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The Phase II / Phase III problem

Phases of drug development occur sequentially.

There has been a lot of work on “optimising” phases individually — but not much on

designing the overall development process.

Dose finding in Phase IIb is often based on a non-linear, parametric dose response

model with 3 or 4 parameters.

We shall need to estimate these parameters after Phase IIb and make decisions for

Phase III design based on these estimates.

In a Bayesian approach we shall need a prior for the parameters and methods for

dealing with their posterior distribution given Phase IIb data.

A full problem formulation will require further assumptions:

Risk of safety problems vs dose,

Costs of Phase IIb and Phase III trials,

The benefit from a successful outcome in Phase III.
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DIA (formerly PhRMA) Working Group

I shall describe work on the joint design of Phase II and Phase III trials by the

Adaptive Progams stream of the Adaptive Design Scientific Working Group

Members of the “Main model” team studying generic methods are:

Carl-Fredrik Burman (leader)

Zoran Antonijevic

Christy Chuang-Stein

Chris Jennison

Fredrik Öhrn

Nitin Patel

José Pinheiro

Alun Bedding

Other teams are working on specific application areas: Diabetes, Neuropathic pain,

and Oncology.
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Outline of the Phase IIb / Phase III process

1. Phase IIb trial

Compare several doses against control

Decide whether to proceed to Phase III

If so, choose a dose and specify the Phase III sample size

2. Phase III trial

Run two Phase III trials comparing the selected dose against control

If both trials provide significant evidence of a treatment effect, we have

a success!

Design questions:

Sample size for Phase IIb,

Decision making after Phase IIb: Stop/go, dose, Phase III sample size.
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Outline of the optimal design process

To maximise expected net gain in a Bayes decision theoretic approach, we shall

Specify a model for dose response in Phase IIb and Phase III

Specify a prior distribution for parameters in the dose response model

Design the Phase IIb trial (doses, sample size, etc)

Run the Phase IIb trial

Find the posterior distribution of model parameters given Phase IIb data

Design the Phase III trials (stop/go, dose, sample size)

Run two Phase III trials

Analyse the Phase III data and see if the process has a successful outcome.

Here, the colour coding distinguishes between:

Model specification, Simulation, Design optimisation.
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How can we optimise the design in this complex problem?

Optimising the overall design is a complicated problem.

For instance, the best way to design the Phase IIb trial depends on how we use the

results of Phase IIb in designing Phase III.

The first step is to be able to work forwards through the whole process, using some

(non-optimal) decision rules where necessary.

We shall consider how to:

1. Choose the prior distribution for dose response model parameters,

2. Simulate Phase IIb trial data,

3. Find the posterior distribution of model parameters given Phase IIb data,

4. Optimise the Phase III design given this posterior distribution,

5. Optimise the Phase IIb design.
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The Emax dose response model

We shall assume a 4 parameter Emax dose-response model.

In this model, the mean response at dose d is

µ(d) = θ1 + θ2

d θ4

θ θ4

3 + d θ4

.
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1. Specifying the prior distribution of dose response parameters

In our example, we have 7 active doses and the control. Suppose units are defined

so that the control dose is d0 = 0 and the active doses are dj = j, j = 1, . . . , 7.

In reality, the values 0, 1, . . . , 7 might represent doses of, say, 0, 50, . . . , 350 mg.

So, the Emax model gives mean responses

µj = θ1 + θ2

j θ4

θ θ4

3 + j θ4

, j = 0, . . . , 7.

Suppose that, in the prior, we assume the four parameters are independent and

θ1 ∼ N(a1, b2
1),

θ2 ∼ N(a2, b2
2),

θ3 ∼ N+(a3, b2
3),

θ4 ∼ N+(a4, b2
4).

Here, N+ denotes a normal distribution restricted to values greater than 0.01.
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Specifying the prior distribution of dose response parameters

The plot shows a sample of 20 Emax dose response curves from the prior with

a1 = 2, b1 = 1, a2 = 4, b2 = 3, a3 = 4, b3 = 2, a4 = 4, b4 = 0.5.

Note that the plot is of the increase in mean response over dose zero.

