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1. The role of a Phase III clinical trial

Phase III trials are conducted at the end of the drug development process, or the

development of a new medical treatment. Then,

The treatment has been refined and tested in earlier development and

in Phase I and II trials,

A substantial body of work supports the investigators’ belief that the new

treatment is effective and safe.

The aim of the Phase III trial is to compare the new treatment with the current

standard treatment or a placebo, when given to the target patient population.

The need for a clear, unambiguous comparison leads to the desire for a simple

Phase III clinical trial.

All aspects of the Phase III trial design are pre-defined and written into the protocol

and statistical analysis plan.

3



'

&

$

%

Traditional Phase III clinical trials (pre 2000 approx.)

A trial protocol specifies:

The experimental treatment and the control or placebo treatment,

The patient population (eligibility criteria, etc.),

Sample size for the trial,

Statistical analysis plan.

Interim analyses may be conducted to:

Monitor safety,

Stop early for futility if the new treatment is not effective,

Stop early if there is overwhelming evidence of efficacy.

Many of the decisions taken in creating such a design would benefit from further

knowledge of the treatment, the patients, or patient responses.
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Early examples of adaptive methods

There is a long history of “Adaptive” statistical methods.

Adaptive randomisation

In a trial comparing two treatments, adaptive randomisation can be used to

increase the proportion of patients allocated to the better of two treatments.

However, once randomisation becomes unequal, ethical issues may arise as to

whether it is permissible to randomise at all.

Adaptive randomisation highlights the role of “equipoise” in a randomised clinical

trial and just what this term should mean.

Ethical and statistical concerns were clearly evident in two Harvard trials in the

1970s and 1980s which investigated ECMO treatment of critically ill, new-born

babies (Ware, Statistical Science, 1989).

Similar issues, and design solutions, are emerging in the context of rare diseases.
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Early examples of adaptive methods

Sample size re-estimation

The sample size needed to achieve a specific power under a given treatment

effect is proportional to the response variance — which is typically unknown

when planning a trial.

Wittes & Brittain (Statistics in Medicine, 1990) suggested choosing an initial

sample size based on a plausible response variance, then updating the sample

size as better estimates of response variance are obtained.

The same approach can be used to handle an unknown baseline hazard rate

for survival data.

Sample size re-estimation in the light of estimates of “nuisance parameters” is

still one of the most commonly used adaptive methodologies.
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Sequential analysis of clinical trials

Group sequential methods, introduced in the late 1970s, allow early stopping for

either a positive or negative final decision.

An early example, the the Beta-Blocker Heart Attack Trial, compared propanolol

with placebo. (DeMets et al., Controlled Clinical Trials, 1984)
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The trial stopped with a positive outcome after the 6th of 7 planned analyses.
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Sequential analysis of clinical trials

In their book Group Sequential Methods with Applications to Clinical Trials, Jennison

& Turnbull (2000) gave a unified treatment of group sequential methods, including:

General theory of group sequential analysis

Early stopping for futility or for a positive outcome

Survival data

Error spending designs that adapt to unpredictable information levels

Sample size re-estimation as nuisance parameters (but not the treatment

effect) are estimated

Multiple endpoints or multiple treatments

Although some key papers started to appear in the mid 1990s, Jennison & Turnbull

did not discuss modern adaptive methods.
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2. Adaptive designs for Phase III clinical trials

We noted that many of the decisions taken in designing a clinical trial would benefit

from further knowledge of the treatment, the patients, or patient responses.

What is the best dose for the new treatment?

What is the best method of delivery for the new treatment?

Does the treatment have greater benefit for a sub-population of patients?

For a normally distributed response, what is the variance?

Or, for time-to-event data, what is the baseline hazard rate?

How large a treatment effect is clinically significant?

How large a treatment effect is anticipated?

Such questions are addressed throughout the development of a new treatment.

Adaptive designs allow final changes to be made as new information is gathered

during a Phase III trial.
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Adaptive designs for Phase III clinical trials

In the early 2000s, industry and regulators were aware of falling success rates in

late stage trials — a “statistical” solution would be very welcome indeed!

The idea of shifting from rigidly defined Phase III clinical trials to a flexible, adaptive

approach was both attractive and challenging.

Sceptics asked:

Can the results of an adaptive trial be statistically valid and credible?

Will regulators accept adaptive designs?

What features of a trial should be adapted?

What are the benefits of adaptation?

Some proposals seemed to violate fundamental statistical principles.

