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Plan of talk

1. Monitoring clinical trials

2. Sequential distribution theory

3. An optimal stopping problem

4. Numerical evaluation of stopping boundaries

5. Finding optimal group sequential designs

6. Related problems:

Adaptive choice of group sizes

Testing for either superiority or non-inferiority

Trials with delayed response
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1. Monitoring clinical trials

A clinical trial is run to compare a new treatment with an existing treatment or

placebo.

As the trial progresses, a Data and Safety Monitoring Board (DSMB) monitors

patient recruitment, treatment administration, and the responses observed at

interim points.

The DSMB can take actions in view of safety variables or secondary endpoints, for

example, to drop a treatment arm with a high dose level if this appears unsafe.

Response on the primary endpoint may indicate early termination of the study is

desirable, for either a positive or negative conclusion.
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The need for special methods

Multiple looks at accumulating data can lead to over-interpretation of interim results.

Armitage et al. (JRSS, A, 1969) report the overall type I error rate when applying

repeated significance tests at α = 0.05 to accumulating data:

Number of tests Error rate

1 0.05

2 0.08

3 0.11

5 0.14

10 0.19

Clearly, a different approach is needed to avoid inflation of the type I error rate.
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Formulating the problem

Let θ denote the “effect size”, a measure of the improvement in the new treatment

over the standard.

We shall test the null hypothesis H0: θ ≤ 0 against the alternative θ > 0.

Then, rejecting H0 allows us to conclude the new treatment is better than the

standard.

We allow type I error probability α for rejecting H0 when it is actually true.

We specify power 1 − β for the probability of (correctly) rejecting H0 when θ = δ.

Here, δ is, typically, the minimal clinically significant treatment difference.

The trial design, including the method of analysis and stopping rule, must be set up

to attain these error rates.
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An early example: The BHAT trial

DeMets et al. (Controlled Clinical Trials, 1984) report on the Beta-Blocker Heart

Attack Trial, which compared propanolol with placebo.

An “O’Brien and Fleming” stopping boundary was defined with overall type I error

probability 0.025.
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The trial stopped after the 6th of 7 planned analyses.
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Group sequential tests: Stopping for futility

Adding a lower boundary allows stopping when there is little chance of a positive

conclusion.
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Rosner & Tsiatis (Statistics in Medicine, 1989) carried out retrospective analyses of

72 cancer studies of the U.S. Eastern Co-operative Oncology Group.

If group sequential stopping rules had been applied, early stopping (mostly for

futility, i.e., to accept H0) could have occurred in around 80% of cases.
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Requirements for clinical trial designs

Regulatory bodies recommend group sequential designs to protect subjects in a

clinical trial and produce results as efficiently as possible.

We need designs which:

Achieve specified type I error rate and power,

Stop early, on average, under key parameter values,

Can be applied to a variety of response types.

We shall present distribution theory which shows that a common set of methods

can be applied to many data types.

To define efficient tests, we shall formulate and solve an optimal stopping problem.
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2. Sequential distribution theory

Our interest is in the parameter for the treatment effect, θ.

Let θ̂k denote the estimate of θ based on data at analysis k.

The information for θ at analysis k is

Ik = {Var(θ̂k)}−1, k = 1, . . . , K.

Canonical joint distribution of θ̂1, . . . , θ̂K

In many situations, θ̂1, . . . , θ̂K are approximately multivariate normal,

θ̂k ∼ N(θ, {Ik}−1), k = 1, . . . , K,

and

Cov(θ̂k1
, θ̂k2

) = Var(θ̂k2
) = {Ik2

}−1 for k1 < k2.
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Sequential distribution theory

The preceding results for the joint distribution of θ̂1, . . . , θ̂K can be demonstrated

directly for:

θ a single normal mean,

θ = µA − µB, comparing two normal means.

The results also apply when θ is a parameter in:

a general normal linear model,

a general model fitted by maximum likelihood (large sample theory),

a Cox proportional hazards regression model for survival data.

Thus, theory supports general comparisons, including:

crossover studies, analysis of longitudinal data, covariate adjustment.
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Explanation of the canonical joint distribution

The special correlation structure applies to all efficient, or asymptotically efficient,

unbiased estimators.

