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/ 1. Group sequential monitoring of clinical trials

Suppose a new treatment is being compared to a placebo or positive control in a

Phase Il trial.

The treatment effect @ represents the advantage of the new treatment over the

control, with a positive value meaning that the new treatment is effective.
We wish to test the null hypothesis Hy: 8 < 0 against @ > 0 with
Py—_o{Reject Hy} = a,

Py_s{Reject Hy} =1 — 3.

Standardised test statistics Z1, Zo, . . ., are computed at interim analyses and

these are used to define a stopping rule for the trial.

N
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/ Group sequential tests \

A typical boundary for a one-sided test has the form:

Zy
S Reject Hg
° — *
* T e
* ° = °
-
1 1 I. 1 1 >-
- k
. / Accept Hg

Crossing the upper boundary leads to early stopping for a positive outcome,
rejecting H in favour of 8 > 0.

Crossing the lower boundary implies stopping for “futility” with acceptance of H.

\Here, the trial stops to reject H at the third of five analyses. /

5



/ Joint distribution of parameter estimates \

Reference: Sec. 3.5 and Ch. 11 of “Group Sequential Methods with Applications
to Clinical Trials”, Jennison & Turnbull, 2000 (hereatfter, JT).

Let 6. denote the estimate of 6 based on data at analysis k.

The information for 6 at analysis & is
T, = {Var(@k)}_l, Ek=1,..., K.

AN

Canonical joint distribution of 01,...,0Kk

In many situations, 61, . . ., 0 are approximately multivariate normal,

0y ~ NO{T:;}" Y, k=1,... K,

and

\ Cov(@\kl,é\b) = Var(é\kQ) = {IkZ}_l for k1 < ks. /




/ Sequential distribution theory

The joint distribution of 81, . . ., @ i can be demonstrated directly for:

0 a single normal mean,

0 = A — B, comparing two normal means.

The canonical distribution also applies when 6 is a parameter in:

a general normal linear model,

a general model fitted by maximum likelihood (large sample theory).

Thus, theory supports general comparisons, including:

crossover studies,

analysis of longitudinal data,

\ comparisons adjusted for covariates.
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/ Canonical joint distribution of ~ 6@1,...,0k
A single normal mean
Suppose X1, Xo, ... are independent N (6, o?) responses.

For n1 < ng, define

~ X1+ ...+ X, ~
(91: 1+ + . and (92:

Xi4+... 4+ X, +...

+ X,

ni n2

The joint distribution of 81 and @5 is bivariate normal.

Marginally
f1 ~ N0, 7:7Y) and 65 ~ N(0, 7 Y),

where

n n
Il — —1 and IQ — —2

\ o2 o2




/ Canonical joint distribution of ~ 6@1,...,0k \

It remains to check the covariance:

COV((/Q\l, (/9\2)

Y

Cov X1—|—...+Xn1 X1+...+an+...—|—Xn2
ni no

Y

(X1+...+Xn1 X1+...+Xm>
= Cov
ni n2

1
= Var(X1 + ...+ X,,,)
ni1 N9




/ Canonical joint distribution of  z-statistics

In testing Hy: 8 = 0, the standardised statistic at analysis k is

6 ~
Zr = L = 0T
Var(@k)
For this,
(Z1,...,ZK) is multivariate normal,

Zi ~ NOyTe, 1), k=1,... K,

COV(Zkl, ZkQ) = \/Ikl/I]@ for k1 < ko.

N
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/ Canonical joint distribution of score statistics

The score statistics, S = Zy \/Ik, are also multivariate normal with
Sk ~NOZLy, Ip), k=1,...,K.
The score statistics possess the “independent increments” property,

Cov(Sp — Sk_1, Skr — Spr—1) =0 fork #£ K.

It can be helpful to know that the score statistics behave as Brownian motion with

drift € observed at times 71, ..., Zk.

N
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/ Survival data \

The canonical joint distributions also arise for

a) estimates of a parameter in Cox’s proportional hazards regression model

b) log-rank statistics (score statistics) for comparing two survival curves

— and to Z-statistics formed from these.

For survival data, observed information is roughly proportional to the number of

failures.

Special types of group sequential test are needed to handle unpredictable and

unevenly spaced information levels: see error spending tests.

Reference:

“Group-sequential analysis incorporating covariate information”, Jennison and

\Turnbull (J. American Statistical Association, 1997). /
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Computations for group sequential tests

Reject Hy

In order to find Pg{Reject HO}, etc., we need to calculate the probabilities of basic

events such as

N

CL1<Z1<b1, CL2<ZQ<b2, Zg>b3.

/
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/ Computations for group sequential tests

Z

i Reject Hy

~—
.\ . .Z3
7/.\
L o
./.ZQ 0/

\probability and power.

i , .

Probabilities such as Py{a1 < Z1 < by, as < Z3 < by, Z3 > b3} canbe

computed by repeated numerical integration (see JT, Ch. 19).
Combining such probabilities yields properties of a group sequential boundary.

Constants and group sizes can be chosen to define a test with a specific type | error

~

/
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/Example of one-sided tests: The Pampallona & Tsiatis family

Pampallona & Tsiatis (J. Statistical Planning and Inference, 1994).

To test Hy: 6 < 0 against the one-sided alternative 6 > 0 with type | error
probability v and power 1 — (3 at 8 = 6.

Sk

-

Reject Hy

: T,
Accept H

The computational methods just described can be used to define tests with

parametric stopping boundaries meeting the design criteria.

For the P & T test with parameter 2\, boundaries on the score statistic scale are

N

ap — Ik J — CQIkA, bk — Cl IkA.

~
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/ One-sided tests with a non-binding futility boundary \

Regulators are not always convinced a trial monitoring committee will abide by the

stopping boundary specified in the study protocol.

Sk
A  Reject Hy

® X

x
°

@ -
(]

Accept Hy

The sample path shown above leads to rejection of H. Since such paths are not

included in type | error calculations, the true type | error rate is under-estimated.

If a futility boundary is deemed to be non-binding, the type I error rate should be

computed ignoring the futility boundary.

For planning purposes, power and expected sample size should be computed
assuming the futility boundary will be obeyed.