There was a need for critical appraisal of new methodologies.
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The statistical building blocks of adaptive clinical trial s

(i) Testing a null hypothesis by combining data across stage s

A key piece of methodology for hypothesis testing in adaptive designs is the

Combination test (Bauer & Köhne, Biometrics, 1994).

Initial design

Define the null hypothesis,H0: θ ≤ 0, and say a combination test will be used.

Design Stage 1, fixing sample size and test statistic for this stage.

Stage 1

Observe P1, the one-sided P-value for testing H0 based on Stage 1 data.

Design Stage 2 in the light of Stage 1 data.

Stage 2

Observe P2, the one-sided P-value for testing H0 based on Stage 2 data.

Under θ = 0: P1 ∼ U(0, 1), P2 ∼ U(0, 1), and P1 and P2 are independent.
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Bauer & K öhne’s inverse χ2 combination test

The inverse χ2 test rejects H0 for low values of P1 P2.

If P ∼ U(0, 1), then − ln(P ) ∼ Exp (1) = 1

2
χ2

2
.

Thus, under θ = 0,

− ln(P1 P2) ∼
1

2
χ2

4
.

Combining the two P-values in an overall test, we rejectH0 if

− ln(P1 P2) >
1

2
χ2

4, 1−α.

Despite the data-dependent adaptation, the overall type I e rror rate is still

protected at level α under H0.

This χ2 test was originally proposed for combining results of several studies by

R. A. Fisher (1932) Statistical Methods for Research Workers.
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Methods for combining data across stages of an adaptive tria l

Other forms of combination test (Bauer & Köhne, 1994) are available, such as the

“inverse normal” combination rule.

Or, methods can be based on preserving the conditional type I error probability:

Proschan & Hunsberger (Biometrics, 1995)

Denne (Statistics in Medicine, 2001)

Müller & Schäfer (Biometrics, 2001 and Statistics in Medicine, 2004)

L. D. Fisher (Statistics in Medicine, 1998) proposed a “variance spending” approach.

Adaptation can occur in a group sequential clinical trial:

Cui, Hung & Wang (Biometrics, 1999)

Lehmacher & Wassmer (Biometrics, 1999)

Despite their varied descriptions and derivations, there is much in common between

all of these methods.
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Adaptive designs using a combination test

Let θ denote the treatment effect, e.g., the difference in mean response between

patients on the new treatment and patients on control.

We test H0: θ ≤ 0 vs θ > 0, where θ > 0 means the new treatment is superior.

A combination test may be used when sample size is re-estimated in response to a

new estimate for a nuisance parameter, or an estimate of θ itself.

A combination test safeguards the overall type I error rate when sample size is

re-estimated.

Jennison & Turnbull have noted that sample size re-estimation in response to

estimates of θ has much in common with use of a group sequential stopping rule —

the estimates, θ̂k, at analyses k = 1, 2, . . . , determine the final sample size.

Since efficient and well-understood group sequential designs are already available,

there is no need to create adaptive designs to achieve the same goal.
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The statistical building blocks of adaptive clinical trial s

(ii) Testing multiple hypotheses

Adaptive designs have opened new horizons for trials in which several null

hypotheses may be tested — and the design of the trial can be modified to align

with the hypothesis of interest.

There can be a variety of reasons to change the null hypothesis or choose one

(or more) from a set of possible null hypotheses:

Selecting one out of several versions of a treatment,

Restricting to a sub-group of the patient population,

Switching from a test of superiority to a test of non-inferiority.

When H0 changes or is selected, attention focuses on the new null hypothesis.

Care is needed to avoid selection bias as this hypothesis is data-generated.

Methods must protect the type I error rate when there are multiple hypotheses.
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Testing multiple hypotheses

The familywise error rate

Suppose there are h null hypotheses,Hi: θi ≤ 0 for i = 1, . . . , h.

A procedure’s familywise error rate under a set of values (θ1, . . . , θh) is

P{RejectHi for some i with θi ≤ 0} = P{Reject any true Hi}.

The familywise error rate is controlled strongly at level α if this error rate is at

most α for all possible combinations of θi values. Then

P{Reject any true Hi} ≤ α for all (θ1, . . . , θh).

Using such a procedure, the probability of choosing to focus on a parameter θi∗

and then falsely claiming significance for null hypothesisHi∗ is at most α.
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Testing multiple hypotheses: Closed testing procedures

Marcus et al. (Biometrika, 1976) define a closed testing procedure which

combines level α tests of eachHi and of intersections of these hypotheses.

