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Motivating example

A new treatment is intended for the full patient population but a patient subgroup,

defined by a biomarker, is thought to be particularly likely to respond.

An clinical trial with enrichment is proposed:

Start by comparing the new treatment against control in the full population.

Examine responses at an interim stage.

If there is no evidence of treatment effect, stop for futility.

If the new treatment appears effective in the full population, continue as before.

If the new treatment appears to benefit just the subgroup, recruit only from the

subgroup and increase the numbers in this subgroup.

In hypothesis testing, we allow for the multiplicity of hypotheses.

What about estimation, P-values and confidence intervals on termination?
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Overview of this talk

I shall discuss:

Inference following a group sequential test.

Approximately unbiased point estimation,

P-values,

Confidence intervals on termination.

Inference following an adaptive group sequential test.

Inference following an adaptive trial design with multiple populations.
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1. Inference following a group sequential test

Consider a two-treatment comparison with normally distributed responses on

treatments A and B

XAi ∼ N(µA, σ
2) and XBi ∼ N(µB , σ

2).

The treatment effect is θ = µA − µB .

It is desired to test H0: θ = 0 against θ 6= 0 with two-sided type I error rate α.

We shall use a group sequential test with K = 5 analyses.

At analysis k, suppose we have nk observations on each treatment, then the

standardised test statistic is

Zk =

∑nk

i=1
(Xi − Yi)√

(2nk σ2)
.
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Inference following a group sequential test

We shall use an O’Brien & Fleming (Biometrics, 1979) boundary.
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Reject H0 for θ > 0

Reject H0 for θ < 0

Accept H0

The trial stops to reject H0 at analysis k if Zk ≤ −bk or Zk ≥ bk.

If analysis 5 is reached and −b5 < Z5 < b5, then H0 is accepted.

Setting bk =
√

5/k 2.040 gives two-sided type I error rate equal to 0.05.
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(a) Estimating θ after a group sequential test

-
k

6
Zk q q q q q
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On termination of the test, the maximum likelihood estimate (MLE) of θ is

θ̂M =

nk
∑

i=1

(Xi − Yi)/nk.

For positive values of θ, high values of θ̂ lead to early stopping, while lower values

lead to collection of more data and the chance for θ̂ to increase.

This results in an upward bias of the MLE, so Eθ(θ̂M ) > θ for θ > 0.

Similarly, Eθ(θ̂M ) < θ for negative values of θ.
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Bias of the MLE of θ after a 5 group O’Brien & Fleming test

The bias of the MLE can be calculated as a function of the true effect size, θ.
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With sample size chosen to give power 0.9 for detecting a treatment effect of ±1,

bias of the MLE is around 0.1 at θ = 1 and −0.1 at θ = −1.
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Correcting the bias of the MLE

Denote the bias function of the MLE by

b(θ) = Eθ(θ̂M ) − θ.

Whitehead (Biometrika 1986) suggested correcting the MLE by subtracting an

estimate of its bias.

Since the true θ is unknown, the bias of the MLE is estimated by b(θ̂M ).

The adjusted estimator is then

θ̂adj = θ̂M − b(θ̂M ).
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Adjusted estimator of θ after a 5 group O’Brien & Fleming test

Simulation results show that Whitehead’s adjusted estimator has much smaller bias

than the MLE on which it is based.
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(b) P-value for H0: θ = 0 after a group sequential test

P-values and confidence intervals are based on an ordering of the sample space.
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We shall use the “stage-wise” ordering depicted above.
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P-value on termination of a group sequential test

The one-sided P-value for testing H0: θ = 0 against θ > 0 is the probability

underH0 of observing such a high outcome in the specified ordering.

-
k1 2 3 4 5

6
Zk

0

2

4

−2

−4

6

6

6

6

6

6

6

6

6

6

HHj
@

@R

S
SSw

J
J
Ĵ
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For example, if the test stops at analysis 3 with Z3 = 4.2, the one-sided P-value is

Pθ=0{Z1 ≥ 4.56 or Z2 ≥ 3.23 or Z3 ≥ 4.2} = 0.00063.
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P-value on termination of a group sequential test

The one-sided P-value for testing H0: θ = 0 against θ < 0 is the probability

underH0 of observing such a low outcome in the specified ordering.

The two-sided P-value for testing H0: θ = 0 against θ 6= 0 is two times the

smaller of the one-sided P-values.

Symmetry of the stopping boundary in our example implies that, on stopping at

analysis 3 with Z3 = 4.2, the two-sided P-value is

Pθ=0{|Z1| ≥ 4.56 or |Z2| ≥ 3.23 or |Z3| ≥ 4.2} = 0.0013.
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P-value on termination of a group sequential test
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In the stage-wise ordering, stopping at a later analysis with a large excess over the

boundary can give a higher MLE of θ, but lower rank in the sample space ordering.