Proof

Suppose Var(θ̂2) 6= Cov(θ̂1, θ̂2).

At the second analysis, θ̃2 = θ̂2 + ǫ (θ̂2 − θ̂1) has expectation θ and variance

Var(θ̂2) + 2 ǫ Cov(θ̂2, θ̂2 − θ̂1) + ǫ2 Var(θ̂2 − θ̂1).

For small ǫ of opposite sign to Cov(θ̂2, θ̂2 − θ̂1) = {Var(θ̂2) − Cov(θ̂1, θ̂2)},

Var(θ̃2) < Var(θ̂2),

contradicting the assumption that θ̂2 is efficient.

(This argument is reminiscent of the proof of the Gauss-Markov theorem and,

indeed, the result is essentially equivalent.)
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Canonical joint distribution of z-statistics

In testing H0: θ = 0, the standardised statistic at analysis k is

Zk =
θ̂k

√

Var(θ̂k)
= θ̂k

√Ik.

For this, the distribution theory for θ̂1, . . . , θ̂K implies

(Z1, . . . , ZK) is multivariate normal,

Zk ∼ N(θ
√Ik, 1), k = 1, . . . , K,

Cov(Zk1
, Zk2

) =
√

Ik1
/Ik2

for k1 < k2.
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Canonical joint distribution of score statistics

The general theory also implies that score statistics, Sk = Zk

√Ik, are

multivariate normal with

Sk ∼ N(θ Ik, Ik), k = 1, . . . , K.

The score statistics possess the “independent increments” property,

Cov(Sk − Sk−1, Sk′ − Sk′−1) = 0 for k 6= k′.

It can be helpful to know that the score statistics behave as Brownian motion with

drift θ observed at times I1, . . . , IK .

References:

Jennison & Turnbull, JASA, 1997; Scharfstein, Tsiatis & Robins, JASA, 1997.
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3. An optimal stopping problem

Consider a trial designed to test H0: θ ≤ 0 vs θ > 0, with:

Type I error rate α,

Power 1 − β at θ = δ,

Up to K analyses.

A fixed sample test needs information

Ifix = {Φ−1(α) + Φ−1(β)}2/δ2.

We set the maximum information to be

Imax = R Ifix,

where R > 1, with equal increments between analyses, so

Ik = (k/K) Imax, k = 1, . . . , K.
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Optimal group sequential tests

The error rates impose two constraints on the 2K − 1 boundary points — leaving a

high dimensional space of possible boundaries.
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We shall look for a boundary with an optimality property, specifically, minimising

{E0(I) + Eδ(I)}/2.
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4. Computations for group sequential tests
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We need to be able to calculate the probabilities of basic events such as

a1 < Z1 < b1, a2 < Z2 < b2, Z3 > b3.

Combining such probabilities gives key properties, such as Prθ{Reject H0}, etc.
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Computations for group sequential tests

For a one-sided test with K analyses, define the events

Ak = {a1 < Z1 < b1, . . . , ak−1 < Zk−1 < bk−1, Zk < ak}

and

Rk = {a1 < Z1 < b1, . . . , ak−1 < Zk−1 < bk−1, Zk > bk}.

Then

Pr{Accept H0} = Pr{A1} + . . . + Pr{AK},

P r{Reject H0} = Pr{R1} + . . . + Pr{RK}

and the observed information on termination is

E{I} = (Pr{A1} + Pr{R1}) I1 + . . .

+ (Pr{AK} + Pr{RK}) IK .
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Recursive formulae

Armitage, McPherson & Rowe (JRSS, A, 1969) present recursive formulae for

densities of score statistics at interim analyses.

On the Z-statistic scale:

The density f1(z1) of Z1 is that of a N(θ
√I1, 1) variate.

The joint distribution of the Zks implies that

Z2|Z1 ∼ N(θ(I2 − I1)/
√I2 + Z1

√
(I1/I2), (I2 − I1)/I2).

Denote this conditional density by f2(z2|z1).