We have null hypothesesHi, i = 1, . . . , h.

For each subset I of {1, . . . , h}, define the intersection hypothesis

HI = ∩i∈I Hi.

Construct a level α test of each intersection hypothesisHI , i.e., a test which rejects

HI with probability at most α whenever all hypotheses specified in HI are true.

Closed testing procedure

The simple hypothesisHj : θj ≤ 0 is rejected overall if, and only if, HI is rejected

for every set I containing index j.

It can be show (quite easily) that this procedure provides strong control, at level α,

of the familywise error rate.
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Putting the building blocks together

Selected references: Bauer & Köhne (Biometrics, 1994), Bretz, Schmidli et al.

(Biometrical Journal, 2006), Schmidli, Bretz et al. (Biometrical Journal, 2006).

Closed testing procedures can be used to test multiple hypotheses in a single

stage, non-adaptive design.

One may wish to test hypotheses about secondary endpoints or patient sub-groups

after obtaining a positive result on the primary endpoint.

Positive results will be included in the labelling of the new treatment.

When several null hypotheses arise in a group sequential or a daptive trial

In constructing a closed testing procedure, we need to define a combination test for

each simple hypothesis and each intersection of simple hypotheses.

Each of these tests will combine data across stages of the trial.

The key requirement is that, for each hypothesis test, we stipulate how the P value

will be computed from data in the next stage before that stage is carried out.

18



'

&

$

%

3. Case study 1: A clinical trial with a survival endpoint

and treatment selection

Consider a trial of cancer treatments comparing

Experimental Treatment 1: Intensive dosing

Experimental Treatment 2: Slower dosing

Control treatment

The primary endpoint is Overall Survival (OS).

Information on OS, Progression Free Survival (PFS) and safety will be used at an

interim analysis to choose between the two experimental treatments.

Note that PFS is useful here as it is more rapidly observed.

After the interim analysis, patients will only be recruited to the selected treatment

and the control.
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Overall plan of the trial

Interim

analysis

Final

analysis

Stage 1

cohort

-
�

�3

Q
Qs

Exp. Treatment 1

Exp. Treatment 2

Control

- Follow up

PFS & OS

-

Further

follow up

of OS

Stage 2

cohort

��1

PPq

Selected
Exp. Treatment

Control

- Follow up

of OS

At the final analysis, we test the null hypothesis that OS on the selected treatment is

no better than OS on the control.
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Protecting the type I error rate

We may assume a proportional hazards model with

λ1 = Hazard ratio, Control vs Exp. Treatment 1

λ2 = Hazard ratio, Control vs Exp. Treatment 2

θ1 = log(λ1), θ2 = log(λ2).

We test null hypotheses

H0,1: θ1 ≤ 0 vs θ1 > 0 (Exp. Treatment 1 superior to control),

H0,2: θ2 ≤ 0 vs θ2 > 0 (Exp. Treatment 2 superior to control).

We require

Pr{Reject any true null hypothesis} ≤ α.
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A closed testing procedure

Define level α tests of

H0,1: θ1 ≤ 0,

H0,2: θ2 ≤ 0

and of the intersection hypothesis

H0,12 = H0,1 ∩H0,2: θ1 ≤ 0 and θ2 ≤ 0.

Then:

RejectH0,1 overall if the above tests reject H0,1 and H0,12,

RejectH0,2 overall if the above tests reject H0,2 and H0,12.

The requirement to reject H0,12 compensates for testing multiple hypotheses and

the “selection bias” in choosing the treatment to focus on in Stage 2.
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Combination tests

In the closed testing procedure, each null hypothesis is tested using a combination

test to combine P-values from the two stages.

Overall survival data within each stage are analysed using a logrank test.

In testing the intersection hypothesisH0,12: θ1 ≤ 0 and θ2 ≤ 0, P-values from

logrank tests of Exp. Treatment 1 vs Control and Exp. Treatment 2 vs Control can be

combined using, say, Simes’ method or Dunnett’s test.

There is an elegant theory for the behaviour of logrank statistics based on the

increasing follow-up of a group of subjects (Tsiatis, Biometrika, 1981).

However, this theory may not be applicable in an adaptive trial (Bauer & Posch,

Statistics in Medicine, 2004).