The curves with a negative treatment effect are coloured blue.
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Specifying the prior distribution of dose response parameters

The investigators tell you that a treatment effect of 5 would be clinically meaningful

— but they hope to see a higher effect.

There may be a placebo effect of 5 or 10 at dose zero.

A treatment effect (vs placebo) of 5 or 10 should be attainable.

A dose of 6 or 7 may be necessary to achieve this.

Opinion varies as to how steep the dose response curve might be.

Historical results for similar compounds at this stage indicate

P{No positive treatment effect} = 0.4.

The R routine prior sampler.R generates a sample of 20 dose response

curves from a specified prior distribution.

See run prior sampler.R for an example of how to call this routine.

Find values of a1, b1, . . . , a4, b4 that match the above expectations.
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(1) Running R: Initial set up

You can run R in a particular directory on your computer.

It is advisable to create this directory first and copy into it the files provided on the

memory stick.

After you start R, click on File, then on Change dir . . . .

Navigate to find the directory you want to be in and double click on its name.

As a check, you can type

> getwd()

to find the current directory.

If you are working in a directory containing copies of the files from the memory stick,

these will appear in the list of options when you try to load a file or open a script.
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(1) Running R: prior sampler

To use the R routine prior sampler.R, you need to load this into your workspace.

To do this, click on File, then on Source R Code. Navigate to the directory

containing prior sampler.R, then double click on this to load the code.

If you then type

> ls()

You should see the functions “emaxmodel” and “prior sampler” listed as being

present in the workspace.

You can run commands in run prior sampler.R by opening this as a script.

Click on File, then on Open Script . . . . Navigate to run prior sampler.R, then

double click on this to open a script.

If you highlight commands in the script and type Control R, these commands will

run in the R Console.

You can edit the script file to modify the commands or add new ones.



'

&

$

%

(1) Running R: prior sampler

The output from the commands in run prior sampler.R is a plot of 20 dose

response curves generated from the specified prior.

Note that the plot is of the increase in mean response over dose zero, so all curves

start at zero.

The command

> x11()

in run prior sampler.R creates a new graphics window each time you run the script.

Graphics windows are overlaid, so you have to move the top ones aside to see the

old ones below.

In modifying the prior so that the sample of dose response curves matches the

specification, you need to know what each of the parameters θ1, . . . , θ4 controls.

Look back to Slide 7 for an illustration of each parameter’s role.
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(1) Notes on using Scripts

Having an open script file is a useful way to develop or modify a set of R commands.

If all you want to do is run the commands, you can simply load the file (click on File,

then on Source R Code, etc.) and the full set of commands will be implemented.

With an open script, you can choose to run a few commands at a time, edit some

lines and run them again, and so forth.

You can save changes to a script by clicking on File and Save while the script

window is active.

I suggest that

(a) You keep the provided scripts unchanged, by saving using the Save as . . .

option or by working with a copy of the original script.

(b) You close each script as you finish using it — it is easy enough to open it

again if you need to.
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2. Simulating Phase IIb responses

We assume a normal response distribution for patient response in Phase IIb — and

the same response distribution in Phase III.

Given Emax model parameters (θ1, θ2, θ3, θ4), we assume subjects on dose j

have independent, normally distributed responses

Xij ∼ N(µj , 9
2),

where µj is given by the Emax model formula.

We shall consider Phase IIb designs in which patients are allocated equally to each

active dose and at 3 times this rate to dose zero.

Thus, with a total of n2 subjects in Phase IIb, we have

0.3 n2 on dose zero,

0.1 n2 on each active dose j = 1, . . . , 7.
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Simulating Phase IIb responses

Given a Phase IIb design (e.g., sample size n2) we wish to know properties such as

P{The Phase III trials are ultimately successful}

and expected total sample size.

We shall estimate such quantities by averaging over simulated Phase IIb data sets.

To create these data sets, we

Simulate a vector (θ1, θ2, θ3, θ4) from the prior,

Calculate µj = E(Xij) at each dose j,

Simulate responses Xij for subjects on each dose,

producing a number of data sets from hypothetical realisations of the Phase IIb trial.