Since analysis 2 is only reached if a1 < Z1 < b1, the sub-density for Z2 is

f2(z2) =

∫ b1

a1

f1(z1) f2(z2|z1) dz1.
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Recursive formulae

In the general recursive step, the sub-density for Zk at analysis k is

fk(zk) =

∫ bk−1

ak−1

fk−1(zk−1) fk(zk|zk−1) dzk−1,

where fk(zk|zk−1) is the density of the distribution

N(θ(Ik−Ik−1)/
√Ik + Zk−1

√
(Ik−1/Ik), (Ik−Ik−1)/Ik).

Numerical quadrature can be used to evaluate each of f1, f2, etc., in succession

on a grid of points. Then, for example, one can compute

Pr{a1 < Z1 < b1, a2 < Z2 < b2, Z3 > b3} =

∫ b2

a2

f2(z2) Φ

(

θ(I3 − I2) + z2
√I2 − b3

√I3√
(I3 − I2)

)

dz2.
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Direct numerical integration

Alternatively , we can write probabilities as nested integrals, e.g.,

Pr{a1 < Z1 < b1, a2 < Z2 < b2, Z3 > b3} =

∫ b1

a1

∫ b2

a2

∫

∞

b3

f1(z1) f2(z2|z1) f3(z3|z2) dz3 dz2 dz1.

Applying numerical integration, we replace each integral by a sum of the form

∫ b

a

f(z) dz =

n
∑

i=1

w(i) f(z(i)),

where z(1), . . . , z(n) is a grid of points from a to b.
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Direct numerical integration

Thus, we have

Pr{a1 < Z1 < b1, a2 < Z2 < b2, Z3 > b3} ≈

n1
∑

i1=1

n2
∑

i2=1

n3
∑

i3=1

w1(i1) f1(z1(i1)) w2(i2)f2(z2(i2)|z1(i1))

w3(i3) f3(z3(i3)|z2(i2)).

Multiple integrations and summations will arise, e.g., for an outcome at analysis k,

n1
∑

i1=1

n2
∑

i2=1

. . .

nk
∑

ik=1

w1(i1) f1(z1(i1)) w2(i2)f2(z2(i2)|z1(i1))

. . . wk(ik) fk(zk(ik)|zk−1(ik−1)).
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Direct numerical integration

In the multiple summation

n1
∑

i1=1

n2
∑

i2=1

. . .

nk
∑

ik=1

w1(i1) f1(z1(i1)) w2(i2)f2(z2(i2)|z1(i1))

. . . wk(ik) fk(zk(ik)|zk−1(ik−1)),

the structure of the k nested summations is such that the computation required is of

the order of k − 1 double summations.

Using Simpson’s rule with 100 to 200 grid points per integral can give accuracy to 5

or 6 decimal places.

For details of efficient sets of grid points, see Ch. 19 of Group Sequential Methods

with Applications to Clinical Trials by Jennison and Turnbull (2000).
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5. Finding optimal group sequential tests

Recall we wish to find a group sequential test of H0: θ ≤ 0 vs θ > 0 with

Prθ=0{Reject H0} = α,

Prθ=δ{Accept H0} = β,

Analyses at Ik = (k/K) Imax, k = 1, . . . , K,

Minimum possible value of {E0(I) + Eδ(I)}/2.

We deal with the constraints on error rates by introducing Lagrangian multipliers,

creating the unconstrained problem of minimising

{E0(I) + Eδ(I)}/2 + λ1 Prθ=0{Reject H0} + λ2 Prθ=δ{Accept H0}.

We shall find a pair of multipliers (λ1, λ2) such that the solution has type I and II

error rates α and β, then this design will solve the constrained problem too.
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Bayesian interpretation of the Lagrangian approach

Suppose we put a prior distribution on θ with Pr{θ = 0} = Pr{θ = δ} = 0.5

and specify costs of

1 per unit of information observed,

2 λ1 for rejecting H0 when θ = 0,

2 λ2 for accepting H0 when θ = δ.

Then, the total Bayes risk is

{E0(I) + Eδ(I)}/2 + λ1 Prθ=0{Reject H0} + λ2 Prθ=δ{Accept H0},

just as in the Lagrangian problem.

