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Planning to adaptively extend a trial

Issues may be:

1. Dispute over the effect size to use in setting power

Anticipated effect size ∆1,

Minimum effect of interest ∆2,

with ∆1 > ∆2;

2. Uncertainty over the value of a nuisance parameter (e.g., response variance);

3. Co-primary endpoints with ∆1 > ∆2, e.g., PFS and OS in late stage cancer;

4. Testing for Superiority (with effect size ∆1) or Non-inferiority (with margin ∆2);

5. General population (effect size ∆2) or targeted population (effect size ∆1) —

“Enrichment”.
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What’s wrong with simply adding observations?

The false positive rate α is increased (selection bias).

FDA Guidances forbid this!

ICH E9 (September 1998),

Adaptive Design (February 2010).

Paired “cat” example.
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Protection of Type I error ( α)

• ICH E9 (p.25):

“The procedure selected should always ensure that the overall probability

of type I error is controlled.”

• PhRMA White paper (2006, J. Biopharmaceutical Statistics):

“The key issue in most contexts is preservation of the Type I error rate.”

• Pocock and Hughes (1989, Controlled Clinical Trials, p. 211S):

“Control of Type I error is a vital aid to prevent a flood of false positives

into the medical literature.”
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Designing a trial with good power and sample size

Our topic is the design of a clinical trial that will

Protect the type I error rate and achieve sufficient power,

Using as small a sample size as possible.

Adaptive designs in this context often have the form:

Start with a fixed sample size design,

Examine interim data,

Add observations to improve power where most appropriate.

In contrast, Group Sequential designs require one to:

Specify the desired type I error and power function,

Set maximum sample size a little higher than the fixed sample size,

Stop the trial early if data support this.
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Designing a clinical trial

We have previously compared proposals for group sequential tests (GSTs) and

adaptive designs, and concluded in favour of GSTs .

See, for example, our papers in

Statistics in Medicine (2003, 2006),

Biometrika (2006),

Biometrics (2006)

and Chapter 5 of

Handbook of Adaptive Designs in Pharmaceutical and Clinical Development

(2011).

Two issues in the debate about adaptive designs are

Emphasis on the conditional power of an adaptive design,

How to deal with uncertainty about the likely effect size.
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Designing a clinical trial

Let θ denote the treatment effect for experimental treatment versus control.

Power curve Eθ(N) curves
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All designs, including adaptive procedures, have overall power curves.

Designs with similar power curves can be compared in terms of their average

sample size functions, Eθ(N).

Even if there is uncertainty about the likely treatment effect, investigators should be

able to specify the values of θ under which early stopping is most desirable.
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Adaptive Designs and Group Sequential Tests

Suppose we specify objectives

Type I error rate α,

Power 1 − β at θ = δ,

Values of θ at which low Eθ(N) is desired

and constraints

At most K analyses,

Maximum sample size R times the fixed sample size.

How can an adaptive or group sequential design best achieve these goals?

Since certain classes of designs are nested within each other, there is an ordering

of optimal designs.
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Adaptive Designs and Group Sequential Tests

Given α, 1 − β, δ, K , R and an Eθ(N) criterion, designs are nested:

K-group

GSTs
⊂

K-group GSTs and

Published K-stage

Adaptive Designs

⊂
All K-group

Adaptive GSTs

Here, an “Adaptive GST” is a group sequential test in which future group sizes are

allowed to depend on the responses observed thus far.

Jennison & Turnbull (Biometrika, 2006) showed the efficiency gain of optimal

Adaptive K-group GSTs over optimal K-group GSTs is small (around 2%).

Since optimal designs in the two classes are close in efficiency, for any K-group

adaptive design, there is a (simpler) K-group GST of almost equal efficiency.

In our experience, many adaptive designs in the literature use sub-optimal sample

size rules and are significantly less efficient than well-chosen GSTs.
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Re-visiting the Group Sequential vs Adaptive question

Mehta & Pocock (Statistics in Medicine, 2011) recently published the paper

“Adaptive increase in sample size when interim results are promising:

A practical guide with examples”

Their conclusions are counter to the findings we have reported.

