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Group sequential monitoring of clinical trials

Consider a clinical trial comparing a new treatment against a control.

Let the treatment effect, θ, be the difference in average response between
the new treatment and control.

We can design a superiority trial to test

H0: θ ≤ 0 against θ > 0

with one-sided type I error rate α and power 1 − β at θ = δ.

In a group sequential design, we monitor standardised test statistics Zk at
analyses k = 1, 2, . . . .

The stopping rule allows an early decision to reject H0 or accept H0.
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A group sequential test (GST)

A group sequential boundary for testing H0: θ ≤ 0 vs θ > 0
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Here, the trial stops and rejects H0 at the third of five analyses.

Sequential testing can reduce expected sample size to around 60% or 70%
of that of a fixed sample size design.
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The problem of delayed responses

Example A: Cholesterol reduction after 4 weeks of treatment

In this example, there is a delay of four weeks between the start of treatment
and observation of the primary endpoint.

At each interim analysis we expect about 16 subjects to be “in the pipeline”,
that is, to have started treatment but not yet provided a response.

If a group sequential test reaches its conclusion at an interim analysis, one
would still expect investigators to follow up the pipeline subjects and observe
their responses.

How should these data be analysed?
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The problem of delayed responses

A possible outcome for the cholesterol reduction trial of Example A
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Suppose Z3 = 2.4, exceeding the boundary value of 2.3.

The trial stops but, with the pipeline data included, Z = 2.1.

Can the investigators claim significance at level α?
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Using short term endpoints in Delayed Response
GSTs

We shall show how to design a Delayed Response Group Sequential Test
which makes the best possible use of “pipeline” data.

Nevertheless, we cannot achieve all of the reductions in expected sample
size that are possible for an immediate response.

We therefore seek ways to recover some of this lost efficiency.

One way to do this is by fitting a joint model for the primary endpoint and a
correlated response which is observed more rapidly.
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Using short term endpoints in Delayed Response
GSTs

Example D: Prevention of fracture in postmenopausal women

In this example, the primary endpoint is whether or not a fracture occurs
within five years of entry to the study.

Changes in bone mineral density (BMD) are measured after one year.

It is expected that these two variables are correlated.

How can we use the BMD data to gain information from subjects who have
been followed for between one and five years?

Would fitting a Kaplan-Meier curve for time to first fracture also help —
remembering that inference is about the binary outcome defined at five
years?
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Incorporating delayed responses into GSTs

Consider a trial where response is observed time ∆t after treatment.
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We assume information is proportional to the observed number of responses.

We will equally space interim analyses between times ∆t and tmax .

T.W. Anderson (JASA, 1964) considers sequential tests for delayed
responses. We follow this basic structure to construct GSTs.
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Boundaries for a Delayed Response GST

At interim analysis k , Zk is associated with information level Ik = Var(θ̂k ).
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If Zk > bk or Zk < ak , cease enrollment of future patients and follow-up all
recruited subjects.

At the decision analysis, based on information Ĩk , reject H0 if Z̃k > ck .
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Calculating properties of Delayed Response GSTs

Calculations of test properties (type I error rate, power, Eθ(N) ) require the
joint distributions of test statistic sequences:

{Z1, . . . , Zk , Z̃k}, for k = 1, . . . , K − 1,

{Z1, . . . , ZK−1, Z̃K}.

Each sequence is based on accumulating datasets.

Given {I1, . . . , Ik , Ĩk}, the sequence {Z1, . . . , Zk , Z̃k} follows the canonical
distribution for statistics generated by a GST for immediate responses
(Jennison & Turnbull, JASA, 1997).

Properties of Delayed Response GSTs can therefore be calculated using
numerical routines devised for standard designs.
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Reversals of anticipated final decisions

Stopping with Zk > bk or Zk < ak indicates our likely final decision but there
there may be a reversal. We could observe
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We optimise our designs to maximise the value of the additional pipeline
responses for increasing the test’s power.
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Optimal Delayed Response GSTs

Let N represent the total number of subjects recruited.

Let r be the fraction of a test’s maximum sample size in the pipeline at each
interim analysis.