The problem can be solved by changing the definitions of “Stage 1” and “Stage 2”

data (Jenkins, Stone & Jennison, Pharmaceutical Statistics, 2011).
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Jenkins, Stone & Jennison (2011)

In constructing a combination test, it is natural to separate data into the parts

accrued before and after the interim analysis:

P1 P2

Stage 1 Overall survival Overall survival
cohort (during Stage 1) (during Stage 2)

Stage 2 Overall survival
cohort (during Stage 2)

To avoid bias in a combination test, divide the data into parts from the two cohorts:

Stage 1 Overall survival Overall survival
P1cohort (during Stage 1) (during Stage 2)

Stage 2 Overall survival
P2cohort (during Stage 2)
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Assessing the adaptive design: Model assumptions

Overall Survival

Log hazard ratio

Exp. Treatment 1 vs control θ1

Exp. Treatment 2 vs control θ2

Logrank statistics are correlated because of the common control arm.

Progression Free Survival

Log hazard ratio

Exp. Treatment 1 vs control ψ1

Exp. Treatment 2 vs control ψ2

We suppose correlation between logrank statistics for OS and PFS = ρ.

Proportional hazards models for both endpoints are not essential (or reasonable?)

— the implications for the joint distribution of logrank statistics are what matter.
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Model assumptions

Log hazard ratios for OS: θ1, θ2.

Log hazard ratios for PFS: ψ1, ψ2.

We suppose

ψ1 = γ × θ1 and ψ2 = γ × θ2

Number of OS events for Stage 1 cohort = 300 (over 3 treatment arms)

Number of OS events for Stage 2 cohort = 300 (over 2 or 3∗ treatment arms)

Number of PFS events at interim analysis = λ× 300.

∗2 in the adaptive design, 3 in a non-adaptive design

From large sample theory, the standardised logrank statistic based on d observed

events is, approximately,

N(θ
√

d/4, 1)

when the log hazard ratio is θ.
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Testing the intersection hypothesis

We have null hypothesesH0,1: θ1 ≤ 0 and H0,2: θ2 ≤ 0.

In the closed testing procedure we must also test the intersection hypothesis

H0,12 = H0,1 ∩H0,2: θ1 ≤ 0 and θ2 ≤ 0.

We shall use a Dunnett test to test the intersection hypothesis H0,2.

Suppose P1 and P2 are the P-values for logrank tests of Exp. Treatment 1 vs

control and Exp. Treatment 2 vs Control, so the corresponding normal deviates are

Z1 = Φ−1(1 − P1) and Z2 = Φ−1(1 − P2).

If z1 and z2 are the observed values of Z1 and Z2, the Dunnett test of H0,12

yields the P-value

P (max(Z1, Z2) ≥ max(z1, z2))

where (Z1, Z2) are bivariate, standard normal with Corr(Z1, Z2) = 0.5.
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Comparing adaptive and non-adaptive trial designs

Setting ψ1 = θ1, ψ2 = θ2 (i.e., γ = 1) with λ = 1 and ρ = 0.6, we simulated

logrank statistics from their large sample distributions under the adaptive design.

For the adaptive design , we noted

P (1) = P (Select Treatment 1 and Reject H0,1 overall)

P (2) = P (Select Treatment 2 and Reject H0,2 overall)

E(Gain) = θ1 × P (1) + θ2 × P (2).

Here “Gain” represents a possible utility, in which the value of a positive outcome is

proportional to the effect size of the recommended treatment.

For the non-adaptive design

Patients are randomised to both treatments and control throughout, with the same

total sample size. We used a closed testing procedure to protect the familywise

error rate and regarded the treatment with higher estimated effect as “selected”.
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Comparing adaptive and non-adaptive trial designs

We compare designs using a Dunnett test for the intersection hypothesis, with

ψ1 = θ1, ψ2 = θ2, ρ = 0.6, α = 0.025.

Non-adaptive Adaptive

θ1 θ2 P (1) P (2) E(Gain) P (1) P (2) E(Gain)

0.3 0.0 0.78 0.00 0.235 0.86 0.00 0.259

0.3 0.1 0.78 0.01 0.234 0.82 0.02 0.247

0.3 0.2 0.70 0.11 0.234 0.69 0.16 0.238

0.3 0.25 0.60 0.26 0.244 0.58 0.30 0.249

0.3 0.295 0.47 0.43 0.267 0.47 0.44 0.274

The adaptive design has higher P (1) when θ1 is substantially greater than θ2.