In their example, response is measured some time after treatment, so many

patients have been treated but are yet to produce a response at an interim analysis.

Delayed response is common — and not easily dealt with by standard GSTs.

Assessing the design proposed by Mehta & Pocock (MP) in their Example 1, we will

Test our conclusions about adaptive designs and GSTs in a new setting,

Suggest a new framework for deriving adaptive and group sequential designs,

Illuminate and address the issue of delayed response.
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Outline of talk

1. Mehta & Pocock’s Example 1

2. Mehta & Pocock’s design for this example

3. Alternative fixed and group sequential designs

4. Deriving efficient designs in Mehta & Pocock’s framework

5. Efficient designs using the conditional probability of rejection principle

6. Optimising in a general class of designs

7. Relation to proposed delayed response GSTs (Hampson & Jennison)

8. Conclusions

9. Connections to other research
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1. Mehta & Pocock’s Example

MP’s Example 1 concerns a Phase 3 trial of a new treatment for schizophrenia in

which a new drug is to be compared to an active comparator.

The efficacy endpoint is improvement in the Negative Symptoms Assessment score

from baseline to week 26.

Denote responses by

YBi, i = 1, 2, . . . , on the new treatment,

YAi, i = 1, 2, . . . , on the comparator treatment.

Responses are assumed to be normally distributed with variance 7.52, so each

YAi ∼ N(µA, σ2) and YBi ∼ N(µB, σ2),

where σ2 = 7.52. The treatment effect is

θ = µB − µA.
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Mehta & Pocock’s Example

An initial plan is for a total of n2 = 442 patients, 221 on each treatment.

The final analysis will reject H0: θ ≤ 0 if Z2 > 1.96, where

Z2 =
Y B(n2) − Y A(n2)√{4σ2/n2}

and Y A(n2) and Y B(n2) are treatment means from a total of n2 observations.

This gives a test with one-sided type I error rate 0.025 and power 0.8 at θ = 2.

Higher power, e.g., power 0.8 at θ = 1.6, would be desirable. However, the

sponsors will only increase sample size if interim results are “promising”.

An interim analysis is planned after observing n1 = 208 responses.

Due to uniform staggered accrual and the 26 week delay in obtaining a response,

another 208 subjects will be treated by this time and await 26 weeks follow up.

Recruitment continues. The final data set will contain at least the original 442

subjects: with “promising” data, an increase up to 884 subjects is permitted.
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Increasing the sample size

At the interim analysis we observe

θ̂1 = Y B(n1) − Y A(n1) and Z1 =
θ̂1√{4σ2/n1}

.

Define conditional power CPθ(z1) to be the probability the final test — with the

original n2 = 442 observations — rejects H0, given Z1 = z1 and effect size θ,

i.e.,

CPθ(z1) = Pθ{Z2 > 1.96 |Z1 = z1}.

MP’s adaptive design consider three cases at the interim analysis:

Favourable CP
θ̂1

(z1) ≥ 0.8 Continue to n2 = 442,

Promising 0.365 ≤ CP
θ̂1

(z1) < 0.8 Increase n2,

Unfavourable CP
θ̂1

(z1) < 0.365 Continue to n2 = 442.

It is crucial to protect α when increasing sample size in the promising zone.
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The Chen, DeMets & Lan method

References:

Chen, DeMets & Lan, Statistics in Medicine (2004),

Gao, Ware & Mehta, J. Biopharmaceutical Statistics (2008).

Suppose at interim analysis 1, the final sample size is increased to n∗

2 > n2 and a

final test is carried out without adjustment for this adaptation.

Thus, H0 is rejected if

Z2(n
∗

2) =
Y B(n∗

2) − Y A(n∗

2)√{4σ2/n∗

2}
> 1.96.