\Constants can be computed in this way for, say, a Pampallona & Tsiatis test. /
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/ Benefits of group sequential testing \

In order to test Hy: 6 < 0 against 8 > 0 with type | error probability cv and power

1 — 3 at 6 = 0, a fixed sample size test needs information

{7 (1—-a)+ 27 '(1-p)}
2 '

Information is (roughly) proportional to sample size in many clinical trial settings.

A group sequential test with /X analyses will need to be able to continue to a

maximum information level Z ;- which is greater than Ifz-x.

The benefit is that, on average, the sequential test can stop earlier than this and
expected information on termination, Ky (I) will be considerably less than Ifm,

especially under extreme values of 6.

We term the ratio R = L /Ifix the “inflation factor” for a group sequential design.

N
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/ Benefits of group sequential testing \

In specifying a group sequential test’s boundary, one can aim to minimise the
expected information g (Z) under effect sizes of 6 of most interest, subject to a

fixed number of analyses K and inflation factor .

Eales & Jennison (Biometrika, 1992) and Barber & Jennison (Biometrika, 2002)

report on designs optimised for criteria of the form > . w;[Eg, (Z) or

/ 1(8) Eo(T) do,

where f is a normal density.

These optimal group sequential designs can be used in their own right.

They also serve as benchmarks for other methods which may have additional useful

features.

- /
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/ Computing optimal GSTs \

In optimising a group sequential test, we create a Bayes sequential decision
problem, placing a prior on 8 and defining costs for sampling and for making

incorrect decisions.
Such a problem can be solved rapidly by dynamic programming.

We then search for the combination of prior and costs such that the solution to the

(unconstrained) Bayes decision problem has the specified frequentist error rates «

atd = 0and G atd = 9.

The resulting design solves both the Bayes decision problem and the original

frequentist problem.

Note: Although the Bayes decision problem is introduced as a computational

device, this derivation demonstrates that an efficient frequentist procedure should

\also be good from a Bayesian perspective. /
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/ Benefits of group sequential testing

One-sided tests with binding futility boundaries, minimising {IEo(Z) + Es(Z)} /2

Minimum values of {Eo(Z) + Es(Z)} /2, as a percentage of ZLf;q

R Minimum
K 1.01 1.05 1.1 1.2 1.3 over R
2 80.8 747 732 73.7 75.8 73.0at R=1.13
3 76.2 693 66.6 651 652 65.0 at R=1.23
5 722 652 622 598 590 58.8 at [1=1.38
10 69.2 62.2 59.0 56.3 551 54.2 at R=1.6
20 678 606 575 546 533 51.7 at R=1.8

Note: E(Z) \, as K 7 butwith diminishing returns,
\ E(Z) \, as R/ uptoa point.

for equal group sizes, o = 0.025,1 — 3 = 0.9, K analyses, L, gz = R ZLt4q.

~
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/ Error spending tests \

Since the sequence 71, Zo, ... is often unpredictable, it is good to have a group
sequential design that can adapt to the observed information levels.

Lan & DeMets (Biometrika, 1983) presented two-sided tests of Hy: 8 = 0 against

6 = 0 which “spend” type | error as a function of observed information.

Maximum information design  with error spending function f(I):

f(Z) 4

o -

T >
Z-maux A

The boundary at analysis k is set to give cumulative type | error probability f(Ik)

\The null hypothesis, H, is accepted if Z,,,.« is reached without rejecting H. /

21



/ One-sided error spending tests \

For a one-sided test of Hy: 8 < 0 against @ > 0 with

Type | error probability oc at @ = 0,

Type |l error probability 3 at 6 = 4,

we need two error spending functions.

f(I>A 9(I>A
Q- B -

—> —>
Imax z Imax A

Type | error probability «v is spent according to the function f(I) and type Il error

/

probability 3 according to g(Z).

22



/ One-sided error-spending tests

Analysis 1:
Observed information Z; .

Reject Hy if Z1 > by, where
PH:O{Zl > bl} = f(Il)
Accept Hy if Z1 < a1, where

P9:5{Zl < CL1} = g(Il)

Z
A b1

23



/ One-sided error-spending tests

Analysis 2: Observed information Z5

Reject Hy if Zo9 > by, where

szo{al <41 < bl, Loy > bg} = f(IQ) — f(Il)

— note that, for now, we assume the futility boundary is binding.
Accept Hy if Z5 < ag, where
P9:5{CL1 < 1 < bl, Ly < CLQ} = g(IQ) — g(Il).

Zy,
A bl b2

24



/ One-sided error-spending tests \

Analysis k: Observed information Zy

Find a; and by, to satisfy
Pyp_ola1<Z1<by,...,a05-1<Zi_1<br_1,Zk > b} = f(Lr)—f(Zi—1),
and

Py—sla1 <Z1<by,...,ap_1<Zp_1<bp_1,Zr < ar} = g(Zr)—9(Lr—1).

A
‘A
¢ ° ° .bk
o L
1 1 1 1 >-
o T k
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Remarks on error spending tests \

1. Computation of (ak, bk) does not depend on future information levels,

Liv1, Lig2, - -

2. A “maximum information design” continues until a boundary is crossed or an

analysis with Z;, > Z,,.x is reached.

If necessary, patient accrual can be extended to reach Z,,.x.

Imax

| | .
|
71 7o I3 71a Is L Information

If a maximum of / analyses is specified, the study terminates at analysis /<
with f(IK) defined to be «v. Then, ak is chosen to give cumulative type |

error probability o and we set b = ag.

/
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Remarks on error spending tests

3. The value of Z,,,,x can be chosen so that boundaries converge at the final

analysis under a typical sequence of information levels, e.g.,
Ti = (k) K) Tpax, k=1,...,K.

4. The p-family provides a convenient choice of error spending functions.

In the case of one-sided tests, type | error probability is spent as
f(Z)=amin{l, (Z/Zmx)"}

and type Il error probability as
9(Z) = B min{1, (Z/Zmax)"}-

The value of p determines the inflation factor R = Tiax/Z fig-

Barber & Jennison (Biometrika, 2002) show p-family tests have excellent

efficiency properties when compared with designs for the same number of

\ analyses K and inflation factor R.

~
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/One-sided error-spending tests: Non-binding futility bou

Boundary values, b1, b, ..

ndary\

If the futility boundary is treated as non-binding, computation of the error-spending

efficacy boundary only involves the type | error spending function f(I)

., are calculated one by one as the trial proceeds.