When θ1 and θ2 are closer, the adaptive design still has the higherE(Gain).
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Comparing adaptive and non-adaptive trial designs

The adaptive design can only be effective if there is appropriate information to

select the correct treatment at the interim analysis.

This requires that

Treatment effects on PFS are reliable indicators of treatment effects on OS,

Sufficient information on PFS is available at the time of the interim analysis.

For the case θ1 = 0.3, θ2 = 0.1, we have investigated varying the parameters γ

and λ where

ψ1 = γ × θ1 and ψ2 = γ × θ2

Number of OS events for Stage 1 cohort = 300 (over 3 treatment arms)

Number of OS events for Stage 2 cohort = 300 (over 2 or 3 treatment arms)

Number of PFS events at interim analysis = λ× 300.
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Comparing adaptive and non-adaptive trial designs

We compare designs with θ1 = 0.3, θ2 = 0.1, ρ = 0.6, α = 0.025,

PFS log hazard ratios: ψ1 = γ θ1, ψ2 = γ θ2,

Number of PFS events at interim analysis = λ× 300.

Non-adaptive Adaptive

γ λ P (1) P (2) E(Gain) P (1) P (2) E(Gain)

1.5 1.2 0.88 0.00 0.264

1.2 1.0 0.85 0.01 0.256

1.0 1.0 0.78 0.01 0.234 0.82 0.02 0.247

0.9 0.9 for all γ and λ 0.78 0.03 0.238

0.8 0.8 (PFS is not used) 0.74 0.04 0.225

0.7 0.7 0.68 0.05 0.208

Adaptation works well if there is enough PFS information for treatment selection.
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Conclusions from Case Study 1

1. The adaptive design offers the chance to select the better treatment and focus

on this treatment in the second stage of the trial.

2. Overall, the adaptation is beneficial as long as there is sufficient information to

make a reliable treatment selection decision.

The challenge is to know the likely level of information when deciding whether

to implement an adaptive design.

3. Other evidence could be used in reaching this decision:

Safety data

Pharmacokinetic data

Overall survival

4. In addition to reaching a final decision, the adaptive trial compares the two

forms of treatment — and the conclusions may be useful in other settings.
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Case study 2. An adaptive population enrichment trial:

Switching to a sub-population in response to interim data

Consider a new treatment developed to disrupt a disease’s biological pathway.

Patients with high levels of a biomarker for this pathway should gain particular

benefit; the treatment’s wider action may also help the broader patient population.

In a clinical trial with enrichment we

Start by comparing the new treatment against control in the full population.

Examine responses at an interim stage.

If there is no evidence of treatment effect, stop for futility.

If the new treatment appears effective in the full population, continue as before.

If the new treatment appears to benefit just the subgroup, recruit only from the

subgroup and increase the numbers in this subgroup.

Results may support a licence for the full population or just the sub-population.
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Enrichment: Switching to a patient sub-population

&%
'$
θ1 θ2Sub-population

(proportion λ1)

Rest of the population

(proportion λ2)

The treatment effect (difference in mean response between new treatment and

standard) is θ1 in the identified sub-population and θ2 in the complement of this

sub-population.

The overall treatment effect is θ3 = λ1θ1 + λ2θ2.

We may wish to test either or both of:

The null hypothesis for the full population, H3: θ3 ≤ 0 vs θ3 > 0,

The null hypothesis for the sub-population, H1: θ1 ≤ 0 vs θ1 > 0.
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Enrichment: Example

&%
'$
θ1 θ2Sub-population

(proportion λ1)

Rest of the population

(proportion λ2)

First, consider a design testing for a whole population effect , θ3 = λ1θ1 +λ2θ2.

The design has two analyses and one-sided type I error probability 0.025.

Sample size is set to achieve power 0.9 at θ3 = 20.

Data in each stage are summarised by a Z-value:

Stage 1 Stage 2 Overall

H3: θ3 ≤ 0 Z1,3 Z2,3 Z3 = 1√
2
Z1,3 + 1√

2
Z2,3
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Enrichment: Example

Two stage design testing for a whole population effect, θ3.

Stage 1 Stage 2 Overall

H3: θ3 ≤ 0 Z1,3 Z2,3 Z3 = 1√
2
Z1,3 + 1√

2
Z2,3

Decision rules:

If Z1,3 < 0 Stop at Stage 1, AcceptH3

If Z1,3 ≥ 0 Continue to Stage 2, then

If Z3 < 1.95 AcceptH3

If Z3 ≥ 1.95 Reject H3
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Enrichment: Example

Assume the sub-population comprises half the total population, so λ1 = λ2 = 0.5.