Chen, DeMets & Lan (CDL) show that if n2 is only increased when

CP
θ̂1

(z1) > 0.5,

then the type I error probability will not increase.

(In general, adaptive changes to sample size are liable to increase type I error rate.)
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Gao’s extension of the CDL method

Gao et al. extend the CDL result to lower values of θ̂1.

They show the type I error rate does not increase as long as a sufficiently high

value is chosen for n∗

2.
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With an upper limit of n∗

2 = 884, the final sample sizes permitted when using the

CDL+Gao approach are as shown in the figure.

Now, n2 can be increased for cases down as far as CP
θ̂1

(z1) = 0.365.
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2. The MP design

In their “promising zone”, MP increase n2 to achieve conditional power 0.8 under

θ = θ̂1, truncating this value to 884 if it is larger than that.
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Comparison with the distribution of θ̂1 under θ = 1.6 shows that increases in n2

occur in a region of quite small probability.

(The distribution of θ̂1 under other values of θ is shifted but has the same variance.)
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Properties of the MP design

The increase in n2 in the “promising zone” has increased the power curve a little.
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Given the limited range of values of θ̂1 for which n2 is increased, only a small

improvement in power can be expected.

Although it was stated that power 0.8 at θ = 1.6 would be desirable, power at this

effect size has only risen from 0.61 to 0.66.
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Properties of the MP design

The cost of higher power is an increase in expected sample size.
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The MP design could be modified by:

Aiming for higher conditional power under θ = θ̂1, or

Raising the maximum for n2 above 884.

However, the resulting gains in power are small for the increases in Eθ(N).
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3. Alternatives to the MP design

Suppose we are satisfied with the overall power function attained by MP’s design.

Could the same power have been achieved more efficiently by another design?

A fixed sample design

Emerson, Levin & Emerson (Statistics in Medicine, 2011) note that the same power

is achieved by a fixed sample size study with 490 subjects — fewer than the

expected sample size of the MP design for effect sizes θ between 0.8 and 2.0.

A group sequential test

Despite the delayed response, we can still consider a group sequential design with

an interim analysis after 208 responses.

If the trial stops to reject H0 or accept H0 at the first analysis, the actual sample

size, including all subjects treated thus far, must be counted as 416.
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A group sequential test

We consider an error spending design for a one-sided test using a ρ-family error

spending function with ρ = 2 (Jennison & Turnbull, 2000, Ch. 7).

This design has an interim analysis after 208 responses and a final analysis after

514 responses. The stopping rule and decision rule are:

At analysis 1

If Z1 ≥ 2.54 Stop, reject H0

If Z1 ≤ 0.12 Stop, accept H0

If 0.12 < Z1 < 2.54 Continue

At analysis 2

If Z2 ≥ 2.00 Reject H0

If Z2 < 2.00 Accept H0
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Sample size rules for MP, fixed and group sequential designs

For the group sequential test (GST), a sample size of 416 is charged on stopping at

the first analysis with 208 observed responses.

The GST’s maximum sample size is a factor R = 1.05 times the 490 needed to

achieve the same power in a fixed sample design.
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Comparison of designs

Power curves Eθ(N) curves
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All three designs have essentially the same power curve.

Clearly, it is quite possible to improve on the efficiency of the MP design.

NB, Mehta & Pocock do discuss two-stage group sequential designs but they only

present an example with much higher power (and, thus, higher sample size).
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Questions

Improved designs in the MP framework

Why does the MP design have high Eθ(N) for its achieved power?

Adding observations when they will do the most good seems a reasonable idea.

Can we work out how to do this efficiently?

Group sequential tests for a delayed response

Although the GST does well, it does not make use of the data eventually obtained

from subjects “in the pipeline” at analysis 1.

This is inefficient. There may also be a problem if later data do not support the

conclusion at the interim analysis.

Can GSTs be extended to give a proper treatment of “pipeline” data and what is the

most efficient way to do this?

