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1. The role of a Phase III clinical trial

Phase III trials are conducted at the end of the drug development process, or the

development of a new medical treatment. Then,

The treatment has been refined and tested in earlier development and

in Phase I and II trials,

A substantial body of work supports the investigators’ belief that the new

treatment is effective and safe.

The aim of the Phase III trial is to compare the new treatment with the current

standard treatment or a placebo, when given to the target patient population.

The need for a clear, unambiguous comparison leads to the desire for a simple

Phase III clinical trial.

All aspects of the Phase III trial design are pre-defined and written into the protocol

and statistical analysis plan.
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Traditional Phase III clinical trials (pre 2000 approx.)

A trial protocol specifies:

The experimental treatment and the control or placebo treatment,

The patient population (eligibility criteria, etc.),

Sample size for the trial,

Statistical analysis plan.

Interim analyses may be conducted to:

Monitor safety,

Stop early for futility if the new treatment is not effective,

Stop early if there is overwhelming evidence of efficacy.

Many of the decisions taken in creating such a design would benefit from further

knowledge of the treatment, the patients, or patient responses.
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Early examples of adaptive methods

There is a long history of “Adaptive” statistical methods.

Adaptive randomisation

In a trial comparing two treatments, adaptive randomisation can be used to

increase the proportion of patients allocated to the better of two treatments.

However, once randomisation becomes unequal, ethical issues may arise as to

whether it is permissible to randomise at all.

Adaptive randomisation highlights the role of “equipoise” in a randomised

clinical trial and just what this term should mean.

Ethical and statistical concerns were clearly evident in two Harvard trials in the

1970s and 1980s which investigated ECMO treatment of critically ill, new-born

babies (Ware, Statistical Science, 1989).
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Early examples of adaptive methods

Sample size re-estimation

The sample size needed to achieve a specific power under a given treatment

effect is proportional to the response variance — which is typically unknown

when planning a trial.

Wittes & Brittain (Statistics in Medicine, 1990) suggested choosing an initial

sample size based on a plausible response variance, then updating the sample

size as better estimates of response variance are obtained.

The same approach can be used to handle an unknown baseline hazard rate

for survival data.

Sample size re-estimation in the light of estimates of “nuisance parameters” is

still one of the most commonly used adaptive methodologies.
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Sequential analysis of clinical trials

Group sequential methods, introduced in the late 1970s, allow early stopping for

either a positive or negative final decision.

An early example, the the Beta-Blocker Heart Attack Trial, compared propanolol

with placebo. (DeMets et al., Controlled Clinical Trials, 1984)
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The trial stopped with a positive outcome after the 6th of 7 planned analyses.
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Sequential analysis of clinical trials

In their book Group Sequential Methods with Applications to Clinical Trials, Jennison

& Turnbull (2000) gave a unified treatment of group sequential methods, including:

General theory of group sequential analysis

Early stopping for futility or for a positive outcome

Survival data

Error spending designs that adapt to unpredictable information levels

Sample size re-estimation as nuisance parameters (but not the treatment

effect) are estimated

Multiple endpoints or multiple treatments

Although some key papers started to appear in the mid 1990s, Jennison & Turnbull

did not discuss modern adaptive methods.
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2. Adaptive designs for Phase III clinical trials

We noted that many of the decisions taken in designing a clinical trial would benefit

from further knowledge of the treatment, the patients, or patient responses.

What is the best dose for the new treatment?

What is the best method of delivery for the new treatment?

Does the treatment have greater benefit for a sub-population of patients?

For a normally distributed response, what is the variance?

Or, for time-to-event data, what is the baseline hazard rate?

How large a treatment effect is clinically significant?

How large a treatment effect is anticipated?

Such questions are addressed throughout the development of a new treatment.

Adaptive designs allow final changes to be made as new information is gathered

during a Phase III trial.
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Adaptive designs for Phase III clinical trials

In the early 2000s, industry and regulators were aware of falling success rates in

late stage trials — a “statistical” solution would be very welcome indeed!

The idea of shifting from rigidly defined Phase III clinical trials to a flexible, adaptive

approach was both attractive and challenging.

Sceptics asked:

Can the results of an adaptive trial be statistically valid and credible?

Will regulators accept adaptive designs?

What features of a trial should be adapted?

What are the benefits of adaptation?

Some proposals seemed to violate fundamental statistical principles.

There was a need for critical appraisal of new methodologies.

10



'

&

$

%

3. The statistical building blocks of adaptive clinical tri als

(i) Testing a null hypothesis by combining data across stage s

A key piece of methodology for hypothesis testing in adaptive designs is the

Combination test (Bauer & Köhne, Biometrics, 1994).

Initial design

Define the null hypothesis, H0: θ ≤ 0, and say a combination test will be used.

Design Stage 1, fixing sample size and test statistic for this stage.

Stage 1

Observe P1, the one-sided P-value for testing H0 based on Stage 1 data.

Design Stage 2 in the light of Stage 1 data.

