for investing additional resource are not in
Mehta & Pocock’s “promising zone”.
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Efficient sample size rules in the CPR framework

Eθ(N) curves
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The CPR principle allows sample size increases for θ̂1 below the
CDL+Gao region.

This leads to a useful reduction in Eθ(N) at θ = 1.6.
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Further extensions

1. We can allow recruitment to be terminated at the interim
analysis, so the minimum sample size is n2 = 416, rather than 442.

2. We can use a general conditional type I error function
(Proschan & Hunsberger, 1995) or, equivalently, a general Bauer
& Köhne (1994) combination rule.

3. We can minimise other criteria, such as a weighted sum or
integral ∑

i

wiEθi
(N) or

∫
w(θ)Eθi

(N) dθ.

The resulting two-stage designs deal neatly with the “pipeline”
subjects arising when there is a delayed response.

They will give the best possible sampling and decision rules with
n1 = 208 and n2 in the range 416 to 884.

(We could also aim for higher power, now we can achieve this.)
Chris Jennison and Bruce Turnbull Start Small then Ask for More?



General sampling rule, early recruitment of termination

We have followed (1) and (2) above in minimising Eθ=1.6(N).

Sample size rule Eθ(N) curves
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M−P adaptive design 
General rule Min E(N) at 1.6, min N=416    

Reductions in Eθ(N) are mostly due to (1), which allows n2 to be
limited to 416.

The highest final sample sizes arise at values of θ̂1 below MP’s
“promising zone”.
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6. Relation to proposals for Delayed Response GSTs

Reference: Hampson & Jennison, JRSS B (2013).

Hampson & Jennison have extended methodology for group
sequential tests to handle a delayed response.

Their “Delayed Response GSTs” allow any number of interim
analyses and can be optimised for specified criteria.

Applying this approach in the case of just 2 analyses:

Either recruitment stops at analysis 1 and the final analysis
occurs when all pipeline subjects have been observed,

Or, an additional group of subjects is recruited and the final
analysis has pipeline subjects plus these new subjects.

Thus, we have a special case of the designs we have been
developing where only two values of n2 are possible.
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Delayed Response GST for the MP example

Optimising a DR GST to minimise Eθ=1.6(N) while matching the
power of the MP design gives the sample size rule shown below.
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M−P adaptive design 
General rule Min E(N) at 1.6, min N=416    
Optimal DR GST for E(N) at 1.6, min N=416  

The sampling rule approximates that of the general adaptive
method, but with a step function rather than a continuous sample
size function.

Chris Jennison and Bruce Turnbull Start Small then Ask for More?



Plot of Eθ(N) for the optimal DR GST

The optimised DR GST has an almost identical Eθ(N) curve to
the general rule using the continuum of possible sample sizes.
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General rule Min E(N) at 1.6, min N=416    
Optimal DR GST for E(N) at 1.6, min N=416  

As Jennison & Turnbull (Biometrika, 2006) found for an
immediate response, there is minimal benefit from fine-tuning the
total sample size in response to interim data.
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7. Conclusions

Although JT had shown that adaptive designs offer at most a
slight improvement on GSTs, it is appropriate to consider the case
of a delayed response, as in Mehta & Pocock’s example.

1. MP use the Chen, DeMets & Lan (2004) approach, choosing
sample size by a conditional power rule. This does not yield a
particularly efficient design.

2. We have developed MP’s idea of spending resources where
they have the greatest benefit — and found efficient adaptive
designs for this problem.

3. Our most general solution is very similar to a “Delayed
Response GST”, as proposed by Hampson & Jennison (2013).
Such a design offers the benefits of established group sequential
methods and extensions, e.g., error spending tests.

4. The adaptive approach (start small, then ask for more) can
give good trial designs — but there are pitfalls to avoid!
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