Analysis k: Observed information Zy

Reject Hy if Z;, > by, where

Po—o{Z1 <b1, ..., Zp—1 <bgp_1, Z > b} = f(Ix) — f(Lk-1).
L
T .
I -
7, k
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/One-sided error-spending tests: Non-binding futility bou ndary\

The futility boundary can be added through a type Il error spending function g(I).

Fork=1,..., K —1:

At analysis k with observed information Z,, set a;. to satisfy

Py—s{a1 <Zi1<by,...,ap_1<Zp_1<bp_1,Zx < ar} = 9g(T)—9(ZLr-1).

Fork = K: Setax = bg.

7
"L b
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/ 2. The problem of delayed responses

Reference: Hampson & Jennison (HJ), (JRSS B, 2013)
Example: Cholesterol reduction after 4 weeks of treatment

In their Example A, HJ describe a group sequential trial where there is a delay of

expect about 16 subjects to have started treatment but not yet given a response.
We refer to these as patients as being “in the pipeline”.

If a group sequential test reaches its conclusion at an interim analysis, we still

expect investigators to follow up pipeline subjects and observe their responses.

How should these data be analysed?

N

four weeks between the start of treatment and observation of the primary endpoint.

The recruitment rate is around 4 patients per week, so at each interim analysis we

~

/
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The problem of delayed responses

A possible outcome for the cholesterol reduction trial

Ly,

A

Reject Hy

Accept Hy

Suppose Z3 = 2.4, exceeding the boundary value of 2.3.

The trial stops but, with the pipeline data included, Z = 2.1.

Can the investigators claim significance at level «?

N
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/ Short term information on “pipeline” subjects \

Example: Prevention of fracture in postmenopausal women

In their Example D, HJ consider a study where the primary endpoint is occurrence

of a fracture within five years.

Changes in bone mineral density (BMD) are measured after one yeatr.
It is expected that these two variables are correlated.

How might we use the BMD data to gain information from subjects who have been

followed for between one and five years?

Would fitting a Kaplan-Meier curve for time to first fracture also help — remember

that inference is about the binary outcome defined at five years?

- /
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/ Incorporating delayed observations after a GST terminates \

1. Whitehead (Controlled Clinical Trials, 1992) proposed a “deletion” method.

The analysis k at which termination occurs is “deleted” and one behaves as if

analysis k originally had information fk appropriate to the final set of responses.

A boundary value Ek is computed and H rejected if the final statistic Zk > I;k

2. Hall & Ding (Univ. Rochester, Technical Report, 2002) applied a combination test
(Bauer & Kohne, Biometrics, 1994) to the two sets of data obtained before and after

the GST terminates.

Sorriyarachchi et al. (Biometrics, 2003) investigated these methods and found they

perform poorly with respect to power:

The deletion method is conservative and can lead to lower power than a GST
which ignores the additional data,

With a moderate number of pipeline subjects, Hall & Ding’s method leads to

\ greater loss of power than the deletion method. /
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/ Incorporating delayed observations after a GST terminates \

The methods of Whitehead (1992) and Hall & Ding (2002) are based on applying a
GST as if response were immediate, then trying to deal with additional pipeline data

once this GST has terminated.

A more systematic approach is to recognise that there will be pipeline data when
designing the trial.

Interestingly, T. W. Anderson (JASA, 1964) recognised this issue, well before the
advent of modern group sequential methods.

The methods of Hampson & Jennison (JRSS, B, 2013) follow the same basic
structure as proposed by Anderson:

With delayed response data, a trial comes to an end in two stages
1. Stop recruitment of any more subjects,

2. After responses have been observed for all recruited subjects,

\ make a decision to accept or reject Hy. /
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/ 3. Defining a group sequential test with delayed responses

We assume:

The primary endpoint is measured a fixed time after treatment commences,

The endpoint will be known (eventually) for all treated subjects,

If recruitment is stopped, it cannot be re-started.

Consider a trial where responses are observed time A after treatment.

N i |
| Number /
. recruited , Number of
responses
' ' Time
At Interim timax

analysis

~

Qt each analysis, patients arriving in the last 2\; units of time are “in the pipeline”./
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/ Boundaries for a Delayed Response GST

At interim analysis k, the observed information level is Zj, = {Var(f;,)} .

Zy,
A

C1 L

If Z;. > by or Z;, < a;, at analysis k, we cease enrolment of patients and

follow-up all recruited subjects.

At the subsequent decision analysis, denote the observed information by fk

Q\d reject Hy if Z), > cp.

/
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/ Delayed Response Group Sequential Tests (DR GSTs) \

For a particular sequence of observed responses, we apply boundary points at a

sequence of information levels of the form
i, oo T, Ti.

In the example below, recruitment ceases at the second analysis and the final

decision is made with extra “pipeline” data bringing the information up to fg.

Zy,
A
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/ Calculations for a Delayed Response GST \

The type | error rate, power and expected sample size of a Delayed Response GST

depend on joint distributions of test statistic sequences:

{(Z1, ..., Zn, Zp}, k=1,...,K —1,
and
{Zl7 R ZK—la ZK}
Each sequence is based on accumulating data sets.

Given {Z1, ..., Iy, I}, the sequence { Z1, ... , Zi, Z}} follows the
canonical distribution we saw earlier for the sequence of Z-statistics in a GST with

immediate responses (JT, Ch. 11).

Thus, properties of Delayed Response GSTs can be calculated using numerical

routines devised for standard group sequential designs.

- /
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/ The value of information from pipeline subjects \

When recruitment is terminated at interim analysis k with Z;, > by or Z;, < ag,

current data suggest the likely final decision.
However, the pipeline data provide further information to use in this decision.

The pipeline data will occasionally produce a “reversal”, with the final decision

differing from that anticipated when recruitment was terminated.

We could observe:

ZkA
b1b |
4+ C1
T =~ >
a1e7} Ly Z

Here, accrual stops at analysis 1 because of unpromising results, but Hy is

@ected when the pipeline data are observed. /

39




/ The value of information from pipeline subjects \

Or, recruitment may cease with promising data only for H to be accepted.

A
b1

Z

Ale

Note that there is no option of “banking” the good evidence at analysis 1 — we are

assuming all pipeline subjects will eventually be observed.

