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1. A clinical trial with treatment selection

Consider a trial of cancer treatments comparing

Experimental Treatment 1: Intensive dosing

Experimental Treatment 2: Slower dosing

Control treatment

The primary endpoint is Overall Survival (OS).

Information on OS, Progression Free Survival (PFS) and safety will be used at an

interim analysis to choose between the two experimental treatments.

Note that PFS is useful here as it is more rapidly observed.

After the interim analysis, patients will only be recruited to the selected treatment

and the control.
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At the final analysis, we test the null hypothesis that OS on the selected treatment is

no better than OS on the control.
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2. Protecting the type I error rate

We shall assume a proportional hazards model with

λ1 = Hazard ratio, Control vs Exp. Treatment 1

λ2 = Hazard ratio, Control vs Exp. Treatment 2

θ1 = log(λ1), θ2 = log(λ2).

We test null hypotheses

H0,1: θ1 ≤ 0 vs θ1 > 0 (Exp. Treatment 1 superior to control),

H0,2: θ2 ≤ 0 vs θ2 > 0 (Exp. Treatment 2 superior to control).

We require

Pr{Reject any true null hypothesis} ≤ α.
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A closed testing procedure

Define level α tests of

H0,1: θ1 ≤ 0,

H0,2: θ2 ≤ 0

and of the intersection hypothesis

H0,12 = H0,1 ∩ H0,2: θ1 ≤ 0 and θ2 ≤ 0.

Then:

Reject H0,1 overall if the above tests reject H0,1 and H0,12,

Reject H0,2 overall if the above tests reject H0,2 and H0,12.

The requirement to reject H0,12 compensates for testing multiple hypotheses and

the “selection bias” in choosing the treatment to focus on in Stage 2.
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Combination tests

Consider testing a generic null hypothesis H0: θ ≤ 0 against θ > 0.

With data gathered in two stages, suppose Stage 1 data produce Z1 where

Z1 ∼ N(0, 1) (or stochastically smaller) under H0.

After possible adaptations, Stage 2 data produce Z2 with conditional distribution

Z2 ∼ N(0, 1) (or stochastically smaller) under H0.

With pre-specified weights w1 and w2 satisfying w2

1
+ w2

2
= 1,

Z = w1 Z1 + w2 Z2 ∼ N(0, 1) (or stochastically smaller) under H0.

So, for a level α test, we reject H0 if Z > Φ−1(1 − α).

(Or, a test can be defined in terms of P1 = 1 − Φ(Z1) and P2 = 1 − Φ(Z2).)
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3. Properties of log-rank tests

For now, consider Experimental Treatment 1 vs Control.
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Properties of log-rank tests

Comparing Experimental Treatment 1 vs Control, define

S1 = Unstandardised log-rank statistic an interim analysis,

I1 = Information for θ1 at interim analysis ≈ (Number of deaths)/4

S2 = Unstandardised log-rank statistic an final analysis,

I2 = Information for θ1 at final analysis ≈ (Number of deaths)/4

Here, “Number of deaths” refers to Experimental Treatment 1 and Control arms only.

Then, approximately,

S1 ∼ N(I1 θ1, I1),

S2 − S1 ∼ N({I2 − I1} θ1, {I2 − I1})

and S1 and (S2−S1) are independent — the “independent increments” property

(Tsiatis, Biometrika, 1981). NB This result holds for staggered entry.

9



'

&

$

%

4. A combination test for survival data

We can create Z statistics

Based on data at the interim analysis:

Z1 =
S1√
I1

,

Based on data accrued between the interim and final analyses:

Z2 =
S2 − S1√
I2 − I1

.

If θ1 = 0, then Z1 ∼ N(0, 1) and Z2 ∼ N(0, 1) are independent.

If θ1 < 0, Z1 and Z2 are stochastically smaller than this.