For the two outcomes shown above,

Z4 = 2.5 and θ̂M = 0.85,

Z5 = 4.0 and θ̂M = 1.22.

Should these points be in the opposite order?
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P-value on termination of a group sequential test

Other sample space orderings are possible — and several have been proposed.

Since the monotone likelihood ratio property does not hold for this sample space,

there is no “best” ordering.

The stage-wise ordering can be applied without knowledge of what future group

sizes would have been, making it a natural choice for use with error spending

designs for group sequential tests.

Under the above definitions, based on a specific ordering of the sample space:

The P-value has a U(0, 1) distribution underH0.

If the group sequential test has two-sided type I error probability α, then the

two-sided P-value is ≤ α precisely when the test stops with rejection of H0.

The two-sided P-value tends to be low when θ is away from zero.
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(c) Confidence interval on termination of a group sequential test

A 100(1 − α)% confidence interval (CI) for θ is obtained by inverting a family of

level α, two-sided hypothesis tests.
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For each θ∗, partition the sample space into regionsR1(θ
∗), A(θ∗) andR2(θ

∗),

containing outcomes of increasing rank in the sample space ordering, with

Pθ∗{R1(θ
∗)} = α/2, Pθ∗{A(θ∗)} = 1 − α, Pθ∗{R2(θ

∗)} = α/2.
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Confidence interval on termination of a group sequential tes t

The null hypothesisH0(θ
∗): θ = θ∗ is accepted for outcomes in A(θ∗).

The CI for θ is the set of all values θ∗ for which H0(θ
∗) is accepted:

{θ∗: Observed outcome ∈ A(θ∗)}

Direct definition:

Suppose the group sequential test terminates at analysis k∗ with Zk∗ = Z∗.

The CI contains those values of θ for which (k∗, Z∗) is in the middle (1 − α) of

the probability distribution of outcomes under θ.

This can be seen to be the interval (θ1, θ2) where

Pθ1
{An outcome above (k∗, Z∗)} = α/2 and

Pθ2
{An outcome below (k∗, Z∗)} = α/2.
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Confidence interval on termination of a group sequential tes t

Example:

If the test stops at analysis 3 with Z3 = 4.2, the 95% confidence interval for θ is

(0.60, 2.32)

using the stage-wise ordering.

In contrast:

The “naive” 95% fixed sample CI is

(0.88, 2.42).

But, it is not appropriate to use this fixed sample interval.

Its derivation does not take account of the special nature of the sample space.

Thus, coverage probability of the interval calculated in this manner is not 95%.
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Consistency of hypothesis testing and CI on termination

Suppose a group sequential study is conducted to testH0: θ = 0 vs θ 6= 0 with

type I error probability α.

Then, a (1 − α) confidence interval on termination should contain θ = 0 if and

only if H0 is accepted.

This happens automatically if outcomes for which we reject H0 are at the top and

bottom ends of the sample space ordering — and any sensible ordering does this.

Note that a naive (1 − α) level CI on termination fails to include θ = 0 if an

unadjusted α level significance test rejects H0. Due to the “multiple looks” effect,

this can occur with probability considerably higher than α.
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Should inference be “conditional”?

Strickland & Casella (Biometrical Journal, 2003) and Fan & DeMets (J. Biopharm.

Statistics, 2006) consider conditional inference following a group sequential test.

R.A. Fisher (Statistical Methods and Scientific Inference, 1959) discussed

“conditioning on recognizable subsets”. The stopping time of a group sequential

test defines such a subset of outcomes, and one may consider properties of

inferences conditional on the stage at which the study stops.

However, the stopping time itself is informative about θ and, for certain types of

boundary, can even imply the decision to accept or rejectH0.

What if you only report a confidence interval for θ when you have rejectedH0?

Would you consider inference conditional on rejecting H0 in a fixed sample study?

I shall focus on unconditional inference, aiming for consistency with the conclusions

of the basic hypothesis test. This will be a significant choice for trials with multiple

parameters and null hypotheses.
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2. Adaptive designs: The combination test

Bauer & Köhne (Biometrics, 1994) introduced the combination test as a key tool for

constructing adaptive trial designs. We describe this method using Z-statistics:

Define the null hypothesisH0 (with a one-sided alternative).

Design Stage 1, fixing sample size and test statistic for this stage.

Stage 1

Observe the Z-value Z1 for testing H0.

Design Stage 2 in the light of Stage 1 data.

Stage 2

Observe Z2 for testing H0, based on Stage 2 data only.

Clearly, Z1 has the usualN(0, 1) distribution underH0.

Under H0, Z2 ∼ N(0, 1) conditionally — and hence unconditionally — on the

Stage 2 design, and Z2 is independent of Z1.
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The inverse normal combination test

Weightsw1 andw2, with w2

1
+w2

2
= 1, are stipulated before the start of the study.