Decisions based on more data ought to be more accurate: perhaps the pipeline

data have helped to avoid a false positive conclusion here.

An optimised design will place boundary points to achieve high power for the

&permitted type | error rate, . /
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/ 4. Optimising a Delayed Response GST \

We specify the type | error rate «v and power 1 — (3 to be attained at 6 = 0.
We set maximum sample size n,,,4., Number of stages /', and analysis schedule.

Let r be the fraction of 1,44 IN the pipeline at each interim analysis.

Let /N denote the total number of subjects recruited.

Obijective:

Given «, 3, 0, Nyaz, £ and r, we find the Delayed Response GST minimising

P /EQ(N) £(6) do

where f () is the density of a N (§/2, (§/2)?) distribution.

Other weighted combinations of FEg (V') can also be used.

- /
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/ Computing optimal Delayed Response GSTs \

We follow the same approach as for optimising a GST with immediate response.

We create a Bayes sequential decision problem, placing a prior on € and defining

costs for sampling and for making incorrect decisions.
This problem can be solved rapidly by dynamic programming.

We then search for the combination of prior and costs such that the solution to the

(unconstrained) Bayes decision problem has the specified frequentist error rates «

atd = 0and G atd = 9.

The resulting design solves both the Bayes decision problem and the original

frequentist problem.

Again, the Bayes decision problem is introduced as a computational device, but the

derivation demonstrates the relationship between admissible frequentist designs

Q\d Bayes procedures. /
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/ An optimal design for the cholesterol treatment example

In the cholesterol treatment trial, the primary endpoint is reduction in serum

cholesterol after 4 weeks of treatment.
Responses are assumed normally distributed with variance o’ =2

The treatment effect 6 is the difference in mean response between the new

treatment and control.

An effect @ = 1 is regarded as clinically significant.

It is required to test Hp: 6 < 0 against 8 > 0 with
Type | error rate o« = 0.025,

Power 0.9 atd = 1.

A fixed sample test needs 1 ¢, = 85 subjects over the two treatments.

N
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/ An optimal design for the cholesterol treatment example
We consider designs with a maximum sample size of 96.
We assume a recruitment rate of 4 per week:

Data start to accrue after 4 weeks,

At each interim analysis, there will be 4 X 4 = 16 pipeline subjects,

so the “pipeline fraction” is 7 = 16/96 = 0.17.

Recruitment will close after 24 weeks.

Interim analyses are planned after n1 = 28 and no = 54 observed responses
and the final decision is based on:

n1 = 44 responses if recruitment stops at interim analysis 1,

no = 70 responses if recruitment stops at interim analysis 2,

\ n3 = 90 responses if there is no early stopping.

~
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/ An optimal design for the cholesterol treatment example

~

The following Delayed Response GST minimises F' = [ Eq(N) f(0) df, where

f(0) is the density of a IV (0.5, 0.5%) distribution.

L o
2.5 1 o D

4

[ ] !
28 44 54 70 96
Number of Responses

Both ¢1 and ¢y are less than 1.96. If desired, these can be raised to 1.96 with little

\change to the design’s power curve.

/
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/ An optimal design for the cholesterol treatment example

The figure shows expected sample size curves for

The fixed sample test with 1. ¢;, = 85 patients,
The Delayed Response GST minimising £/,

The GST for immediate responses with analyses after 32, 64 and 96

responses, also minimising F'.

90

80

70r n
EQ (N) - fix
60- —delay

no delay

50r

40r

30
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/ 5. Efficiency loss when there is a delay in response \

In general, a delay in response erodes the benefits of sequential testing.

2

Consider tests with o« = 0.0295, power 0.9 and response variance, o, such that

the fixed sample test needs 1 r;,, = 100 subjects.
Suppose a group sequential design has 7,4 = 1.1 1, = 110.

The figure shows the minima of ' = [ Eg(N) f(0) d, attained by optimal

Delayed Response GSTs with /X analyses for a range of “pipeline” sizes.

100 ‘ ‘ ‘ ‘
| The reduction in average

o0 e ’ Eg(IN) when the pipeline size

a0l is 20 patients is around half the

reduction achieved by a GST

70" when response is observed

K
- K
—K

111l
a wN

immediately.

5% 10 20 30 40 50

\ # subjects in the pipeline at an interim analysis /

a7




/ Using a short term endpoint to improve efficiency \

Suppose a second endpoint, correlated with the primary endpoint, is available soon

after treatment.
For patient ¢ on treatment T = A or B, let

Y7 ; = The short term endpoint,

X7, = The long term endpoint.

Assume that we have a parametric model for the joint distribution of (YT,Z-, XT,,L-)

In which

E(XA,'L') = KA, E(XB,i) = pup and 0 = pa— pup.

We analyse all the available data at each interim analysis.

- /
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/ Using a short term endpoint to improve efficiency \

At an interim analysis, subjects are
e Unobserved,
e Partially observed (with just YT,@- available),

e Fully observed (both Y7 ; and X7 ; available).
We fit the full model to all the data available at analysis k, then extract
0, and I = {Var(6;)} "

Including the short term endpoint in the model increases the information, Zy, for

the long term endpoint.

The sequence of estimates {Hk} follows the standard joint distribution for a group

sequential trial with observed information levels {Z} }.

\Thus, we can design a Delayed Response GST in the usual way. /
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/ Using a short term endpoint to improve efficiency \

Values of F' achieved using a second, short-term endpoint

100
F
90/

80r

700 A

k=0.2

‘ ‘ ‘ ""‘KZO
0.1 0.2 0.3 0.4 0.5
T

60

Results are for the previous testing problem with ' = 5 analyses.
The endpoints Y7 ; and X7 ; are bivariate normal with correlation 0.9.

The parameter k is the ratio of time to recording the short-term and long-term

\endpoints, so k = 1 equates to having no short-term endpoint. /
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/ Using a short term endpoint to improve efficiency \

Note: Although the short-term endpoint may itself be of clinical interest, the final

inference is about the primary endpoint alone.

The same approach can be used with repeated measurements as follow-up

continues for each patient.

Nuisance parameters, such as variances and the correlation between short-term

and long-term endpoints, can be estimated within the trial.

In HJ's Example D, prevention of fracture in postmenopausal women, we could:

Fit a joint model for bone mineral density measured at one year and incidence

of fracture within five years,

Use censored time-to-event data on the fracture endpoint for subjects with less

than five years of follow-up.