How should we run these simulations to serve our purposes mos t effectively?
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Simulating Phase IIb responses

We shall create data sets from realisations of a Phase IIb trial by

Simulating (θ1, θ2, θ3, θ4) from the prior,

Calculating the means µj ,

Simulating responses Xij for subjects on each dose.

Question 1.

We could generate one data set from each (θ1, θ2, θ3, θ4) simulated from

the prior — or a sample of several data sets for each (θ1, θ2, θ3, θ4).

Which approach is better for estimating the quantities of in terest?

Question 2.

Suppose we wish to compare properties of two Phase IIb design s with

different sample sizes, n2.

Are there useful ways to link the data sets generated for the t wo cases?
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3. Generating a sample from the posterior distribution of

θ = (θ1, θ2, θ3, θ4) given Phase IIb data

Background information only: an implementation of this method is provided.

Combining the likelihood of the Phase IIb responses with the prior for θ gives the

posterior distribution for θ after Phase IIb — which is not very tractable.

If we use Markov chain Monte Carlo simulation, we face the usual problems of

Uncertainty about how rapidly the Markov chain sampler converges,

Correlated samples.

For our choice of prior, the posterior distribution of θ has some useful properties:

In the posterior distribution, the conditional distribution of (θ1, θ2)

given (θ3, θ4) is bivariate normal.

Thus, we can integrate out θ1 and θ2 to get an expression for the

joint density of θ3 and θ4, up to a multiplicative constant.
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Sampling the posterior distribution of θ = (θ1, θ2, θ3, θ4)

Once we have a formula for the joint posterior density of (θ3, θ4), we can:

Create an envelope for the density of (θ3, θ4) on a two-dimensional grid,

Use acceptance sampling to obtain exact, independent samples of (θ3, θ4),

Combine each sample of (θ3, θ4) with a pair (θ1, θ2) from the known

conditional bivariate normal distribution.

A problem and a solution:

We find may our envelope for the density of θ1 and θ2 is not high enough in

places and some acceptance probabilities are greater than one.

We can correct for this by giving importance sampling weights (greater than 1)

to these values.

Typically, only a few samples need a weight greater than 1.
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Sampling the posterior distribution of θ = (θ1, θ2, θ3, θ4)

Denote by πθ|X(θ|x) the posterior distribution of θ given Phase IIb data X = x.

The R routine posterior sampler.R generates a sample from πθ|X(θ|x).

If a sample size S is specified, the output is a set of vectors θs, s = 1, . . . , S.

Each value θs has a weight ws (the importance weight, which is 1 in most cases).

Suppose we are interested in the conditional expectation of the function f(θ) given

Phase IIb data X = x.

This is given by the integral ∫
f(θ) πθ|X(θ|x) dθ,

which we approximate by the sum

∑S

s=1
ws f(θs)∑S

s=1
ws

.
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Creating a set of data

The R routine ph2 sampler.R generates a sample of Phase IIb data for a specified

parameter vector θ and sample size n2.

The output is a vector of observed mean responses at doses 0, 1, . . . , 7.

Use the commands in run ph2 sampler.R to specify θ and n2 and call the

routine ph2 sampler.R — see next slide

The last two commands in run ph2 sampler.R plot the mean responses

against dose and superimpose the true dose response curve on this plot.

The R routine posterior sampler.R generates a sample of vectors θ from the

posterior distribution of θ given observed Phase IIb data.

Use the commands in run posterior sampler.R to sample from the posterior

distribution of θ given the observed data generated by ph2 sampler.R.

Use the script run2 posterior sampler.R to do more of the same —

generating new Phase IIb data sets and sampling the posterio r distributions.
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(3) Running R: ph2 sampler

To load ph2 sampler.R, into your workspace, click on File, then on Source R Code.

Navigate to ph2 sampler.R, and double click on this to load the code.

If you then type

> ls()

You should see that the functions “emaxmodel” and “ph2 sampler” are present in

the workspace.

Open the script run ph2 sampler.R, by clicking on File, then on Open Script . . . .

Navigate to run ph2 sampler.R, then double click on this to open the script.