Stage 2

Observe P2, the one-sided P-value for testing H0 based on Stage 2 data.

Under θ = 0: P1 ∼ U(0, 1), P2 ∼ U(0, 1), and P1 and P2 are independent.

11



'

&

$

%

Bauer & K öhne’s inverse χ2 combination test

The inverse χ2 test rejects H0 for low values of P1 P2.

If P ∼ U(0, 1), then − ln(P ) ∼ Exp (1) = 1

2
χ2

2
.

Thus, under θ = 0,

− ln(P1 P2) ∼
1

2
χ2

4
.

Combining the two P-values in an overall test, we reject H0 if

− ln(P1 P2) >
1

2
χ2

4, 1−α.

Despite the data-dependent adaptation, the overall type I e rror rate is still

protected at level α under H0.

This χ2 test was originally proposed for combining results of several studies by

R. A. Fisher (1932) Statistical Methods for Research Workers.
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Methods for combining data across stages of an adaptive tria l

Other forms of combination test (Bauer & Köhne, 1994) are available, such as the

“inverse normal” combination rule.

Or, methods can be based on preserving the conditional type I error probability:

Proschan & Hunsberger (Biometrics, 1995)

Denne (Statistics in Medicine, 2001)

Müller & Schäfer (Biometrics, 2001 and Statistics in Medicine, 2004)

L. D. Fisher (Statistics in Medicine, 1998) proposed a “variance spending” approach.

Adaptation can occur in a group sequential clinical trial:

Cui, Hung & Wang (Biometrics, 1999)

Lehmacher & Wassmer (Biometrics, 1999)

Despite their varied descriptions and derivations, there is much in common between

all of these methods.
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Adaptive designs using a combination test

Let θ denote the treatment effect, e.g., the difference in mean response between

patients on the new treatment and patients on control.

We test H0: θ ≤ 0 vs θ > 0, where θ > 0 means the new treatment is superior.

A combination test may be used when sample size is re-estimated in response to a

new estimate for a nuisance parameter, or an estimate of θ itself.

There is no problem of bias in the overall type I error rate caused by this sample

size re-estimation.

Suppose the experimental treatment is modified in mid-study

We could use a combination test of H0: “θ ≤ 0 and θ̃ ≤ 0”, where θ̃ denotes the

treatment effect of the modified treatment.

On rejecting H0 we conclude either θ > 0 or θ̃ > 0 — but we cannot say which.

With multiple hypotheses, further tools are needed . . .
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The statistical building blocks of adaptive clinical trial s

(ii) Testing multiple hypotheses

There may be reasons to change the null hypothesis or to select from a set of

possible null hypotheses during a clinical trial:

Selecting one out of several versions of a treatment,

Restriction to a sub-group of the patient population,

Switching from a test of superiority to a test of non-inferiority.

When H0 changes or is selected, attention focuses on the new null hypothesis.

Care is needed to avoid selection bias as this hypothesis is data-generated.

Methods must protect the type I error rate when there are multiple hypotheses.

Selected references:

Bauer & Köhne (Biometrics, 1994), Bretz, Schmidli et al. (Biometrical Journal,

2006), Schmidli, Bretz et al. (Biometrical Journal, 2006).
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Testing multiple hypotheses

The familywise error rate

Suppose there are h null hypotheses, Hi: θi ≤ 0 for i = 1, . . . , h.

A procedure’s familywise error rate under a set of values (θ1, . . . , θh) is

P{Reject Hi for some i with θi ≤ 0} = P{Reject any true Hi}.

The familywise error rate is controlled strongly at level α if this error rate is at

most α for all possible combinations of θi values. Then

P{Reject any true Hi} ≤ α for all (θ1, . . . , θh).

Using such a procedure, the probability of choosing to focus on a parameter θi∗

and then falsely claiming significance for null hypothesis Hi∗ is at most α.
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Testing multiple hypotheses: Closed testing procedures

Marcus et al. (Biometrika, 1976) define a closed testing procedure which

combines level α tests of each Hi and of intersections of these hypotheses.

We have null hypotheses Hi, i = 1, . . . , h.

For each subset I of {1, . . . , h}, define the intersection hypothesis

HI = ∩i∈I Hi.

Construct a level α test of each intersection hypothesis HI , i.e., a test which rejects

HI with probability at most α whenever all hypotheses specified in HI are true.

Closed testing procedure

The simple hypothesis Hj : θj ≤ 0 is rejected overall if, and only if, HI is rejected

for every set I containing index j.

It can be show (quite easily) that this procedure provides strong control, at level α,

of the familywise error rate.
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Putting the building blocks together

Closed testing procedures can be used to test multiple hypotheses in a single

stage, non-adaptive design.

One may wish to test hypotheses about secondary endpoints or patient sub-groups

after obtaining a positive result on the primary endpoint.

Positive results will be included in the labelling of the new treatment.

When several null hypotheses arise in a group sequential or a daptive trial

In constructing a closed testing procedure, we need to define a combination test for

each simple hypothesis and each intersection of simple hypotheses.