Since Z1 and Z2 are independentN(0, 1) variates underH0, it follows that

w1 Z1 + w2 Z2 ∼ N(0, 1).

Hence, the Z-values can be combined in an overall test, rejecting H0 if

w1 Z1 + w2 Z2 > 1 − Φ(α).

This test has type I error rate α underH0, despite allowing mid-study modifications

which do not necessarily follow pre-planned rules.

Bauer & Köhne refer to this as the inverse normal test (in contrast to their inverse

χ2 test based on P1 P2 = {1 − Φ(Z1)} {1 − Φ(Z2)} ).
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Confidence interval following a combination test

Consider the two-treatment comparison with normal responses introduced earlier.

Suppose an adaptive trial design with an inverse normal combination test is used

to test H0: θ ≤ 0 against θ > 0.

We shall construct a (1 − α) level upper CI for θ.

With n1 subjects per treatment in Stage 1, θ̂1 =
∑n1

i=1
(Xi − Yi)/n1 and

Z1 =
θ̂1√

(2σ2/n1)
∼ N(0, 1) under θ = 0.

To test H0(θ
∗): θ = θ∗ against θ > θ∗, define

Z1(θ
∗) =

θ̂1 − θ∗√
(2σ2/n1)

= Z1 −
θ∗√

(2σ2/n1)
.

Then, Z1(θ
∗) ∼ N(0, 1) under H0(θ

∗).

22



'

&

$

%

Confidence interval following a combination test

The second stage of the trial is designed in the light of Stage 1 data.

With n2 subjects per treatment in Stage 2 and θ̂2 based on these subjects only,

Z2(θ
∗) =

θ̂2 − θ∗√
(2σ2/n2)

= Z2 −
θ∗√

(2σ2/n2)
.

Under H0(θ
∗): θ = θ∗, Z2(θ

∗) ∼ N(0, 1) and is independent of Z1(θ
∗).

Applying the combination test, H0(θ
∗) is rejected if

w1 Z1(θ
∗) + w2 Z2(θ

∗) > 1 − Φ(α).

A (1 − α) level, upper CI for θ is the set of values θ∗ for which H0(θ
∗) is

accepted, i.e.,

{θ∗: w1 Z1(θ
∗) + w2 Z2(θ

∗) ≤ 1 − Φ(α)}.
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Confidence interval following a combination test

This methodology can be extended to accommodate additional features of adaptive

designs based on combination tests.

Early stopping

The two-stage design may include a stopping rule:

If Z1 ≥ b1, stop and rejectH0,

If a1 < Z1 < b1, continue to Stage 2,

If Z1 ≤ a1 stop and acceptH0.

This rule can be expressed in terms of Z1(θ
∗) since

Z1 ≥ b1 ⇔ Z1(θ
∗) ≥ b1(θ

∗) = b1 − θ∗/
√

(2σ2/n1)
and

Z1 ≤ a1 ⇔ Z1(θ
∗) ≤ a1(θ

∗) = a1 − θ∗/
√

(2σ2/n1).
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Confidence interval following a combination test

Early stopping, continued

Now order the sample space according to

1. Z1(θ
∗) ≤ a1(θ

∗) by increasing values of Z1(θ
∗),

2. a1(θ
∗) < Z1(θ

∗) < b1(θ
∗) by increasing w1 Z1(θ

∗) + w2 Z2(θ
∗),

3. Z1(θ
∗) ≥ b1(θ

∗) by increasing Z1(θ
∗).

This has similarities to the stage-wise ordering of the sample space of a group

sequential test.

Now define the rejection region for H0(θ
∗): θ = θ∗ as the set of outcomes at the

top of this ordering with probability α under θ = θ∗.

As before, the (1 − α) level, upper CI for θ is the set of values θ∗ for which

H0(θ
∗) is accepted.
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Confidence interval following a combination test

Combination tests with more than two stages

Lehmacher & Wassmer (Biometrics, 1999) extend Bauer & Köhne’s construction

to create adaptive group sequential designs combining Z-statistics from several

stages — with the opportunity of re-design at each stage.

Brannath, Posch & Bauer (JASA, 2002) discuss “recursive” combination tests.

That is, two-stage tests in which the second stage can be sub-divided into two

stages, and iterating this process gives multiple stages.

Brannath et al. show how to construct an upper confidence interval after a recursive

combination test. Since a Lehmacher & Wassmer test can be expressed as a

recursive combination test, this approach will provide a CI on termination.

Brannath, Mehta & Posch (Biometrics, 2009) consider other adaptive designs based

on preserving the conditional type I error probability. They propose methods CIs on

termination based on the stage-wise ordering which are (slightly) conservative.
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3. Inference following an enrichment design

A trial protocol defines a population that may benefit from the new treatment.