Highlight commands in the script and type Control R to run these commands.

The set.seed command initialises the seed for the random number generator.

If you re-run the command

> xbar=ph2 sampler(theta,n2)

by itself, the seed will have changed and you will get a new set of data.
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(3) Running R: posterior sampler

Having loaded ph2 sampler.R and run run ph2 sampler.R to generate data xbar,

load posterior sampler.R, by clicking on File, then on Source R Code, etc.

Open run posterior sampler.R by clicking on File, then on Open Script . . . , etc.

Highlight commands in the script and type Control R to run these commands.

To run the whole script, press Control A (highlighting all the lines), then Control R.

You will be prompted to load the package MASS by double clicking on its name.

This package has a command for generating bivariate normal random variables.

You can also load this by clicking on Packages, then Load packages . . . , etc.

If the plots produced by run posterior sampler.R are overlaid, move them around

to see all the output.

The script run2 posterior sampler.R does not load MASS (it is already loaded).

You can run this repeatedly to see more examples.
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Using the samples from the posterior distribution

For a particular n2 we can:

Simulate θ, the vector of dose response curve parameters, from the prior.

Simulate Phase IIb data, given θ.
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Next, we shall use the samples representing the posterior distribution after

Phase IIb to evaluate the Phase III options and choose the best option.

Then, we can average over replicates of Phase IIb to compute the expected net

gain for a given n2 and compare results to choose the best n2.
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4. Optimising the Phase III design given Phase IIb data

The Phase III trials

Suppose it is decided to test dose j against control in Phase III.

We run two Phase III trials.

In each, 2n3 subjects are randomised equally between dose 0 and dose j.

Responses are distributed as

Xi0 ∼ N(µ0, σ
2) on dose zero,

Xij ∼ N(µj , σ
2) on dose j.

In each trial, we test H0j : µj − µ0 ≤ 0 against µj − µ0 > 0.

(We assume the response distribution at each dose is exactly as in Phase IIb.)

If H0j is rejected at a significance level below α = 0.025 in both trials,

efficacy of dose j is established.
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Optimising the Phase III design

Gain function and sampling costs

We suppose a positive outcome in Phase III leads to approval of the new drug and

a financial gain g.

Running the Phase IIb trial incurs a sampling cost of c2 per subject.

Running Phase III incurs a cost of c3 per subject.

In our example, we shall take

c2 = 1,

c3 = 1,

g = 12,000.

The meaning of 1 cost or gain unit may be $10,000 to $50,000, depending on the

condition being investigated — so g represents a multi-million dollar return.
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Optimising the Phase III design

Risk of failure for safety

Suppose the probability that dose d will eventually fail on safety grounds is γ(d).

This could occur in Phase III or later on in post-marketing surveillance.

We assume γ(d) is a known, increasing function of d.

The function γ(d) is specified before Phase IIb and patient follow-up

in Phase IIb is not long enough to learn more about the safety profile.

In our example, we shall take γ(d) to be quadratic with γ(7) = 0.2. Thus, the risk

for dose j is

γj = (j/7)2 × 0.2.

When Phase III has a positive outcome, we calculate the expected gain by

discounting the gain function by a factor 1 − γj .
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Optimising the Phase III design

At the end of Phase IIb

We must decide whether to proceed to run Phase III at all.

If we decide to run Phase III, we must select

The dose to test in Phase III j,

The sample size per arm, in each Phase III trial n3.

We wish to make these decisions optimally

Overall, our optimality criterion is the expected net gain:

g × P{Both Phase III trials significant at α = 0.025 and no safety problems}

−n2 c2 − 4 E(N3) c3.
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Optimising the Phase III design given Phase IIb data

Evaluating Phase III options

If we decide to run Phase III trials with dose j and sample size n3, the conditional

expectation of the net gain, given Phase IIb data X = x, is

∫
[Pθ{Positive Phase III; j, n3} (1 − γj) g − 4 n3 c3 − n2 c2] πθ|X(θ|x) dθ,

where πθ|X(θ|x) denotes the posterior density of θ given X = x.