The advantage of the Bayes interpretation is that it is easier to see how to solve the

problem by techniques of “Dynamic Programming” or “Backwards Induction”.
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Solution by Dynamic Programming

Denote the posterior distribution of θ given Zk = zk at analysis k by

p(k)(θ|zk), θ = 0, δ.

At the final analysis, K

There is no further sampling cost, so compare decisions

Reject H0: E(Cost) = 2 λ1 p(K)(0|zK),

Accept H0: E(Cost) = 2 λ2 p(K)(δ|zK).

The boundary point aK is the value of zK where these expected losses are equal.

The optimum decision rule is to reject H0 for ZK > aK .
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Dynamic Programming

At analysis K − 1

-
IIK−1 IK

6
Zk

•aK×
ZK−1

If the trial stops at this analysis, there is no further cost of sampling and the

expected additional cost is

Reject H0: 2 λ1 p(K−1)(0|zK−1),

Accept H0: 2 λ2 p(K−1)(δ|zK−1).
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At analysis K − 1

If the trial continues to analysis K , the expected additional cost is

1 × (IK − IK−1)

+ 2 λ1 p(K−1)(0|zK−1) Prθ=0{ZK > aK |ZK−1 = zK−1}

+ 2 λ2 p(K−1)(δ|zK−1) Prθ=δ{ZK < aK |ZK−1 = zK−1}.

We can now define the optimal boundary points:

Set bK−1 to be the value of zK−1 where

E(Cost of continuing) = E(Cost of stopping to reject H0),

Set aK−1 to be the value of zK−1 where

E(Cost of continuing) = E(Cost of stopping to accept H0).
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At analysis K − 1

-
IIK

6
Zk

•aK

×
bK−1

×
aK−1

Before leaving analysis K − 1, we set up a grid of points for use in numerical

integration over the range aK−1 to bK−1.

For each point, we sum over the posterior distribution of θ to calculate

β(K−1)(zK−1) = E(Additional cost when continuing |ZK−1 = zK−1).

We are now ready to move back to analysis K − 2.
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Dynamic Programming

At analysis K − 2

-

IIKIK−2

6
Zk

•aK×
ZK−2 ×

bK−1

×
aK−1

If the trial stops, the expected additional cost is

Reject H0: 2 λ1 p(K−2)(0|zK−2),

Accept H0: 2 λ2 p(K−2)(δ|zK−2).
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At analysis K − 2

If the trial continues to analysis K − 1, the expected additional cost is

1 × (IK−1 − IK−2)

+ 2 λ1 p(K−2)(0|zK−2) Prθ=0{ZK−1 > bK−1|ZK−2 = zK−2}

+ 2 λ2 p(K−2)(δ|zK−2) Prθ=δ{ZK−1 < aK−1|ZK−2 = zK−2}

+
∫ bK−1

aK−1

{p(K−2)(0|zK−2) f
(K−1)
0 (zK−1 | zK−2) +

p(K−2)(δ|zK−2)) f
(K−1)
δ (zK−1 | zK−2)} β(K−1)(zK−1)dzK−1,

where f
(K−1)
θ (zK−1 | zK−2) is the conditional density under θ of ZK−1 given

ZK−2 = zK−2.
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At analysis K − 2

Comparing costs for stopping and continuing at values of zK−2, we can now define

the optimal boundary points aK−2 and bK−2.

We then set up a grid of points for use in numerical integration over the range

aK−2 to bK−2.

For each point, we calculate

β(K−2)(zK−2) = E(Additional cost when continuing |ZK−2 = zK−2).

The process now moves back to analysis K − 3, and so on all the way back to

analysis 1.

Note: We have solved an “optimal stopping problem”.
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Solving the original problem

For any given (λ1, λ2) we can find the Bayes optimal design and compute its

type I and II error rates.

We now add another layer above this to search for a pair (λ1, λ2) for which type I

and type II error rates of the optimal design equal α and β respectively.

The resulting design will be the optimal group sequential test, with the specified

frequentist error rates, for our original problem.

Notes

1. Since the output of the Dynamic Programming routine will be fed into another

numerical algorithm, results should be of high accuracy. They should also possess

the continuity properties, etc., that the higher level search algorithm expects to see.