24



'

&

$

%

4. Deriving efficient sample size rules in the MP framework

We stay with MP’s example and retain the basic elements of their design.

The interim analysis takes place after 208 observed responses.

A final sample size n∗

2 is chosen based on θ̂1 or (equivalently) Z1.
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Values of n∗

2 ∈ [442, 884] that satisfy the CDL+Gao conditions are allowed.

At the final analysis, we reject H0 if Z2 > 1.96, where Z2 is calculated without

adjustment for adaptation.
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Efficient sample size rules in the MP framework

We specify a sample size rule by matching conditional power against sample size.

Suppose we observe Z1 = z1 and choose final sample size n∗

2. Let

Z2(n
∗

2) =
Y B(n∗

2) − Y A(n∗

2)√{4σ2/n∗

2}
.

Denote conditional power under θ = θ̃, given Z1 = z1 and sample size n∗

2, by

CP
θ̃
(z1, n

∗

2) = P
θ̃
{Z2(n

∗

2) > 1.96 |Z1 = z1}.

Setting γ as a “rate of exchange” between sample size and power, we shall:

Choose n∗

2
to optimise a combined objective

CP
θ̃
(z1, n∗

2
) − γ(n∗

2
− 442).

We shall do this with θ̃ = 1.6, a value where we wish to “buy” additional power.
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Plots of CP
θ̃
(z1, n∗

2
) and CP

θ̃
(z1, n∗

2
) − γ(n∗

2
− 442)

For the case θ̃ = 1.6, γ = 0.14/(4 σ2) and θ̂1 = 1.5

500 600 700 800 900

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Final N

 
Conditional power
Combined objective

We shall see that using γ = 0.140/(4σ2) gives similar power to the MP design.

The objective CP
θ̃
(z1, n

∗

2) − γ(n∗

2 − 442) has a maximum at n∗

2 = 654.

At the optimal value of n∗

2, the slope of the conditional power curve is γ.

The outcome is similar to MP’s choice of n∗

2.
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Plots of CP
θ̃
(z1, n∗

2
) and CP

θ̃
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Here, the slope of the conditional power curve is higher and the optimum, where the

derivative is γ, occurs later.

The objective CP
θ̃
(z1, n

∗

2) − γ(n∗

2 − 442) is maximised at n∗

2 = 707.

In this case, MP’s design takes the maximum permitted value of n∗

2 = 884.

28



'

&

$

%

Efficient sample size rules in the MP framework

Sample size rules to optimise CP
θ̃
(z1, n∗

2
) − γ(n∗

2
− 442) for

θ̃ = 1.6 and 4σ2γ = 0.10, 0.12, . . . , 0.18
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The sample size rules for various values of γ have similar — but different — shapes

from that of the MP design.

The rule for γ = 0.140/(4σ2) gives power 0.658 at θ = 1.6, the same as the

MP design.
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Efficient sample size rules in the MP framework

Power curves Eθ(N) curves
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There is, essentially, a one parameter family of power curves for procedures with

type I error 0.025 at θ = 0. Thus matching the MP design’s power at one value

of θ implies matching its whole power curve.

Our new design has the same power curve as the MP design and lower Eθ(N).
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An overall optimality property

Given a sample size rule for choosing n∗

2 as a function of z1,

( Power at θ = θ̃ ) − γE
θ̃
(N) =

∫
{CP

θ̃
(z1, n

∗

2(z1)) − γn∗

2(z1)} f
θ̃
(z1) dz1, (1)

where f
θ̃
(z1) denotes the density of Z1 under θ = θ̃.

A sample size rule that maximises CP
θ̃
(z1, n

∗

2(z1)) − γn∗

2(z1) for every z1

must also maximise (1).

It follows that such a rule has minimum E
θ̃
(N) among all rules that achieve the

same power under θ = θ̃.