We estimate this conditional expected net gain by

1

S

S∑
s=1

Pθs{Positive Phase III; j, n3} (1 − γj) g − 4 n3 c3 − n2 c2, (1)

where θs, s = 1, . . . , S, is a sample from πθ|X(θ|x).

The optimal Phase III design is that which maximises (1) over j and n3.
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(4) Optimising the Phase III design given Phase IIb data

Evaluating Phase III options

Run create theta sample.R (which is similar to run posterior sampler.R )

to generate a set of Phase IIb data, then simulate a data array of vectors

θ1, . . . , θ500 from the posterior distribution of θ.

Load the script create theta sample.R and run these commands. (If you have

re-started R with an empty workspace, you will need to re-load ph2 sampler.R and

posterior sampler.R and the package MASS.)

Use Control A to highlight all the commands in create theta sample.R and

Control R to run these commands.

The plots produced by the commands in create theta sample.R show

(i) The Phase IIb data, superimposed on the dose response curve from

which the data were generated,

(ii) A contour plot of the posterior density of (θ3, θ4).

23



'

&

$

%

(4) Running R: create theta sample

The resulting 500 × 5 array theta sample contains vectors θ1, . . . , θ500 sampled

from the posterior distribution of θ given the Phase IIb data set, with an importance

weight (usually 1) associated with each vector.

Type

> theta sample

to look at the values in the array theta sample.

The final entry in each row is the importance sampling weight. Do any of these

weights differ from 1?

You can give the command

> max(theta sample[,5])

to find the largest value of the numbers in column 5 of theta sample.
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(4) Optimising the Phase III design given Phase IIb data

Evaluating Phase III options

The R script e cond net gain.R evaluates terms that make up the conditional

expected net gain

1

S

S∑
s=1

Pθs{Positive Phase III; j, n3} (1 − γj) g − 4 n3 c3 − n2 c2

for a sample θ1, . . . , θS and specified dose j and Phase III sample size n3.

Starting with the posterior sample θ1, . . . , θ500 produced by

create theta sample.R, run the R script e cond net gain.R to calculate the

probability of a successful Phase III outcome for each combi nation of

i) Dose j ∈ {1, . . . , 7}, and

ii) Phase III sample size n3 ∈ {50, 75, 100, 150, 200, 300, 400, 500}.

Hence, determine whether it is worthwhile to conduct the Phase III trials and, if so,

which dose and sample size should be chosen.
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(4) Running R: e cond net gain

Load the script e cond net gain.R, and run these commands to analyse the

posterior distribution represented by theta sample.R.

Use Control A to highlight the whole script and Control R to run these commands.

The script produces a number of 7 × 8 arrays, with the rows representing the

doses j = 1, . . . , 7 and the columns the 8 options for n3.

To see P{Two successful Phase III trials} for each combination of j and n3,

averaged over the posterior sample of θ vectors, type

> epsuc

The probability of safety problems for each combination of j and n3 is shown by

> mgamma

What is the meaning of the output from the following command?

> (1-mgamma)*epsuc



'

&

$

%

(4) Running R: e cond net gain

Look at the array of sampling costs for each combination of j and n3.

> ecost

Note that these values include the cost of n2 observations in Phase IIb.

We can combine the variables epsuc, mgamma and ecost, to obtain the array of

expected net gains

> (1-mgamma)*epsuc*g-ecost

Check this agrees with the array egain calculated by the script.

The location of the largest value in this array gives the optimal combination of

dose j and Phase III sample size n3.

How high does this largest value have to be for Phase III to be worthwhile?

Check you agree with the optimal dose and Phase III sample size reported by

e cond net gain.R.
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5. Optimising the Phase IIb design

Once we know how to optimise the Phase III design for a given Phase IIb data set,

we are ready to optimise Phase IIb.

Assume an Emax dose response model and a prior in which the Emax model

parameters are independent with

θ1 ∼ N(5, 102),

θ2 ∼ N(5, 102),

θ3 ∼ N+(3.5, 72),

θ4 ∼ N+(1, 12),

where N+ denotes a normal distribution restricted to values greater than 0.01.