2. The method provides an explicit demonstration that good frequentist procedures

should be similar to Bayes procedures.
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Properties of optimal designs

One-sided tests, α = 0.025, 1 − β = 0.9, K analyses, Imax = R Ifix,

equal group sizes, minimising {E0(I) + Eδ(I)}/2.

Minimum values of {E0(I) + Eδ(I)}/2, as a percentage of Ifix

R Minimum

K 1.01 1.05 1.1 1.2 1.3 over R

2 80.8 74.7 73.2 73.7 75.8 73.0 at R=1.13

3 76.2 69.3 66.6 65.1 65.2 65.0 at R=1.23

5 72.2 65.2 62.2 59.8 59.0 58.8 at R=1.38

10 69.2 62.2 59.0 56.3 55.1 54.2 at R=1.6

20 67.8 60.6 57.5 54.6 53.3 51.7 at R=1.8

Note: E(I) ց as K ր but with diminishing returns,

E(I) ց as R ր up to a point.
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Role of optimal designs

The methods we have described can be applied with a variety of optimality criteria.

We can minimise general criteria of the form
∑

i wiEθi
(I).

Or, we can optimise
∫

f(θ) Eθ(I) dθ

for a normal density f .

As well as being available for direct use, optimal procedures serve as benchmarks

for other methods which may have additional useful features.

They provide calibration for simple parametric boundaries or “error spending tests”

which can handle uncertain information sequences.
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6. Related problems

(i) Adaptive choice of group sizes in a group sequential test

Schmitz (1993) proposed tests in which group sizes are chosen adaptively:

Initially, fix I1 and observe

S1 ∼ N(θI1, I1 ).

Choose I2 as a function of S1, then observe S2 where

S2 − S1 ∼ N( θ(I2 − I1), (I2 − I1) ).

Continue to choose I3 and observe S3, etc, etc.

The whole procedure, sampling rule and stopping rule, should achieve desired

overall type I error rate and power, and minimise a sample size criterion.
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Examples of “Schmitz” designs

Consider designs which test H0: θ = 0 versus H1: θ > 0 with

Type I error rate α = 0.025,

Power 1 − β = 0.9 at θ = δ.

We wish to minimise
∫

Eθ(I) f(θ) dθ,

where f(θ) is the density of a N(δ, δ2/4) distribution, subject to

Maximum information = 1.2 × Ifix,

Maximum number of analyses = K .

Jennison & Turnbull (Biometrika, 2006) define and solve Bayes decision problems

to find optimal Schmitz designs.
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Examples of “Schmitz” designs

Optimal average E(I) as a percentage of the fixed sample information.

Optimal adaptive Optimal non-adaptive, Optimal non-adaptive,

K design (Schmitz) optimised group sizes equal group sizes

2 72.5 73.2 74.8

3 64.8 65.6 66.1

4 61.2 62.4 62.7

5 59.2 60.5 60.9

10 55.9 57.2 57.5

The Schmitz procedures are complex and their efficiency gains are slight.

These results and the nature of the optimal adaptive designs shed light on recent

proposals for sample size re-estimation in “adaptive” clinical trials.
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Related problems

(ii) Testing for either superiority or non-inferiority

When there is already an accepted treatment for a condition, it is not appropriate to

test a new treatment against placebo.

A trial using the standard treatment as an active control has two positive outcomes:

Showing the new treatment is superior to the current standard,

Showing the new treatment is non-inferior to the standard.

Investigators may start a trial intending to show superiority, then decide to adapt to

a new goal of non-inferiority if results are not as good as expected.

Having two hypotheses is not an issue as the two tests are nested:

Superiority — Null hypothesis: θ ≤ 0,

Non-inferiority — Null hypothesis: θ ≤ −d.
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Testing for superiority and non-inferiority

Differing sample size requirements

Wang, Hung, Tsong & Cui (Statistics in Medicine, 2001) note the non-inferiority

margin d is often smaller than the effect size δ at which power for declaring

superiority is specified.

Thus, a larger sample size is needed to test adequately for non-inferiority.

If early data indicate that the key issue is to test for non-inferiority, one may wish to

increase the overall sample size.

Adaptive re-design

Wang et al. propose a group sequential test with group size determined by the

power for superiority.