Properties of design for the whole population effect, θ3:

θ1 θ2 θ3 Power for

H3: θ3 ≤ 0

20 20 20 0.90

10 10 10 0.37

20 0 10 0.37

Is it feasible to identify at Stage 1 that θ3 is low but θ1 may be higher, so it would be

advantageous to switch resources to test only the sub-population?
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Enrichment: A closed testing procedure

We wish to be able to consider two null hypotheses:

H3: θ3 ≤ 0 Treatment is not effective in the whole population,

H1: θ1 ≤ 0 Treatment is not effective in the sub-population.

Since θ3 = 0.5 θ1 + 0.5 θ2, either of H1 and H3 may be true on its own.

To apply a closed testing procedure (Marcus et al, Biometrika, 1976) we also

need a test of the intersection hypothesis:

H13: θ1 ≤ 0 and θ3 ≤ 0.

Then to rejectH1 overall, while protecting the family-wise type I error rate, we need

to reject both H1 and H13 in individual tests at significance level α.

Similarly, we can rejectH3 overall if both H3 andH13 are rejected in level α tests.
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Enrichment: An adaptive design

At Stage 1, if θ̂3 < 0, stop to acceptH3: θ3 ≤ 0.

If θ̂3 > 0 and the trial continues:

If θ̂2 < 0 and θ̂1 > θ̂2 + 8 Restrict to sub-population 1 and testH1 only,

needing to rejectH1 and H13.

Else, Continue with full population and testH3,

needing to rejectH3 and H13.

The same total sample size for Stage 2 is retained in both cases, increasing the

numbers for the sub-population when enrichment occurs.
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Enrichment: An adaptive design

Each null hypothesis,Hi say, is tested in a 2-stage group sequential test.

With Z-statistics Z1 and Z2 from Stages 1 and 2, Hi is rejected if

Z1 ≥ 0 and 1√
2
Z1 + 1√

2
Z2 ≥ 1.95.

When continuing with the full population, we use Z-statistics:

Stage 1 Stage 2

H3 Z1,3 Z2,3

H13 Z1,3 Z2,3

where Zi,3 is based on θ̂3 from responses in Stage i.

So, there is no change from the original test of H3.
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Enrichment: An adaptive design

With Z-statistics Z1 and Z2 from Stages 1 and 2, Hi is rejected if

Z1 ≥ 0 and 1√
2
Z1 + 1√

2
Z2 ≥ 1.95.

When switching to the sub-population, we use:

Stage 1 Stage 2

H1 Z1,1 Z2,1

H13 Z1,3 Z2,1

where Zi,j is based on θ̂j from responses in Stage i.

The need to reject the intersection hypothesisH13 adds an extra requirement to

the simple test of H1.
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Simulation results: Power of non-adaptive and adaptive des igns

Non-adaptive Adaptive

θ1 θ2 θ3 Full popn Sub-popn Full Total

only popn

1. 30 0 15 0.68 0.43 0.42 0.85

2. 20 0 10 0.37 0.24 0.26 0.51

3. 20 20 20 0.90 0.03 0.87 0.90

4. 20 10 15 0.68 0.11 0.60 0.71

Cases 1 & 2: Testing focuses (correctly) on H1, but it is still possible to find

an effect (wrongly) for the full population. Overall power is increased.

Case 3: Restricting to the sub-population reduces power for finding an effect in

the full population.

Case 4: Adaptation improves overall power a little.
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Using a “gain function” to compare trial designs

In assessing the possible benefits of an adaptive design, it is helpful to specify a

“gain function” which represents the perceived benefit from each trial outcome.

The “gain function” can also be used in creating an efficient trial design.

A company might consider “gain” to be proportional to the number of patients likely

to receive their new treatment after a successful Phase III trial.

When Sub-population 1 makes up a proportion λ1 of the total population, set

G1 =















k if H3 is rejected,

λ1k if only H1 is rejected,

0 otherwise,

where k reflects the size of the target population and the income generated per

patient treated.

43



'

&

$

%

Expected gain for non-adaptive and adaptive designs

With gain functionG1 based on numbers of patients treated if the new treatment is

successful:

Non-adaptive Adaptive

θ1 θ2 θ3 Reject E(G1) Reject Reject E(G1)

H3 H1 only H3

30 0 15 0.68 0.68 k 0.43 0.42 0.64 k

20 0 10 0.37 0.37 k 0.24 0.26 0.38 k

20 20 20 0.90 0.90 k 0.03 0.87 0.89 k

20 10 15 0.68 0.68 k 0.11 0.60 0.66 k

The adaptive design does not look particularly good in terms of G1.