Hence, our rule for γ = 0.14 has the lowest possible Eθ=1.6(N) among all rules

following the CDL+Gao framework that achieve power 0.658 at θ = 1.6.
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Further efficiency gains

Our new, optimised procedure still has higher Eθ(N) than the two-stage GST that

ignores (but is charged for) pipeline data.
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The conservatism of the CDL construction is not the root of the problem.

Shapes of the optimised sample size rules suggest it would help to increase n∗

2 at

lower values of θ̂1 — but this is not permitted in the CDL+Gao framework.

The Conditional Probability of Rejection principle does allow such adaptations.
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5. Using the Conditional Probability of Rejection principl e

Reference: Proschan & Hunsberger, (Biometrics, 1995)

The initial fixed sample size design with n2 = 442 has type I error probability α.

Thus ∫
CPθ=0(z1) fθ=0(z1) dz1 = α.

If we define a new procedure which preserves the conditional probability of rejecting

H0 under θ = 0 (the CPR) for every value of z1, then the overall type I error rate

will remain the same.

(This can also be regarded as a “weighted inverse normal combination test”.)

Thus, we can choose a new final sample size n∗

2 for each z1 and set a critical value

for Z2(n
∗

2) at the final analysis to maintain the CPR.

Again, we can set n∗

2 to maximise CP
θ̃
(z1, n

∗

2)− γ(n∗

2 − 442), where θ̃ = 1.6.

The resulting design then has the minimum value of E
θ̃
(N) among all designs in

this larger class that achieve the same power under θ = θ̃.

33



'

&

$

%

Efficient sample size rules in the CPR framework

Sample size rules optimising CP
θ̃
(z1, n∗

2
) − γ(n∗

2
− 442) for

θ̃ = 1.6 and 4σ2γ = 0.21, 0.23, . . . , 0.29
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The middle rule, with γ = 0.250/(4σ2)), matches the MP design’s power of

0.658 at θ = 1.6.

Shapes of optimised sample size rules are very different from the MP design.

The most productive opportunities for investing additional resource are not in the

“promising zone” identified by Mehta & Pocock.
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Efficient sample size rules in the CPR framework

Eθ(N) curves
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The CPR design provides a further reduction in Eθ(N) at θ = 1.6.

Using the CPR principle for higher values of θ̂1 helps a little — but most of the

improvement in Eθ(N) comes from being permitted to increase sample size for

values of θ̂1 below the MP design’s “promising zone”.
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Optimising CP
θ̃
(z1, n∗

2
) − γ(n∗

2
− 442) with θ̃ = 1.2

A closer match to the shape of the MP design’s Eθ(N) curve is obtained by

maximising CP
θ̃
(z1, n

∗

2) − γ(n∗

2 − 442) for θ̃ = 1.2.

Sample size rules Eθ(N) curves
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The optimal CPR design for θ̃ = 1.2 that has power 0.658 at θ = 1.6 achieves

lower Eθ(N) than the MP design over the whole range of θ values.
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6. Further generalisations

1. We can allow a general final decision rule, rather than the CPR rule.

To do this, we need to add a cost for a type I error to our optimality criterion, then

tune the cost parameter so the type I error probability is α = 0.025.

This will give the best possible sampling and decision rules, of any kind, with

n1 = 208 and n2 in the range 442 to 884.

Rules are functions of the sufficient statistic for θ (unlike those of CPR procedures).

2. We can allow recruitment to be terminated at the interim analysis, so the

minimum final sample size is set at n2 = 416, rather than 442 (assuming this will

provide sufficient data to evaluate safety).

The same optimisation over sample size rules and decision rules can be performed

to give the most efficient design with a given type I error rate and specified power.

This would appear a natural way to deal with the volume of “pipeline” subjects when

there is a delayed response.
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Further generalisations

3. We could choose other expected sample size criteria.

We can minimise a weighted sum

∑

i

wi Eθi
(N)

or an integral ∫
w(θ) Eθi

(N) dθ.

Then, our approach will lead to minimisation of this function of Eθ(N) subject to a

related average power property.