- /

51




/ 6. Error spending Delayed Response GSTs \

In practice, information levels at interim analyses and decision analyses are

unpredictable.

In the error spending approach, the type | error probability to be spent by stage k is
defined through a function f(Z).

Similarly, the type 1l probability to be spent by stage & is specified as g(Ik).

A target information level Z,,,,. is defined and recruitment stops when this is

reached (or will be reached with the responses from pipeline subjects).

HJ show how to construct error spending Delayed Response GSTs that protect

type | error rate exactly.

The attained power is close to its specified level as long as the information levels

take values similar to those assumed in planning the trial.

- /
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/ The p-family of error spending functions

HJ recommend error spending functions of the form

f(Z) =amin{l, (Z/Znax)’}, ¢9(Z) = Bmin{l, (Z/Zymax)"}

~

The efficiency of the resulting designs can be seen in our example with o« = 0.025,

power 0.9, K = 5 stages, nfi; = 100 and 1,4, = 110.

Values of F' achieved by p-family error spending designs

100

90~

80"

70- —error spending
——optimal

60 0.1 0.2 0.3 0.4 0.5
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/ 7. Further topics

A variety of optimality criteria

HJ show how designs can be optimised for criteria involving both the number of

subjects recruited and the time to a final decision.

The nature of a specific clinical trial will determine which approaches may be

possible, depending on whether:

All pipeline subjects must be followed to the response time,
Investigators may decide whether to wait and observe pipeline subjects,

Data from (some) pipeline subjects will not be “valid” and cannot be used.

Discussants of the HJ paper commented on the nature of “pipeline” data and HJ

categorised possible types of situation in their response.

N

/
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/ Further topics

Inference on termination

HJ explain how to construct p-values and confidence intervals, with the usual

frequentist properties, on termination of a Delayed Response GST.

These methods can also provide median unbiased point estimates.

The bias of maximum likelihood estimates can be reduced following the approach
which Whitehead (Biometrika, 1986) introduced for standard GSTs.

Non-binding futility boundaries

It is commonly required that a group sequential design should protect the type |

error rate, even if the trial may continue after crossing the “futility” boundary.

case.

N

We are currently working to extend our error spending methods to the “non-binding”

/
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/ Further topics \

Adaptive choice of group sizes in a Delayed Response GST

There have been many proposals for “sample size re-estimation” in response to

interim treatment effect estimates.

With an immediate response, these designs can be regarded as GSTs with the

added feature that the size of each group is data-dependent.

HJ derived optimal “adaptive” versions of 2-group Delayed Response GSTs
designs. They found only minor benefits were achieved by adapting group sizes in

response to treatment effect estimates.

Faldum & Hommel (J. Biopharm. Statistics, 2007) and Mehta & Pocock (Statistics in
Medicine, 2011) present 2-group designs with sample size re-estimation and a

delayed response: we shall explore how the Mehta-Pocock designs compare to

HJ’'s Delayed Response GSTs, both non-adaptive and adaptive.

- /
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/ Summary of Delayed Response GSTs \

We have described group sequential tests for a delayed response (DR GSTSs).

These designs offer (nearly) all the usual feature of GSTs for an immediate

response.

We can design DR GSTs to be as efficient as possible, subject to the specified

constraints.

Understanding the impact of a delayed response, we can take steps to improve
efficiency, for example, by using short term end-points to capture interim information

from pipeline subjects.

The methods are ready to be considered for application — which will, no doubt,

raise further challenges.

- /
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/ 8. Adaptive and Group Sequential trial designs: \

Choosing the sample size of a clinical trial

We now return to a fundamental issue in clinical trial design — the sample size.

Let & denote the effect size of a new treatment, i.e., the difference in mean

response between the new treatment and the control.

Sample size is determined by:

Type | error rate <, and

Treatment effect size @ = A at which power 1 — (3 is to be achieved.

Dispute may arise over the choice of A.

Should investigators use:

The minimum effect of interest A1, or

\ The anticipated effect size Ag ? /
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Choosing the sample size for a trial

Power curves for designs with fixed sample sizes of 500 and 1000.

With 1000 subjects, there is good power at the minimum clinical effect, /1.

With only 500 subjects, good power is achieved at the more optimistic /.

Power

1.0

0.8

0.6

0.4

0.2

0.0

H n=1000
H n=500

\If@ — /\y, a sample size of 1000 is unnecessarily high.
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/ Designing a trial with good power and sample size

In designing a clinical trial, we aim to

Protect the type | error rate,
Achieve sufficient power,

Use as small a sample size as possible.

Adaptive designs in this context often have the form:

Start with a fixed sample size design,
Examine interim data,

Add observations to improve power where most appropriate.

In contrast, Group Sequential designs require one to:

Specify the desired type | error and power function,

Set maximum sample size a little higher than the fixed sample size,

k Stop the trial early if data support this.
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/ Designing a clinical trial

Power curve Eg¢(N) curves
g - 2 .
g < | W 3
S T T T T T T § i T T T T T
1 0 1 2 3 4 1 0 1 2 3 4
0 0

All designs, including adaptive procedures, have overall power curves.

Designs with similar power curves can be compared in terms of their average

sample size functions, Fy(N).

@Ie to specify the values of 6 under which early stopping is most desirable.

Even if there is uncertainty about the likely treatment effect, investigators should be

/
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/ Adaptive design or GST?

Jennison & Turnbull (JT) have compared group sequential tests (GSTs) and

adaptive designs. See, for example, papers in

Statistics in Medicine (2003, 2006), Biometrika (2006), Biometrics (2006)

JT conclude that:

GSTs are excellent

They do what is required with low expected sample sizes,

Error spending versions handle unpredictable group sizes, etc.

Adaptive designs can be as good as GSTs

However, many published adaptive designs require higher expected

sample sizes to achieve the same power as good GSTs.

N

/
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/ Re-visiting the Group Sequential vs Adaptive question \

The paper by Mehta & Pocock (Statistics in Medicine, 2011)

“Adaptive increase in sample size when interim results are promising:

A practical guide with examples”
has re-opened this question.

Conclusions of Mehta & Pocock (MP) are counter to the findings we have reported.

An important feature:

In MP’s first example, response is measured some time after treatment.