But note this gain function penalises the adaptive design for only rejectingH1 when

θ2 = 0 and the new treatment only has benefit for Sub-population 1.
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Specification of the “Gain function”

We could define “gain” to be proportional to the benefit received by the patient.

So, for example, if θ2 = 0, patients in Sub-population 2 receive no benefit and

make no contribution to “gain” when H3 is rejected.

This leads to a gain function of the form

G2 =



















(λ1θ1 + λ2θ2) c if H3 is rejected,

λ1θ1 c if only H1 is rejected,

0 otherwise,

where c reflects the size of the target population and the income generated per unit

of improved response, per patient treated.

From a company perspective, this function reflects the fact that a new drug is more

likely to be adopted if physicians see evidence of its efficacy when they prescribe it.

Also, being able to claim a new drug is proven effective for a particular patient group

may help in a competitive market.
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Expected gain for non-adaptive and adaptive designs

With gain functionG2 based on numbers of patients treated and the improvement

in their responses, if the new treatment is successful:

Non-adaptive Adaptive

θ1 θ2 θ3 Reject E(G2) Reject Reject E(G2)

H3 H1 only H3

30 0 15 0.68 10.2 c 0.43 0.42 12.8 c

20 0 10 0.37 3.7 c 0.24 0.26 5.0 c

20 20 20 0.90 18.0 c 0.03 0.87 17.7 c

20 10 15 0.68 10.2 c 0.11 0.60 10.1 c

If the gain function G2 is deemed an appropriate choice, the benefits of the

adaptive design are now clear.

Optimising a design depends on a clear specification of the perceived benefits of

the possible trial outcomes.
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Conclusions from Case Study 2

1. The adaptive design offers the chance to modify recruitment in the second

stage of the trial to pursue the most promising part of the patient population.

2. Overall, the adaptation can be beneficial — although whether or not this is the

case will depend on how the sponsors view the different possible trial

outcomes.

3. More generally, the process of designing an adaptive trial relies on a clear

understanding of the value to sponsors and/or patients of different trial

outcomes.
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4. An overarching approach to designing sequential

Phase II and Phase III trials

It hardly needs saying that phases of drug development occur sequentially.

While there is a great deal of work on “optimising” phases individually, much less

attention has been devoted to optimising the overall development process.

I have been involved in work on this topic through a DIA (formerly PhRMA) Working

Group, chaired by Carl-Fredrik Burman.

We have found that optimisation of the Phase II/Phase III part of the process is

possible, given sufficient information.

I shall briefly summarise the input to such an optimisation problem and the

conclusions we have reached.

The work I discuss here concerns dose-finding in a late Phase II or “Phase IIb” trial.

In his PhD thesis, Fredrik Öhrn investigated designs where a Phase II trial, based

on a short -term endpoint, can determine whether to conduct the Phase III trial.
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Joint design of Phase II and Phase III trials

Elements of the Phase IIb / Phase III process are

1. A dose response model,

2. A prior distribution for model parameters that reflects investigators’ expectations

3. A model for the risk at each dose of losing the drug due to poor safety results,

4. Models for Phase IIb and Phase III response data,

5. The final decision rule that will determine whether investigators are able to

reject the null hypothesis of no treatment effect at the selected dose,

6. The rule for:

(i) Deciding whether to proceed to Phase III and, if so,

(ii) Selecting the dose to test in Phase III and

(iii) Choosing the Phase III sample size.
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Joint design of Phase II and Phase III trials

The key challenge is to optimise the rule (6) for making decisions after observing

Phase IIb data.

We have followed a Bayesian approach to account for uncertainty about model

parameters and to integrate the average gain over a plausible set of scenarios.

In addition, we require information about:

The gain function after a successful final outcome,

Sampling costs for Phase IIb and Phase III trials.

With all of the above in place, a substantial computational task remains.
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The Emax dose response model

We assumed a 4 parameter Emax dose-response model, with mean response at

dose d

µ(d) = θ1 + θ2
d θ4

θ θ4

3
+ d θ4

.