As before, we can match this average power to the same property of (say) the MP

design and this will give a close match to the whole power curve.

38



'

&

$

%

General sampling rule and early termination of recruitment

Following generalisations (1) and (2) above gives the sample size rule shown below.

Sample size rule Eθ(N) curves
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We achieve further, useful reductions in Eθ(N). Most of the benefit comes from

generalisation (2), which allows the maximum sample size to be limited to 416.

As for the optimal CPR rule, the highest final sample size is chosen at values of θ̂1

below Mehta & Pocock’s “promising zone”.
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7. Relation to proposals for Delayed Response GSTs
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The methods we have developed are related to derivations of optimal GSTs

(see references in Section 9).

We can ask the question:

Could we have achieved something similar to this efficient

design by extending GSTs to deal with a delayed response?

A GST would have a discrete set of values for the final sample size — but perhaps

the above sample size function can be approximated by a simple step function.
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Hampson & Jennison’s Delayed Response GSTs

Reference: “Group sequential tests for delayed responses” (JRSS B, 2012).

Hampson & Jennison (HJ) formulate group sequential designs for delayed response

in which the trial comes to an end in two stages

1. Stop recruitment of any more subjects,

2. After responses have been observed for all recruited subjects,

make a decision to accept or reject H0.

In a design with up to K analyses, let Zk denote the standardized test statistic for

testing H0: θ ≤ 0 at interim analysis k.

Recruitment can terminate at interim analysis k

For a high values of Zk, suggesting a positive treatment effect,

For a low value of Zk, suggesting no treatment effect.

However, the decision to accept or reject H0 is not taken until the subsequent

“decision analysis” when responses from pipeline subjects are available.
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Hampson & Jennison’s Delayed Response GSTs

At interim analysis k, with nk observations, compare Zk to critical values ak, bk .

If Zk < ak or Zk > bk , cease recruitment of new patients.

-

6

n

Zk

n1 ñ1 n2 ñ2 n3 ñ3 ñ4

•

•

•

•

•

•

b1

a1

c1

Now wait for responses from “pipeline” subjects who have been treated but have no

response at interim analysis k.

At the final decision analysis, with ñk observations, reject H0 if Z̃k > ck.
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Delayed Response GSTs

For a particular sequence of observed responses, we apply boundary points at a

sequence of sample sizes of the form

n1, . . . , nk, ñk.

In the example below, recruitment ceases at the second interim analysis and the

final decision is made with extra “pipeline” data bringing the information up to ñ2.

-

6

n

Zk

n1 n2 ñ2

•

•

∗
•

•

∗
∗
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Delayed Response GSTs

Computations for Delayed Response GSTs

It is not difficult to compute properties of a given Delayed Response Group

Sequential Test (DR GST).

The sequence of estimates {θ̂1, . . . , θ̂k, θ̃k} and the related sequence of

Z-statistics {Z1, . . . , Zk, Zk} have the same forms of joint distribution seen

for standard GSTs.

Hence, the same methods can be used to compute properties of a DR GST.

Optimising a Delayed Response GST

Suppose we stipulate type I error rate α, power 1 − β at θ = δ, and K interim

analyses and decision analyses at specified times.

Then it is possible to optimise a DR GST with respect to a measure of expected

sample size on termination.
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Relation between DR GSTs and Mehta & Pocock’s design

With K = 2, the DR GST is similar to the MP design.

On the basis of data at interim analysis 1, a decision is made

(a) To cease recruitment and wait for pipeline subjects to respond, or

(b) Continue recruitment, then wait for responses from all subjects.

(a)

-

6

n

Zk

n1 ñ1 n2

•

•

∗
∗

(b)

-

6

n

Zk

n1 ñ1 n2

•

•

∗
∗

So, interim data guide the choice made between a final group size of ñ1 and n2.