Thus, at an interim analysis, many patients have been treated but are yet to

produce a response.

Delayed responses are common — yet, prior to Hampson & Jennison (2013),

\ they received little attention in the GST literature. /
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/ Re-visiting the Group Sequential vs Adaptive question \

We shall consider the first example presented by Mehta & Pocock and describe

their proposed trial design.

We shall describe alternative fixed and group sequential designs which could be
used for this example: these designs achieve the same power curves with smaller

expected sample sizes.

We shall discuss how one can improve Mehta & Pocock’s design while working in

their overall framework.

We then extend this framework to obtain a wider class of designs.

We relate the 2-group designs obtained at the end of this development to the

Delayed Response GSTs of Hampson & Jennison (2013).

- /
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/ 9. Mehta & Pocock’s example \

MP’s Example 1 concerns a Phase 3 trial of a new treatment for schizophrenia in

which a new drug is to be compared to an active comparator.

The efficacy endpoint is improvement in the Negative Symptoms Assessment score

from baseline to week 26.
Responses are

Ygi ~ N(up,0?), i=1,2, ..., onthe new treatment,

Yai ~ N(pa,0%), i=1,2, ..., onthe comparator treatment.
where 0? = 7.5°.

The treatment effect is

and we estimate 6 by




/ Mehta & Pocock’s Example

The initial plan is for a total of ng = 442 patients, 221 on each treatment.

In testing Hp: 6 < 0 vs 8 > 0, the final analysis will reject Hy if Z5

_ 0(no)
V{402 /na}

where é(ng) is the standard estimate of 6 at the final analysis.

Z > 1.96,

This design and analysis gives type | error rate 0.025 and power 0.8 at 6 = 2.

Higher power, e.g., power 0.8 at # = 1.6, would be desirable.

But, the sponsors will only increase sample size if interim results are “promising”.

An interim analysis is planned after observing n; = 208 responses.
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/ Increasing the sample size \

At the interim analysis with n1 = 208 observed responses, the estimated

treatment effect is

AN —_— JES—

61(n1) = Yp(ni) —Ya(n)
and R
_ 61(nq)
V{do?/ni}

A

At the time of this analysis, a further 208 subjects will have been treated for less

than 26 weeks. Their responses will be observed in due course.

As recruitment continues, we use the value of Z7 in choosing a new total sample

size between the original figure of 442 and a maximum of 884.

In deciding whether to increase the sample size, MP consider conditional power of

Kthe original test (with ny = 442 observations), given the observed value of 2. /
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/ Increasing the sample size \

Definition
The conditional power C'Py(z1) is the probability the final test, with no = 442

observations, rejects H, given Z7; = z; and effect size 0,

CPQ(Zl) = P@{ZQ > 1.96 | 1 = 21}.

MP’s adaptive design is based on conditional power under 6 = él.

They divide the range of z; into three regions:

Favourable CPQA (z1) > 0.8 Continue to ny = 442,
1
Promising 0.365 < CPé (z1) < 0.8 Increase no,
1
Unfavourable CPQA (z1) < 0.365 Continue to no = 442.
1

When increasing sample size in the promising zone, the final test of Hy must

wotect the type | error rate at level . /
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/ The Chen, DeMets & Lan method \

References:

Chen, DeMets & Lan, Statistics in Medicine (2004),
Gao, Ware & Mehta, J. Biopharmaceutical Statistics (2008).

Suppose at interim analysis 1, the final sample size is increased to n5 > ng and
one wishes to carry out a final test without adjustment for this adaptation.

Thus, Hj will be rejected if

_ )

- V{4o?/n3}

Chen, DeMets & Lan (CDL) show that if n5 is only increased when

CPé1 (z1) > 0.5, 1)

then the type | error probability will not increase.

\So, the “standard” test of Hy can be used if ny is only increased when (1) holds. /
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/ Gao’s extension of the CDL method \

Gao et al. extended the CDL method to lower values of 61, as long as a sufficiently

high value is chosen for the final sample size, n5.

B Allowable \;\alues of N for CDL+Gao framework
B Density of 8, (6 =1.6)

800 1000 1200

Final N
0

400

200
|

With an upper limit of n5 = 884, the final sample sizes permitted by the CDL+Gao

/

approach are as shown in the figure.

kl\low, ng can be increased when CPQA (21) is as low as 0.365.
1
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/ 10. The Mehta-Pocock design \

In their “promising zone”, MP increase 119 to achieve conditional power 0.8 under

0 = 51, truncating this value to 884 if it is larger than that.

m M-P adapt/i\ve design
B Density of 8, (8 =1.6)

800 1000 1200

Final N

600
|

400

200
|

0
|

Comparison with the distribution of €1 under @ = 1.6 shows that increases in 1

occur in a region of quite small probability.

Q]e distribution of 51 under other values of @ is shifted but has the same variancej
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/ Properties of the MP design \

The increase in N9 in the “promising zone” has increased the power curve a little.

1.0

0.6 0.8

Power

0.4

0.2

0.0
|

Given the limited range of values of 61 for which ns is increased, only a small

improvement in power can be expected.

Although it was stated that power 0.8 at # = 1.6 would be desirable, power at this

foect size has only risen from 0.61 to 0.66. /
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/ Properties of the MP design \

The MP design has Fy(IV) close to 500 at § = 1.5, compared to the original
design’s Ey(IN) = 442 at all values of 6.

480 500
| |

460
|

E(N)
440

420
|

400
|

380
|

We could increase the sample size to give higher conditional power under § = 04

or raise the maximum sample size beyond 884 — but such modifications give small

Qlditional power at the cost of a large increase in (V). /
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/ 11. Alternatives to the MP design \

Suppose we are satisfied with the overall power function attained by MP’s design.

The same power curve can be achieved by other designs.

A fixed sample design

Emerson, Levin & Emerson (Statistics in Medicine, 2011) note that the same power

is achieved by a fixed sample size study with 490 subjects.

This looks like an attractive option since, for effect sizes 0 between 0.8 and 2.0, the

expected sample size of the MP design is greater than 490.

There is more to the sample size distribution than ~ FEg(IV)

High variance in IV is usually regarded as undesirable, so the wide variation in /N

for the MP design is a negative feature.