Objective: For a given r , maximum sample size nmax , stages K and analysis
schedule, we find the Delayed Response GST minimising

F =

Z
Eθ(N) f (θ) dθ

with type I error rate α at θ = 0 and power 1 − β at θ = δ. Here f (θ) is the
density of a N(δ/2, (δ/2)2) distribution.

We create an unconstrained Bayes problem by adding a prior on θ and costs
for sampling and for making incorrect decisions. We search for the
combination of prior and costs which gives a solution with frequentist error
rates α and β.
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Efficiency loss when there is a delay in response

It is required to test H0 : θ ≤ 0 against θ > 0 with α = 0.025 and β = 0.1.

Suppose (δ, σ2) are such that the fixed sample test needs nfix = 100 subjects
and set nmax = 1.1 nfix .

The figure shows the minima of F attained by optimised versions of our
designs.
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Revisiting Example A

Example A: Cholesterol reduction after 4 weeks of treatment

Responses are assumed normally distributed with variance σ2 = 2.

It is required to test H0 : θ ≤ 0 against θ > 0 with

type I error rate α = 0.025 at θ = 0,

power 1 − β = 0.9 at θ = δ = 1.0.

The fixed sample test needs nfix = 86 subjects divided between the two
treatments.

We consider designs with a maximum sample size of 96, assuming a
recruitment rate of 4 per week, giving 4 × 4 = 16 pipeline subjects at each
interim analysis.

Lisa Hampson and Chris Jennison

Group Sequential Tests for Delayed Responses



Group sequential tests Delayed responses Optimal designs Extensions Recovering efficiency Summary

Revisiting Example A

Once the trial is underway, data start to accrue after 4 weeks. Recruitment
will close after 24 weeks.

Interim analyses are planned after n1 = 28 and n2 = 54 observed responses.

A decision analysis will be based on

ñ1 = 44 responses if recruitment stops at interim analysis 1

ñ2 = 70 responses if recruitment stops at interim analysis 2

ñ3 = 96 responses in the absence of early stopping.

We derive a Delayed Response GST minimising

F =

Z
Eθ(N) f (θ) dθ,

where f (θ) is the density of a N(0.5, 0.52) distribution.
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Revisiting Example A

Critical values for the optimised Delayed Response GST are shown below.
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Critical values c1 and c2 are well below b1 and b2, so the probability of a
reversal is small.

Both c1 and c2 are less than 1.96. If desired, these can be raised to 1.96 with
little change to the design’s power curve.
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Revisiting Example A

The figure shows expected sample size curves for

the fixed sample test with nfix = 85 patients,

the Delayed Response GST minimising F ,

the GST for immediate responses with analyses after 32, 64 and 96
responses, also minimising F .
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The delay in response means savings in Eθ(N) are smaller than they would
be if response were immediate.
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Making inferences on termination

How can we calculate a p-value for H0 : θ ≤ 0 and a CI for θ?

On termination of the test at stage T , (ĨT , Z̃T ) is a sufficient statistic for θ. We
base inferences on a “stage-wise” ordering of the test’s sample space for this
pair.
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The sample space at ĨT = Ĩk is partitioned by ck into “high” and “low” sets.

This ordering ensures p-value calculations do not depend on future, possibly
unpredictable, information levels.
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Error spending Delayed Response GSTs

We design error spending Delayed Response GSTs which

reach a target information level Ĩmax in absence of early stopping,

spend error probabilities as a function of I/Imax .

Let πk and γk be cumulative type I and II error rates to be spent by stage k .

Choosing ck to balance reversal probabilities under θ = 0 implies we may
choose (ak , bk ) to satisfy

Pθ=0{Z1 ∈ C1, . . . , Zk−1 ∈ Ck−1, Zk ≥ bk} = πk − πk−1

Pθ=δ{Z1 ∈ C1, . . . , Zk−1 ∈ Ck−1, Zk ≤ ak} = γk − γk−1,

and control the type I error rate at level α, and the type II error rate at a level
just below β.

Under this construction, the stage k stopping rule can be set without
knowledge of Ĩk .
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Efficiency of error spending tests

In the figure below, error spending tests are designed using the ρ-family of
error spending functions.