So we can use Z = w1 Z1 + w2 Z2 in a combination test of H0,1: θ1 ≤ 0.
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A combination test for survival data

In the above, it is crucial that

Z2 =
S2 − S1√
I2 − I1

∼ N(0, 1) under θ1 = 0,

regardless of decisions taken at the interim analysis.

For this to be true, the conduct of the second part of the trial should not depend on

the prognosis of Stage 1 patients at the interim analysis.

Bauer & Posch (Statistics in Medicine, 2004) note the potential pitfalls.

Suppose, for example,

• PFS at the interim analysis is better for patients on Exp. Treatment 1 than

Control, implying better prospects for OS on the Exp. Treatment 1 arm.

• Stage 2 cohort size is reduced and Stage 1 patients are followed up longer.

The change increases the contribution of Stage 1 patients to Z2, biasing it upwards.
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5. Analysing an adaptive survival trial

Recall, we wish to apply a Closed Testing Procedure based on level α tests of

H0,1: θ1 ≤ 0,

H0,2: θ2 ≤ 0,

H0,12: θ1 ≤ 0 and θ2 ≤ 0.

Combination tests for these hypotheses are formed from:

Stage 1 data Stage 2 data

H0,1 Z1,1 Z2,1

H0,2 Z1,2 Z2,2

H0,12 Z1,12 Z2,12

The question is how we should define Z1,1, Z2,1, etc.
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Analysing an adaptive survival trial: Method 1

A natural choice is to:

Base Z1,1, Z1,2 and Z1,12 on data available at the interim analysis,

Base Z2,1, Z2,2 and Z2,12 on the additional information accruing

between interim and final analyses.

If we select Experimental Treatment 1 at the interim analysis, we no longer wish to

test H0,2 — we do not need Z2,2 and we can set Z2,12 = Z2,1.

Similarly, if we select Experimental Treatment 2, we no longer need Z2,1 and we

can set Z2,12 = Z2,2.

We shall take Z1,1, Z1,2, Z2,1 and Z2,2 to be standardised log-rank statistics.

For Z1,12 we test the pooled Exp Tr 1 and Exp Tr 2 patients vs the Control group.
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Method 1, continued

Stage 1 statistics are calculated at the interim analysis:

Z1,1 from log-rank test of Exp Tr 1 vs Control

Z1,2 from log-rank test of Exp Tr 2 vs Control

Z1,12 from log-rank test of combined Exp Tr 1 and Exp Tr 2 vs Control.

If Exp. Treatment 1 is selected at the interim analysis, Stage 2 statistics are

Z2,1 from increment in log-rank statistic testing Exp Tr 1 vs Control,

combining Stage 1 and Stage 2 cohorts

Z2,12 = Z2,1.

If Exp. Treatment 2 is selected, Stage 2 statistics are

Z2,2 from increment in log-rank statistic testing Exp Tr 2 vs Control,

combining Stage 1 and Stage 2 cohorts

Z2,12 = Z2,2.
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Method 1: What can go wrong?

The first stage statistics are fine.

Suppose Experimental Treatment 1 is selected at the interim analysis.

Then, Z2,1 is the increment in the log-rank statistic testing Exp Tr 1 vs Control,

combining Stage 1 and Stage 2 cohorts.

Z2,1 The issues raised earlier should be considered — might Stage 2

be modified in the light of interim data in a way that biases Z2,1?

Regulators are likely to worry about such possibilities !

Z2,12 Setting Z2,12 = Z2,1 will cause bias.

Exp Tr 1 is selected when subjects on this arm have good PFS,

so the Exp Tr 1 patients who continue to be followed for OS in

Stage 2 are liable to have good prognoses.