Perhaps variation in /V is viewed more positively when investors in a small bio-tech
Q)mpany are thinking of adding resource to a study when it is most helpful? /
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/ A group sequential test \

Despite the delayed response, we could apply a “standard” group sequential design.
Suppose an interim analysis takes place after 208 observed responses.

If the trial stops at this analysis, the sample size is taken as 416, counting all

subjects treated thus far, even though only 208 have provided a response.
We consider an error spending design in the p-family (JT 2000, Ch. 7):
At analysis 1  after 208 responses
If Z1 > 2.54 Stop, reject Hy
If 71 <0.12 Stop, accept Hy
If 0.12 < Z7 < 2.54 Continue

At analysis 2  after 514 responses

If Zo > 2.00 Reject H

k If 79 < 2.00 Accept H /
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/Sample size rules for MP, fixed and group sequential designs

Sample size for the MP design varies between 442 and 884.
The fixed sample size design has 490 observations.

The group sequential test can stop with a sample size of 416 or 514.

Since 514 = 490 x 1.05, it has an “inflation factor’ of & = 1.05.

B M-P adaptive design
B Fixed N=490

800 1000 1200

first analysis.

Final N
600
| |

400
|

° of subjects enrolled.

For the GST, the dashed line shows

m GSTR-105 the 208 responses observed at the

When a decision is made based on
these 208 responses, the sample size

g4 is counted as /N = 416, the number

~

/
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Power

1.0

0.6 0.8

0.4

0.2

0.0

Comparison of designs

Power curves

B M-P adaptive design
B Fixed N=490
B GSTR=1.05

E(N)

440

480 500

460

400 420

380

Ey(N) curves

B M-P adaptive design
B Fixed N=490
B GSTR=1.05

All three designs have essentially the same power curve.
Clearly, it is quite possible to improve on the E@(N) curve of the MP design.

NB, Mehta & Pocock discuss two-stage group sequential designs but they only

Qesent an example with much higher power (and, thus, higher sample size).
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/ Can we improve the trial design within the MP framework? \

Why does the MP design have high EQ(N) for its achieved power?

Mehta & Pocock describe their method as adding observations in situations where

they will do the most good:

This seems a good idea, but the results are not so great,

Can we work out how to do this effectively?
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/12. Deriving efficient sample size rules in the MP framework \

We stay with MP’s example and retain the basic elements of their design.

The interim analysis takes place after 208 observed responses.

A final sample size n5 is chosen based on 04 (or equivalently Z1).

Final N
600

1000 1200

800

400

200

0

W Allowable values of N for CDL+Gao framework

are allowed.

for adaptation.

Values of n4 € [442, 884] that
satisfy the CDL+Gao conditions

At the final analysis, we reject
Hy it Z5 > 1.96, where Z5

Is calculated without adjustment

/
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/ Efficient sample size rules in the MP framework \

We shall assess the conditional power that an increase in sample size achieves.

Suppose Z1 = 21 and we are considering a final sample size n5 with

A

0(n2)
Vido?/na}

Zy(ng) =
and conditional power under § = é
CPj(z1,n3) = Py{Z2(n3) > 1.96 | Z1 = 21§

Setting 7y as a “rate of exchange” between sample size and power, we shall:

Choose n; to optimise a combined objective
C’Pé(zl, n,) — v(ngy — 442).

We shall do this with 6 = 1.6, a value where we wish to “buy” additional power.

Q)r consistency, we use the same ~y when considering different values of z1. /
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/ An overall optimality property \

The rule that maximises C’Pé(zl, n3(z1)) — yni(z1) for every z; also

maximises, unconditionally,

P,_; (Reject Hy) — ’yEé(N).
This can be seen by writing P,_ 5 (Reject Hy) — ’yEé(N) as

[ (€1 m3(e0)) = i)} f0) o,

where fé(zl) denotes the density of Z; under 0 = f, and noting that we have
minimised the integrand for each z.
We shall set ¥ = 0.14/(4 o) to achieve the same power curve as the MP design.

So, the resulting procedure will have minimum possible Fg—1 ¢(/N) among all
Qesigns following the CDL+Gao framework that achieve power 0.658 at 6 = 1.6./
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/ Plots for 6 = 1.6, v = 0.14/(4 02) and 6, = 1.5

1.0

B Conditional power
B Combined objective

0.9
|
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0.7
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0.5

I I I I
500 600 700 800 900

Final N

The objective C’Pé(zl, n3y) — v(n5 — 442) has a maximum at ny = 654.

\This value is similar to MP’s choice of n5 when 6; = 1.5.
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/ Plots for 6 = 1.6, v = 0.14/(4 02) and 6, = 1.3 \

1.0

B Conditional power
B Combined objective
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Final N

The conditional power curve is steeper and the optimum occurs at a higher n5.

The objective C’Pé(zl, nsy) — v(ns — 442) is maximised at ny = 707.

chis case, MP’s design takes the maximum permitted value of n5 = 884. /
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/Optimal sample size rule for @ = 1.6 and ~+=0.14/(4 0'2)\

B M-P adaptive design
B CDL+Gao Min E(N) at 1.6
B CDL+Gao bound

800 1000 1200

600
|

Final N

400
|
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|

200
|

This rule gives power 0.658 at § = 1.6, the same as the MP design.

Decisions about the final sample size are based on a consistent comparison of the

value of higher power and the cost of additional observations.

\As 0, decreases, sample size increases less steeply than for the MP design. /
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Efficient sample size rules in the MP framework

Power curves

E(N)
440

B M-P adaptive design
B CDL+Gao Min E(N) at 1.6
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Eo(N) curves

B M-P adaptive design
B CDL+Gao Min E(N) at 1.6

With the type | error rate at @ = O fixed at 0.025, matching the MP design’s power

~

at one value of 0 implies matching the whole power curve.

Our optimised design has the same power curve as the MP design and lower
Ey(N) (just about) at all 6 values.

The reductions in EQ(N) are modest — but given the optimality property of the
Qampling rule in the Mehta & Pocock framework, this is as good as it gets.

/
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/ Further efficiency gains \

Our new, optimised procedure still has higher Fy (V) than the two-stage GST that

ignores (but is charged for) pipeline data.

500
|

B M-P adaptive design
B CDL+Gao Min E(N) at 1.6
B CDL+Gao bound
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|
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B GSTR=1.05
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|

Final N
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| |

400
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| |

Shapes of optimised sample size rules suggest it would help to increase n5 at

lower values of #1 — but this is not permitted in the CDL+Gao framework.