0 2 4 6 8 10
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Emax dose response curve

Dose 

E
(Y

)

θ1

θ1 + θ2

 

θ3

θ1: Mean response at dose zero

(placebo effect)

θ2: Increase in mean response from

dose zero to a very high dose

θ3: ED50, the dose achieving half

this maximum increase

θ4: Governs the steepness of the

dose response curve

We placed independent normal priors on the parameters θ1, θ2, θ3 and θ4.

51



'

&

$

%

Phase IIb and Phase III trial designs and response distribut ions

We assumed a normal response distribution for patient response in Phase IIb, and

the same response distribution in Phase III.

In Phase IIb, patients are allocated equally to each of 7 active doses and at 3 times

this rate to dose zero.

If it is decided to test dose j against control in Phase III, then two Phase III trials are

conducted.

In each trial, we test the null hypothesis,H0j , which states that the new treatment

at dose j offers no improvement over the current treatment.

If H0j is rejected at a significance level below α = 0.025 in both trials, efficacy of

the new treatment at dose j is established.
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Gain function and sampling costs

We suppose a positive outcome in Phase III leads to approval of the new drug and

a financial gain g.

Running the Phase IIb trial incurs a sampling cost of c2 per subject.

Running Phase III incurs a cost of c3 per subject.

In our example, we took

c2 = 1,

c3 = 1,

g = 12,000.

The meaning of 1 cost or gain unit may be $10,000 to $50,000, depending on the

condition being investigated — so g represents a multi-million dollar return.
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Risk of failure for safety

Suppose the probability that dose d will eventually fail on safety grounds is γ(d).

This could occur in Phase III or later on in post-marketing surveillance.

We assume γ(d) is a known, increasing function of d.

The function γ(d) is specified before Phase IIb and patient follow-up

in Phase IIb is not long enough to learn more about the safety profile.

In our example, we took γ(d) to be quadratic with γ(7) = 0.2. Thus, the risk for

dose j is

γj = (j/7)2 × 0.2.

When Phase III has a positive outcome, we calculate the expected gain by

discounting the gain function by a factor 1 − γj .
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Optimising the Phase IIb / Phase III design

Before Phase IIb

We choose the Phase IIb sample size, n2.

At the end of Phase IIb

We decide whether to proceed to run Phase III and, if so, select

The dose to test in Phase III dj ,

The Phase III sample size n3.

We wish to optimise:

The choice of n2,

The rule for deciding whether to proceed to Phase III,

The rule for choosing dj and n3.
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Optimisation algorithm

For a particular n2:

We simulate θ, the vector of dose response curve parameters, from the prior.

Simulate Phase IIb data, given θ.

Evaluate Phase III options given the posterior for θ and choose the best option.

Average over replicates to compute the expected net gain for this n2.

?-

n2

◦

◦

◦

◦

Replicates of
Phase II data

����:
-XXXXz

•

•

•

Sample posterior
model distribution

����:
-XXXXz

⊙
⊙
⊙

?
PPPq-
���1

dj and n3

◦

◦

◦

◦

◦

CompareE(Net gain) over possible choices of n2 and choose the best n2.

56



'

&

$

%

Conclusions on the joint design of Phase II and Phase III tria ls

A full treatment of the Phase IIb/ Phase III design process is possible, with joint

optimisation of both stages under a Bayesian model.

The result is guidance on Phase IIb sample size, and how to plan the Phase III trial

given Phase II data.

The Bayesian approach allows propagation of uncertainty and provides a natural

framework for decision making under uncertainty.

A clear conclusion is the benefit of applying group sequential Phase III designs:

With group sequential Phase III trials, it is not so important to have an accurate

estimate of the treatment to inform the choice of Phase III sample size.

Hence, the Phase IIb sample size only needs to be large enough to make a good

choice of dose.

There are many directions in which to elaborate the problem we have studied.

However, a major challenge is eliciting the information needed to give a complete

formulation of the optimisation problem.
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Conclusions

1. Experience over 50 or 60 years led to reliable and well understood methodology

for conducting Phase III trials.

2. Innovation had taken place but its potential impact was most probably lessened

by cautious investigators and conservative regulators.

3. At the turn of the millennium, the announcement of adaptive methods caused

great excitement and offered hope of a step change in the success rate of

clinical trials.

4. We now have

Clearer appraisal of the benefits of adaptive design,

Practical experience of conducting adaptive trials.

5. Common requirements for further developments are:

Statements of likely models with an assessment of uncertainty,

A willingness of decision makers to quantify costs and likely benefits.
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