Let response distributions, gain and cost functions, and the risk of safety problems

be as defined previously.

Given the Phase IIb data we can apply the methods we have just seen to find the

optimal decisions regarding Phase III.
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(5) Running R: e net gain

Evaluating Phase IIb options

The R script e net gain.R reads in data from the file posterior samples to create a

6 × 500 × 500 × 5 data array.

These data were produced by simulating 500 Phase IIb data sets for each of 6 n2

values. For each data set, a sample (θ1, . . . , θ500) with related importance

weights was simulated from the posterior distribution of θ.

The script e net gain.R goes on to evaluate the expected net gain

g × P{Both Phase III trials significant at α = 0.025 and no safety problems}

−n2 c2 − 4 E(N3) c3

for Phase IIb designs using each possible choice of n2.

Here, the decision whether to conduct Phase III trials and, if so, the choice of dose

and sample size n3 optimise this expected gain.
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(5) Running R: e net gain

Evaluating Phase IIb options

The script e net gain.R averages the expected gain (optimised over Phase III

designs) for each of the 500 Phase IIb data sets from a given n2.

This allows us to compare the benefits of different Phase IIb sample sizes, n2, and

choose the optimal value from the set {50, 100, 200, 300, 400, 500}.

Apply the commands in e net gain.R to find the optimal choice of n2 in this

formulation of the overall design problem.

To do this, first load the routines in e net gain routines.R and e net gain.R by

clicking on File, then on Source R Code, etc.

Next, click on File and Source R Code and load run e net gain.R to run this code.

There are a lot of calculations to carry out and you should see results appear

gradually (one set every few minutes) for one value of n2 at a time.
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(5) Running R: e net gain

For each n2, there is output giving estimates, and associated standard errors, of:

The expected gain,

The Probability of two successful Phase III trials,

P{Two successful Phase III trials} discounted for the risk of safety failure,

The expected cost of Phase III sampling.

For each n2, histograms are drawn to show the distribution of the optimal dose and

the optimal Phase III sample size n3 over the 500 Phase IIb data sets.

We find the optimal choice of n2 in the overall design problem by comparing the

expected gain under different choices of n2. What is the optimal n2?

The histograms of optimal dose and the optimal Phase III sample size for this

optimal n2 are drawn again at the end.
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(5) Running R: e net gain

The final commands in e net gain.R draw plots showing the relationship between

the posterior means of various quantities and the optimal dose for Phase III.

These quantities are

The posterior mean of the treatment effect, E(X),

The posterior probability of two successful Phase III trials,

The posterior mean of the expected total gain.

For each Phase IIb data set, the quantity is evaluated at the dose selected for

Phase III.

Explore the output from e net gain.R to see how the success probability and

Phase III sampling costs behave as n2 increases.

Can you think of reasons why the final histograms and plots look the way they do?
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6. Recap: Optimising the Phase IIb / Phase III design

Before Phase IIb

We choose the Phase IIb sample size, n2.

At the end of Phase IIb

We decide whether to proceed to run Phase III and, if so, select

The dose to test in Phase III j,

The Phase III sample size n3.

We aim to optimise:

The choice of n2,

The rule for deciding whether to proceed to Phase III,

The rule for choosing j and n3.
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Optimisation algorithm

For a particular n2:

Simulate θ, the vector of dose response curve parameters, from the prior.

Simulate Phase IIb data, given θ.

Evaluate Phase III options given the posterior for θ and choose the best option.

Average over replicates to compute the expected net gain for this n2.
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Compare E(Net gain) over possible choices of n2 and choose the best n2.
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Results for a worked example

Consider a problem with 7 active dose levels dj = j, j = 1, . . . , 7.

Following the earlier definition, the prior distribution for θ = (θ1, θ2, θ3, θ4) has

θ1 ∼ N(5, 102), θ2 ∼ N(5, 102),

θ3 ∼ N+(3.5, 72), θ4 ∼ N+(1, 1).

Phase IIb has 0.3 n2 subjects on dose zero and 0.1 n2 on each active dose.

The sampling cost is 1 unit for each Phase IIb and Phase III subject.