They then use the adaptive method of Cui, Hung & Wang (Biometrics, 1999) to

increase group sizes if interest shifts to proving non-inferiority.
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Testing for superiority and non-inferiority

A non-adaptive group sequential approach

One can embed testing for both superiority and non-inferiority in a group sequential

design.

Early stopping may be appropriate:

to reject H0,S : θ ≤ 0 (establishing superiority),

to accept H0,NI : θ ≤ −d (failing even to show non-inferiority),

to declare non-inferiority only.

If power for declaring superiority is set at a higher effect size, δ, than the margin of

non-inferiority, d, the stopping rule for declaring superiority will be more aggressive.
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Testing for superiority and non-inferiority

A group sequential design to test for either Superiority or Non-inferiority can have

the general form:
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In work with Fredrik Öhrn (Statistics in Medicine, 2010), we derived designs which

minimise expected sample size while satisfying four error rate constraints.

Again, we define Bayes decision problems, solve these by Dynamic Programming,

and search for costs such that the optimal procedure has specified error rates.
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Testing for superiority and non-inferiority
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The asymmetry of these designs is important when fixed sample sizes needed for

superiority and non-inferiority goals are different.

Optimal designs can be used in their own right.

They also provide a benchmark against which to judge other proposals.

The design leads to larger sample sizes when the issue is to test between inferiority

and non-inferiority: there is little further benefit in choosing group sizes adaptively.
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Related problems

(iii) Group sequential tests for a delayed response

In many trials, response is measured after some period of time, e.g., change in a

measurement from baseline to 4 months after treatment.

There can be further delays in validating and analysing responses.

Thus, after a group sequential test stops, one should expect additional data from

“pipeline” subjects who have entered the study but not yet responded.

There has been some limited work on “adjusting” the final analysis of a trial to

incorporate responses obtained after termination.

In recent work with Lisa Hampson (JRSS B, 2013), we have considered the

derivation of group sequential designs which recognise there will be a delay in

observing data.
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Group sequential tests for a delayed response

A formal procedure terminates the trial in two stages:

1. Cease recruitment of new patients,

2. Wait for responses from all existing subjects, then make a final decision.

-

6

I

Zk

I1 Ĩ1 I2 Ĩ2 I3 Ĩ3 Ĩ4

•

•

•

•

•

•

Exiting the boundary upwards or downwards at Ik indicates the likely decision.

But, the full data at Ĩk, including delayed responses, determines the final outcome.
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Group sequential tests for a delayed response

For a particular sequence of observed responses, we apply boundary points at a

sequence of information levels of the form

I1, . . . , Ik, Ĩk.

Here, recruitment ceases at the kth analysis and the final decision is made with

extra “pipeline” data bringing the information up to Ĩk.

-

6

I

Zk

I1 I2 Ĩ2

•

•

×
•

•

×
×
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Group sequential tests for a delayed response

We have created Bayes problems and applied Dynamic Programming to find

optimal delayed-response designs of this type for a variety of criteria.

Brief summary of results

Some of the benefits of group sequential tests in reducing expected sample size are

lost when response is subject to delay.

The impact depends on the ratio r of the number of responses “in the pipeline” to

the total fixed sample size.

Suppose a fixed sample test would need N = 100 observations.

A group sequential design with 5 analyses could have E(N) ≈ 60.

With r = 0.2, the optimal design has E(N) ≈ 80 — halving the benefits of

sequential testing.
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Using a second, rapidly observed endpoint

Suppose, however, that a second endpoint can be observed more rapidly and this

has a high correlation with the primary endpoint.

We can use this information and fit a model for both endpoints which incorporates

this correlation.

Then, the estimate of the primary endpoint gains in accuracy and information

increases.

In the previous example, with a correlation between endpoints of 0.7, we find

E(N) ≈ 70 — so the benefits of group sequential testing are largely restored.
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7. Conclusions

• The monitoring of clinical trials poses a range of problems of statistical

inference and optimal design.

• A general distribution theory gives a basis for generic methodology.

• Using Dynamic Programming to solve specially constructed Bayes decision

problems provides a route to deriving optimal designs.

• This methodology can be developed to solve a variety of additional problems

of practical significance.
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