The Conditional Probability of Rejection  principle, or equivalently using a Bauer
\&K(’jhne (Biometrics, 1994) Combination Test does allow such adaptations. /
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/ 13. Using the Conditional Probability of Rejection princip le \

Reference: Proschan & Hunsberger, (Biometrics, 1995)
On observing 01, choose a new final sample size ns.

Then, set the critical value for Z5(n3) at the final analysis to maintain the

Conditional Probability of Rejection (CPR) under & = 0 in the original design.

The overall type | error rate is the integral of the conditional type | error rate, and

this remains the same.

This can also be regarded as a “combination test” Bauer & Kohne (1994):

We reject Hy if w121 + w2Z2 > 1.96, where Z1 is as before, Zg is based on
the new data in Stage 2, w1 and w9 are pre-specified, and w% + w% = 1.

We can follow our previous strategy in this new framework and set n5 to maximise
CPj(z1,n3) — 7v(n5 — 442). Again, we shall use § = 1.6.

The resulting design has the minimum value of Eé(N) among all designs in this

&arger class that achieve the same power under § = 0. /
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/ Optimal sample size rule for a CPR design with 0 =1.6 \

B M-P adaptive design
B CPR Min E(N) at 1.6

800 1000 1200
|

Final N

600
|

400
|

200
|

0
l

The rule with v = 0.25/(4 ) matches the MP test's power of 0.658 at § = 1.6,
Shapes of optimised sample size rules are very different from the MP design.

The best opportunities for investing additional resource are not in Mehta &

kPocock’s “promising zone”. /
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/ Efficient sample size rules in the CPR framework \

Eo(N) curves
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B M-P adaptive design
B CDL+Gao Min E(N) at 1.6
B CPRMinE(N) at 1.6
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The CPR principle allows sample size increases for 81 below the CDL+Gao region.

\This leads to a useful reduction in Fy(N) atf = 1.6. /
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/ Further extensions \

1. We can allow recruitment to be terminated at the interim analysis, so the
minimum final sample size is no = 416, rather than 442. (Such a reduction in final

sample size is not allowed in the CDL approach.)

2. We can use a general conditional type | error function (Proschan & Hunsberger,
1995) or, equivalently, a general Bauer & Kohne (1994) combination rule.

3. We can minimise other sample size criteria, such as a weighted sum or integral

> wi By (N) o / w(6) . (N) db.

The resulting designs deal neatly with the “pipeline” subjects arising when there is a

delayed response.

They will give the best possible sampling and decision rules with n; = 208 and
N9 in the range 416 to 884.

QVe could also aim for higher power, now we have a good way to achieve this. /
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/A general sampling rule with early termination of recruitme nt \

We have followed (1) and (2) above in minimising Fg—1.¢(N).

Sample size rule Eo(N) curves
i B M-P adaptive design
o B General rule Min E(N) at 1.6, min N=416
S 3
o <
-
o | § |
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® o Z
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8 | o B M-P adaptive design
N =) B General rule Min E(N) at 1.6, min N=416
o o
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ll\
o
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w
N
iR
o
~
N}
w
S

Reductions in Ey(N) are mostly due to (1), which allows n to be limited to 416.

KThe highest final sample sizes arise at values of #1 below MP’s “promising zone”./
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/14. Relation between MP designs and Delayed Response GSTs \

Consider using Hampson & Jennison’s (2013) “Delayed Response GSTs” when
there are just two analyses.

Either recruitment stops at analysis 1 and the final analysis occurs when all

pipeline subjects have been observed,

Or, an additional group of subjects is recruited and the final analysis has

pipeline subjects plus these new subjects.

This is a special case of the designs we have been developing where only two
values of no are possible.

HJ optimised their DR GSTs to minimise criteria such as Fg—1.6(N).

HJ also derived optimal adaptive DR GSTs which allow n» to take any value, up to

a specified maximum: here, the class of possible designs is exactly the same as in

kour extension of the MP framework. /
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/ Sample size rules for designs minimising ~ Fg—1.6(IV) \

The green line is for the optimal design in

1200

B M-P adaptive design

B e 16 our extension of the MP framework. The

1000

trial can stop with 416 patients; Stage 1

and Stage 2 data can be combined in any

Final N
600 800
1 1

way that protects type | error rate c.

400
|

The optimal Adaptive DR GST has the

same sample size function — and the

200
|

o . j ) ; i same decision rule.

The red line is the sample size function for the non-adaptive DR GST which has two

possible final sample sizes, 416 and 517, and minimises Fg—1 ¢(IV).

The red line is seen to be a step function approximation to the continuous function

\defined by the green line. /
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/ Plot of FEg(IV) for the optimal DR GST \

The optimised non-adaptive DR GST has an almost identical Fg (V') curve to the
optimised adaptive design which uses the continuum of possible sample sizes.
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As JT (Biometrika, 2006) found for an immediate response, there is minimal benefit
Q)m fine-tuning the total sample size in response to interim data. /
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/ Relation between MP designs and Delayed Response GSTs \

For a trial with 2 stages, there is little difference in the operating characteristics of

A well-chosen design from our extension of the MP framework,
An optimised adaptive Delayed Response GST,

An optimised non-adaptive Delayed Response GST.

In practice, the fixed group sizes of the non-adaptive Delayed Response GST may

make it easier to plan and manage a trial.

In presenting their methods, Mehta & Pocock

Talk in terms of the appropriate sample size to complete the trial,

Avoid the notion of “reversing” a provisional decision,

\ Introduce the attractive terminology “the promising zone”. /
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15. Conclusions

1. MP use the Chen, DeMets & Lan (2004) approach, choosing sample

size by a conditional power rule: this does not yield very efficient designs.

We have developed MP’s idea of spending resources where they have the

greatest benefit — and obtained efficient adaptive designs.

If used well, the adaptive approach (start small, then ask for more) can

give good trial designs — but there are pitfalls to be avoided!

2. The optimal design in our most general extension of MP’s framework is

very similar to a “Delayed Response GST” (Hampson & Jennison, 2013).

Using a Delayed Response GST offers the benefits of established group
sequential methodology and its extensions, e.g., more than two analyses,

error spending designs.
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