The financial gain for a positive Phase III trial is g = 12,000.

But dose dj may fail on safety grounds with probability

γ1 = 0.004, γ2 = 0.016, γ3 = 0.037, γ4 = 0.065,

γ5 = 0.10, γ6 = 0.15, γ7 = 0.2.
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Results for a simple example

We optimise over Phase III sample sizes

n3 ∈ {50, 75, 100, 125, 150, 200, 250, 300, 400, 500}.

Comparing Phase IIb designs, we find:

n2 E(Net gain) n2 E(Net gain)

25 4,375 200 4,630

50 4,450 250 4,635

75 4,520 300 4,650

100 4,555 350 4,645

125 4,575 400 4,645

150 4,600 450 4,630

175 4,615 500 4,605

So, we conclude the optimal choice is n2 = 300.
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Breakdown of the expected net gain

The E(Net gain) values are made up from:

n2 P (Overall success∗) 4 E(N3) E(Net gain)

25 0.441 893 4,375

50 0.447 861 4,450

100 0.460 862 4,555

150 0.466 837 4,600

200 0.473 843 4,630

250 0.478 854 4,635

300 0.483 850 4,650

350 0.487 847 4,645

400 0.490 840 4,645

450 0.492 823 4,630

500 0.493 814 4,605

∗ Two successful Phase III trials and no safety problems.
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Accuracy of comparisons

Comparisons of Phase IIb designs are based on:

500 replicates of Phase IIb data sets,

500 samples from posterior distribution of θ for each Phase IIb data set.

n2 E(Net gain)

250 4,635

300 4,650

350 4,645

400 4,645

Estimated values of E(Net gain) are subject to sampling error with

Standard errors of E(Net gain) ≈ 200.

However, coupling the simulations of Phase IIb data sets leads to

Standard errors of differences in E(Net gain) ≈ 10.
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Results for a simple example

Within replicates of Phase IIb data for n2 = 300, the optimal choice of dj and n3

varies considerably:

Optimal Dose when using Optimal n2
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The risk of safety problems guides the decision towards lower doses.

Sampling costs in Phase III argue for lower values of n3.
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Results for a simple example

We can explore the decisions made in selecting a dose to go forward to Phase III.
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A high dose is selected when the posterior samples of the dose response curve

show modest treatment effects.

More promising results lead to lower doses being chosen (especially for higher n2).
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Results for a simple example

High posterior means for E(X) translate into high Phase III success probabilities.
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For the highest doses, probability of Phase III success is offset by greater risk of

safety problems.
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7. Extending the methodology

Consider the problem formulation and the methods we have used to solve the

optimal design problem.

This problem might be regarded as about the simplest possible formulation that has

sufficient ingredients to make a solution possible.

Question 1.

Which aspects of the problem would you like to modify in order to achieve a

more realistic model for the Phase II – Phase III process?

Question 2.

Which of these modifications do you believe to be computation ally feasible

using the approach that we have followed?
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(7) Implementing some extensions

The “net present value” function npvgain in e net gain routines.R takes arguments

n2, the Phase IIb sample size,

vn3, the vector of possible Phase III sample sizes,

effe c t, the treatment effect at the dose under consideration.

One might wish to let this gain function depend on the time taken to reach a

conclusion and the treatment effect size.

Explore this by modifying the function npvgain to reflect that:

Larger Phase III trials eat into patent lifetime and reduce the period in which a

new drug earns income for the manufacturer,

The income a drug earns depends on how effective it is (over and above

showing that it has at least some effect).

If you want some ideas, one alternative definition is available in alt npvgain.R
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Conclusions

A full treatment of the Phase IIb/ Phase III design process is possible, with joint

optimisation of both stages under a Bayesian model.

The Bayesian approach allows propagation of uncertainty and provides a natural

framework for decision making under uncertainty.

Simulations from the posterior distribution nested within replicates of Phase IIb data

constitute a substantial computational task. However, there are several routes to

improving computational efficiency and making this task feasible.

There are many directions in which to elaborate the problem we have studied.

Some of these elaborations can be handled with a similar amount of computation

— but others may be more challenging!
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