In the MP design, final sample size is chosen from a continuous range of values.
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Delayed Response GST for the MP example

For Mehta & Pocock’s example we can define a DR GST with:

Type I error rate α = 0.025,

Power 0.658 at θ = 1.6,

First analysis with n1 = 208 observed responses,

Second analysis with

either ñ1 = 416 responses (pipeline subjects only),

or n2 = 518 responses (recruiting 102 more patients).

We have found the DR GST minimising Eθ=1.6(N) subject to these constraints.

An “Adaptive DR GST” would allow the final sample size to be chosen as any value

greater than the minimum ñ1 = 416 arising from the pipeline subjects — but

these are the defining properties of the general optimal rule in Section 6
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Delayed Response GST for the MP example

Optimising a DR GST gives the sample size rule shown in the figure below.

This DR GST has type I error rate 0.025 and power 0.658 at θ = 1.6, and is

optimised for Eθ=1.6(N).
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The sampling rule approximates that of the optimal adaptive DR GST — which is

the same as the general optimal rule found in Section 6.
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Plot of Eθ(N) for the optimal DR GST

There is very little difference in Eθ(N) between the optimal DR GST and the

optimal adaptive DR GST, which is allowed to vary the second group size.
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As Jennison & Turnbull (Biometrika, 2006) found for an immediate response, there

is minimal benefit from tuning the final sample size in response to interim data.

HJ find a similarly low return from adaptation in other examples with K = 2.
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Hampson & Jennison’s Delayed Response GSTs

HJ’s DR GSTs are defined for a general number of analyses K ≥ 2.

Efficient forms of these designs are known.

Their performance can be compared for different choices of

Number of analyses of K and

Maximum overall sample size

to find the most suitable design.

HJ define error spending versions of their DR GSTs, which can deal with

departures in group sizes from their planned values.

HJ also present methods for inference (P-values and confidence intervals) on

termination of a DR GST.
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Efficiency implications of a delayed response

We are used to GSTs giving reductions in Eθ(N) from a fixed sample size design.

Suppose the pipeline subjects at each interim analysis comprise a fraction r of the

overall maximum sample size.

The reductions in Eθ(N) that can be achieved by interim monitoring and early

termination of recruitment decrease as r increases.

HJ show that the loss of efficiency is small for values of r < 0.1.

However, as r rises to 0.25, we lose about half the savings in expected sample size

that a GST for immediate response would deliver.

In the MP example, the value of r is much higher than this! The two-stage GST we

considered in Section 3 had a maximum of 514 subjects, so

r =
208

514
= 0.40.
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Efficiency implications of a delayed response

We have computed DR GSTs for the MP example under a range of scenarios with

delay in response leading to different numbers of pipeline subjects.
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The number of pipeline subjects in the example as described by MP is 208.

MP’s adaptive design has at least 226 new responses observed between analyses.

For lower numbers of pipeline subjects, DR GSTs produce lower Eθ(N) curves,

coinciding with the GST for immediate response when this number is zero.
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Ameliorating the effects of a delayed response

Once we understand how a delayed response affects what can be achieved by

group sequential monitoring, steps can be taken to address this problem.

Recall that the MP example concerns a Phase 3 trial of a new treatment for

schizophrenia. The primary endpoint is improvement in the Negative Symptoms

Assessment (NSA) score from baseline to week 26.

Slower recruitment

Suppose the costs of running the trial are the limiting factor and investigators do not

object to taking a little longer to reach a conclusion.

Then recruiting patients more slowly will reduce the number in the pipeline at an

interim analysis — and we can achieve one of the lower Eθ(N) curves in the

previous figure.
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Ameliorating the effects of a delayed response

Using data on a short term endpoint

DR GSTs can incorporate data on a short term response, correlated with the

long-term endpoint, still making inferences on the desired long-term endpoint.

In the MP example, there is an opportunity to measure the NSA score at one or

more intermediate times between baseline and week 26.

Fitting a longitudinal model to these data at an interim analysis yields an improved

estimate of the treatment effect on the primary endpoint.