Values of F are attained by tests designed and conducted with K = 5,
nmax = 1.1 nfix , α = 0.025 and β = 0.1.
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Error spending Delayed Response GSTs are flexible and closely match the
optimal tests for savings in Eθ(N).
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Dealing with unexpected overrunning

Suppose a standard GST designed with Ik and boundaries (ak , bk ) stops at
analysis k⋆ < K with Zk > bk or Zk < ak .

Question: If additional data are observed, how can these be incorporated into
the final analysis while preserving the type I error rate?

Solution: We partition the sample space at Ĩk⋆ such that

if Z̃k⋆ ≥ ck⋆ , reject H0,

if Z̃k⋆ ≤ ck⋆ , accept H0.

Requiring ck⋆ to balance the probabilities of reversing decisions under θ = 0
at stage k⋆ preserves the test’s overall type I error rate.

In addition, p-value calculations do not depend on Ĩ1, . . . , Ĩk⋆
−1, nor on

information levels beyond stage k⋆.
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Efficiency loss when there is a delay in response

In Section 3 of the paper, we consider tests with type I error rate 0.025 and
power 0.9 at θ = δ, minimising F , the integral of Eθ(N) with respect to a
N(δ/2, (δ/2)2) distribution for θ.

Maximum sample size, nmax, is 1.1 times the fixed sample size.

There are r nmax subjects “in the pipeline” at each interim analysis.

We find optimal Delayed Response GSTs with K = 2, 3 and 5 analyses when
the number of observed responses at analysis k is

nk =
k
K

(1 − r)nmax, k = 1, . . . , K − 1.

The effect of delayed response on the efficiency of a Delayed Response
GST increases with the “pipeline fraction” r .
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Efficiency loss when there is a delay in response

Minima of average Eθ(N), F , as a function of the pipeline fraction r
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Substantial savings in Eθ(N) are still present for small values of r , when
response is rapidly observed.

About half the benefits of group sequential testing are lost as r increases to
0.25.
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Using a short term endpoint to recover efficiency

Suppose a second endpoint, correlated with the primary endpoint, is
available soon after treatment.

For patient i on treatment T = A or B, let

YT ,i = The short term endpoint,

XT ,i = The long term endpoint.

Assume we have a parametric model for the joint distribution of (YT ,i , XT ,i) in
which

E(XA,i) = µA,2, E(XB,i) = µB,2 and θ = µA,2 − µB,2.

We analyse all the available data at each interim analysis.
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Using a short term endpoint to recover efficiency

At interim analysis k , subjects are

Unobserved,

Partially observed (just YT ,i available), or

Fully observed (both YT ,i and XT ,i available).

We use maximum likelihood estimation to fit the full model to all the data
available at analysis k , then extract bθk and Ik = {Var(bθk )}

−1.

The sequence of estimates {bθk} follows the standard joint distribution for a
group sequential trial with observed information levels {Ik}.

Thus, these estimates can be used to design a Delayed Response GST in
the usual way.
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Using a short term endpoint to recover efficiency

Values of F achieved using a second, short-term endpoint
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Results are for the previous testing problem with K = 5 analyses.

We assume YT ,i and XT ,i are bivariate normal with correlation 0.9.

The ratio of time to short-term and long-term endpoints is κ.

The solid line for κ = 1 is also the case of no short-term endpoint.
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Using a short term endpoint to recover efficiency

Although a short-term endpoint may be of clinical interest, we still make
inferences about the primary endpoint alone.

It is straightforward to extend this approach to use repeated measurements
as follow-up continues for each patient.

In Example D, we can fit a joint model for bone mineral density measured at
one year and incidence of fracture within five years — thereby increasing
information about the latter.

In an extended model, we could also use censored information on the
fracture endpoint for subjects with less than five years of follow-up.

Nuisance parameters, such as variances and correlation between short-term
and long-term endpoints, can be estimated within the trial.
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Summary

In this presentation, we have discussed

Formulation of a Delayed Response GST

Optimisation of a Delayed Response GST

P-values and confidence intervals on termination

Error spending versions of these tests

Unexpected overrunning

Using a short-term endpoint to improve efficiency
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Additional topics covered in the paper

The paper also addresses

Existence and uniqueness of optimal Delayed Response GSTs

Computation of optimal Delayed Response GSTs

Optimising designs for an objective combining expected sample size
and time to a conclusion

Adaptive choice of group sizes in a Delayed Response GST
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