This method will inflate the overall type I error rate !!
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Method 2: Jenkins, Stone & Jennison (2011)

In constructing a combination test, Method 1 separates data into the parts accrued

before and after the interim analysis:

Z1 Z2

Stage 1 Overall survival Overall survival
cohort (during Stage 1) (during Stage 2)

Stage 2 Overall survival
cohort (during Stage 2)

Instead, we divide the data into the parts arising from the two cohorts:

Stage 1 Overall survival Overall survival
Z1cohort (during Stage 1) (during Stage 2)

Stage 2 Overall survival
Z2cohort (during Stage 2)
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Method 2

All patients in the Stage 1 cohort are followed for overall survival up to a fixed time,

shortly before the final analysis.

The “Stage 1” statistics are based on the final OS data for the Stage 1 cohort

Z1,1 from log-rank test of Exp Tr 1 vs Control

Z1,2 from log-rank test of Exp Tr 2 vs Control

Z1,12 from log-rank test of combined Exp Tr 1 and Exp Tr 2 vs Control.

The “Stage 2” statistics are based on OS data for the Stage 2 cohort

If Exp. Treatment 1 is selected:

Z2,1 from log-rank test of Exp Tr 1 vs Control, Z2,12 = Z2,1

If Exp. Treatment 2 is selected:

Z2,2 from log-rank test of Exp Tr 2 vs Control, Z2,12 = Z2,2.
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Method 2

Notes

Jenkins, Stone & Jennison (2011) introduced “Method 2” in a design where a choice

is made between testing for an effect in the full population or a sub-population.

If the length of follow up of the Stage 1 cohort for OS can be influenced by interim

information about the likely survival of continuing patients, error rate inflation could

result (as noted by Bauer & Posch, 2004).

Hence, we stipulate the amount of follow up and require that this is not changed.

Some adaptive designs allow an early decision based on summaries of “Stage 1”

data at an interim analysis.

Our statistics Z1,1, Z1,2 and Z1,12 are not known at the time of the interim

analysis, so we cannot apply formal stopping rules defined in terms of these —

but that is not a serious problem.
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6. Related work

1. Irle & Schäfer (JASA, 2012) propose similar adaptive designs for survival data.

Changes to the design and critical values for test statistics are made, preserving the

conditional probability of rejecting a null hypothesis.

As the “Conditional Probability of Rejection” principle is related to combination tests,

the method has much in common with that of Jenkins, Stone & Jennison (2011).

Irle & Schäfer’s method imposes the same requirement of a fixed length of follow-up

for “Cohort 1” patients.

Even with this condition in place, determining the conditional probability of a future

event is problematic, since the final information level (in a log-rank statistic, say)

is not known at the time this probability is calculated.

We recommend our combination test approach as simpler to explain and easier to

implement.
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Related work

2. Friede et al. (Statistics in Medicine, 2011) consider a seamless phase II/III trial

designs with treatment selection based on short-term and long-term responses.

In a study of treatments for multiple sclerosis, several experimental treatments are

compared to a control. When the treatment selection decision is made, only a

short-term response is available for some subjects but these will go on to provide a

long-term response later.

Although the primary endpoint is not a time-to-event response, similar issues arise.

When patients on the selected treatment are followed up, results are likely to be

biased towards showing a positive treatment effect, given the short-term response

data on which the treatment selection decision was based.

These authors follow a similar approach to Jenkins, Stone & Jennison (2011) and

apply a combination test to the long-term response data from the cohorts of

patients admitted before and after the interim decision point.
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7. Conclusions

1. Adaptive designs for trials with survival endpoints are desirable for interim

treatment selection or decisions about the population in which a treatment

effect is to be sought.

2. A Closed Testing Procedure can be employed and combination tests used to

carry out each level α hypothesis test with data from two (or more) stages.

3. The “independent increments” property of the log-rank statistic can fail if design

changes at an interim analysis are based on data that are also informative

about the later survival of continuing patients.

Significant bias can also arise from setting Z2,12 to be one of Z2,1 and Z2,2

where the choice between these depends on the PFS outcomes for subjects

whose overall survival will contribute to Z2,1 and Z2,2.

4. Defining the elements of a combination test in terms of the complete survival

data for separate cohorts of patients leads to a valid testing procedure.
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