The increase in information about the primary endpoint at the interim analysis has

the same effect as a reduction in the “pipeline size”. So, this will lead to a more

efficient DR GST.

With a good correlation between short-term and long-term endpoints, e.g., ρ = 0.7,

this approach recoups much of the efficiency loss due to the delay in response.

53



'

&

$

%

8. Conclusions

1. Mehta & Pocock describe a problem for sequential monitoring of a clinical trial

with a delayed response: this poses problems for “conventional” GSTs.

2. MP use the Chen, DeMets & Lan (2004) approach with sample size set to attain

conditional power 0.8 if θ = θ̂1. This does not yield a particularly efficient design.

3. We have pursued MP’s idea of spending resource where it will have the greatest

benefit, and found efficient adaptive designs for their problem.

4. The solution to our most general formulation of this problem is also an optimal

“Adaptive Delayed Response GST”, as proposed by Hampson & Jennison (2012).

However, a non-adaptive version of this design — the natural extension of a GST to

a delayed response — is almost as efficient and likely to be simpler to implement.

5. Understanding how a delay in response affects the monitoring process can help

address this problem. In MP’s example, either slower accrual or taking interim

measurements of the NSA score could help reduce expected sample size.
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9. Connections to other work

Optimal non-adaptive GSTs for an immediate response

Eales & Jennison (1992) Biometrika,

Barber & Jennison (2002) Biometrika

These papers present derivations of optimal GSTs with specified type I error rate

and power. Designs minimise a weighted average or integral of Eθ(N) values.

Derivations are similar to those required to implement generalisations (1) to (3)

listed in Section 6 of this talk — but with K ≥ 2 groups of fixed size.

Optimal adaptive GSTs for an immediate response

Posch, Bauer & Brannath (2003), Statistics in Medicine

In Section 3.3.3 of this paper, the authors consider a form of combination test and

find an optimised sample size rule by searching over a 4-parameter family of

functions. Extending this approach to the delayed response setting would give a

similar result to our optimised CPR method.
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Connections to other work

Optimal adaptive GSTs for an immediate response

Jennison & Turnbull (2006) Biometrika,

Banerjee & Tsiatis (2006) Statistics in Medicine,

Lokhnygina & Tsiatis (2008) JSPI

These authors derive optimal adaptive GSTs with given type I error rate and power.

Derivations are essentially those needed to carry out generalisations (1) to (3) listed

in Section 6 of this talk.

Jennison & Turnbull (2006) implement the methods for designs with K ≥ 2 groups.

Optimal adaptive and non-adaptive GSTs for a delayed respon se

Hampson & Jennison (2012) ”Group sequential tests for delayed responses”

JRSS B
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Connections to other work

Conditional probability of rejection (CPR)

Lan, Simon & Halperin (1982) Communications in Statistics,

Lan & Wittes (1988) Biometrics,

Proschan & Hunsberger (1995) Biometrics,

Denne (2001) Statistics in Medicine,

Müller & Schäfer (2001) Biometrics Medicine,

Müller & Schäfer (2004) Statistics in Medicine,

Jennison & Turnbull (2003) Statistics in Medicine

There is a long history of making use of the conditional probability, under the null

hypothesis, that a test will ultimately reject H0. Lan, Simon & Halperin used this

quantity in defining “stochastic curtailment” procedures; Lan & Wittes discussed

more general usage in data monitoring.

Proschan & Hunsberger made use of CPR, showing that preserving this quantity

when a design is adapted will protect the type I error rate.
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Connections to other work

Conditional probability of rejection (CPR)

Denne (2001) and Müller & Schäfer (2001, 2004) used similar constructions, with a

greater emphasis on flexible (i.e., not fully pre-specified) procedures.

Jennison & Turnbull (2003) showed formally that such preservation of the

conditional type I error rate is essential in flexible adaptations in order to avoid the

possibility of inflating the overall type I error rate.
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