Each of these tests will combine data across stages of the trial.

The key requirement is that, for each hypothesis test, we decide how the P value will

be computed from data in the next stage before that stage of the trial is carried out.
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3. Case study: A clinical trial with a survival endpoint

and treatment selection

Consider a trial of cancer treatments comparing

Experimental Treatment 1: Intensive dosing

Experimental Treatment 2: Slower dosing

Control treatment

The primary endpoint is Overall Survival (OS).

Information on OS, Progression Free Survival (PFS) and safety will be used at an

interim analysis to choose between the two experimental treatments.

Note that PFS is useful here as it is more rapidly observed.

After the interim analysis, patients will only be recruited to the selected treatment

and the control.

19



'

&

$

%

Overall plan of the trial

Interim

analysis

Final

analysis

Stage 1

cohort

-
�

�3

Q
Qs

Exp. Treatment 1

Exp. Treatment 2

Control

- Follow up

PFS & OS

-

Further

follow up

of OS

Stage 2

cohort

��1

PPq

Selected
Exp. Treatment

Control

- Follow up

of OS

At the final analysis, we test the null hypothesis that OS on the selected treatment is

no better than OS on the control.
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Protecting the type I error rate

We may assume a proportional hazards model with

λ1 = Hazard ratio, Control vs Exp. Treatment 1

λ2 = Hazard ratio, Control vs Exp. Treatment 2

θ1 = log(λ1), θ2 = log(λ2).

We test null hypotheses

H0,1: θ1 ≤ 0 vs θ1 > 0 (Exp. Treatment 1 superior to control),

H0,2: θ2 ≤ 0 vs θ2 > 0 (Exp. Treatment 2 superior to control).

We require

Pr{Reject any true null hypothesis} ≤ α.
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A closed testing procedure

Define level α tests of

H0,1: θ1 ≤ 0,

H0,2: θ2 ≤ 0

and of the intersection hypothesis

H0,12 = H0,1 ∩ H0,2: θ1 ≤ 0 and θ2 ≤ 0.

Then:

Reject H0,1 overall if the above tests reject H0,1 and H0,12,

Reject H0,2 overall if the above tests reject H0,2 and H0,12.

The requirement to reject H0,12 compensates for testing multiple hypotheses and

the “selection bias” in choosing the treatment to focus on in Stage 2.
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Combination tests

In the closed testing procedure, each null hypothesis is tested using a combination

test to combine P-values from the two stages.

Overall survival data within each stage are analysed using a logrank test.

In testing the intersection hypothesis H0,12: θ1 ≤ 0 and θ2 ≤ 0, the logrank

test can compare survival in the pooled Exp. Treatment 1 and Exp. Treatment 2

patients vs the Control group.

There is an elegant theory for the behaviour of logrank statistics based on the

increasing follow-up of a group of subjects (Tsiatis, Biometrika, 1981).

However, this theory may not be applicable in an adaptive trial (Bauer & Posch,

Statistics in Medicine, 2004).

The problem can be solved by changing the definitions of “Stage 1” and “Stage 2”

data (Jenkins, Stone & Jennison, Pharmaceutical Statistics, 2011).
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Jenkins, Stone & Jennison (2011)

In constructing a combination test, it is natural to separate data into the parts

accrued before and after the interim analysis:

P1 P2

Stage 1 Overall survival Overall survival
cohort (during Stage 1) (during Stage 2)

Stage 2 Overall survival
cohort (during Stage 2)

To avoid bias in a combination test, divide the data into parts from the two cohorts:

Stage 1 Overall survival Overall survival
P1cohort (during Stage 1) (during Stage 2)

Stage 2 Overall survival
P2cohort (during Stage 2)
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P-values for combination tests

All patients in the Stage 1 cohort are followed for overall survival up to a fixed time

or a pre-specified number of failures.

The “Stage 1” statistics are based on the final OS data for the Stage 1 cohort

P1,1 from log-rank test of Exp Tr 1 vs Control

P1,2 from log-rank test of Exp Tr 2 vs Control

P1,12 from log-rank test of combined Exp Tr 1 and Exp Tr 2 vs Control.

The “Stage 2” statistics are based on OS data for the Stage 2 cohort

If Exp. Treatment 1 is selected:

P2,1 from log-rank test of Exp Tr 1 vs Control, P2,12 = P2,1

If Exp. Treatment 2 is selected:

P2,2 from log-rank test of Exp Tr 2 vs Control, P2,12 = P2,2.
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4. Conclusions

1. Experience over 50 or 60 years led to reliable and well understood methodology

for conducting Phase III trials.

2. Innovation had taken place but its potential impact was most probably lessened

by cautious investigators and conservative regulators.

3. At the turn of the millennium, the announcement of adaptive methods caused

great excitement and offered hope of a step change in the success rate of

clinical trials.

4. We now have

Clearer appraisal of the benefits of adaptive design,

Practical experience of conducting adaptive trials.

5. Opinions may have changed as to where adaptation can be most valuable, but

the outlook is still positive.
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