It is believed the treatment could be particularly effective in a sub-population

defined by a physiological or genetic biomarker.

Enrichment: Restricting recruitment to a sub-population

At an interim analysis, the options are:

Stop the trial for futility,

Continue as originally planned,

Restrict the remainder of the study to the defined sub-population.

Restricting recruitment to the sub-population will affect the licence that a positive

outcome can support.

The possibility of testing more than one null hypothesis means a multiple testing

procedure must be used.
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Enrichment: Example

&%
'$
θ1 θ2Sub-population 1

(proportion λ1)

Rest of the population

(proportion λ2)

Overall treatment effect is θ3 = λ1θ1 + λ2θ2.

We may wish to test:

The null hypothesis for the full population, H0,3: θ3 ≤ 0 vs θ3 > 0,

The null hypothesis for sub-population 1, H0,1: θ1 ≤ 0 vs θ1 > 0.
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Enrichment: Example

&%
'$
θ1 θ2Sub-population 1

(proportion λ1)

Rest of the population

(proportion λ2)

First, consider a design testing for a whole population effect, θ3 = λ1θ1 + λ2θ2,

in the case λ1 = λ2 = 0.5.

The test of H0,3: θ3 ≤ 0 has one-sided type I error probability 0.025 and

sample size is set to achieve power 0.9 at θ3 = 20.

An interim analysis is conducted after half the planned sample size.

If θ̂3 < 0 at the interim analysis, stop for futility with acceptance of H0,3.
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Enrichment: Example

Properties of design for the whole population effect.

θ1 θ2 θ3 Power for H0,3: θ3 ≤ 0

20 20 20 0.90

10 10 10 0.37

20 0 10 0.37

The third row represents a case where only the sub-population benefits from the

new treatment, so θ1 is high and θ2 is low.

Our aim is to identify such cases and switch resources to the sub-population in

order to improve power.

We need to specify a sampling rule which states when to continue in the full

population and when to “enrich” the sub-population.
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Enrichment: An adaptive sampling rule

At Stage 1, if θ̂3 < 0 stop to acceptH0,3: θ3 ≤ 0.

If θ̂3 > 0 and the trial continues:

If θ̂2 < 0 and θ̂1 > θ̂2 + 8 Restrict to sub-population 1 and test H0,1 only.

Else, Continue with full population, test H0,1 and H0,3.

The same total sample size for Stage 2 is retained in both cases, increasing the

numbers for the sub-population when enrichment occurs.

This sampling rule defines the sample space, so we are already in a position to

consider estimation of θ1 and θ3 on termination.

We shall complete the definition of the testing procedure when we move on to the

related topic of CIs on termination.
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Estimation after an enrichment design

Consider estimating θ1, θ2 and θ3, the treatment effects in the sub-population,

the complement of the sub-population, and the full population.

Maximum likelihood estimates are obtained as follows:

If the trial stops at Stage 1

Base θ̂1,M , θ̂2,M and θ̂3,M on Stage 1 data.

If the trial continues to Stage 2 with the full population

Base θ̂1,M , θ̂2,M and θ̂3,M on combined Stage 1 and Stage 2 data.

If the trial continues to Stage 2 with only the sub-population

Base θ̂1,M on combined Stage 1 and Stage 2 data,

Base θ̂2,M on Stage 1 data

Set θ̂3,M = λ1 θ̂1,M + λ2 θ̂2,M .
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Estimation after an enrichment design

We obtain θ̂1,M , θ̂2,M and θ̂3,M for all trials, irrespective of the interim decision

to stop, continue, or focus on the sub-population.

Thus, we are considering unconditional estimation.

We shall look, in particular, at estimates of θ1 and θ3.

We should expect bias in the MLEs:

If θ̂1 from Stage 1 is high, there is a greater chance of focusing on

the sub-population and increasing its sample size.

If θ̂1 from Stage 1 is low, there is less chance of focusing on the

sub-population, so this θ̂1 keeps a high weight in the MLE.

This will produce a negative bias in θ̂1,M .

Similar reasoning indicates negative bias in θ̂2,M and, hence, in θ̂3,M .
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Estimation after an enrichment design
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Biases of −2 represent 10% of the effect size under investigation.
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Estimation after an enrichment design
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Correcting the bias of the MLE

Whitehead’s (1986) method can be applied in more than one dimension.

Write θ = (θ1, θ2, θ3), where θ3 = λ1 θ1 + λ2 θ2.

Denote the bias functions of the MLEs of θ1 and θ3 by

b1(θ) = Eθ(θ̂1,M ) − θ1 and b3(θ) = Eθ(θ̂3,M ) − θ3.

(Note that the bias depends on both θ1 and θ2.)

We can estimate the functions b1(θ) and b3(θ) by simulation.

Hence, we obtain adjusted estimators:

θ̂1,adj = θ̂1,M − b1(θ̂M ) and θ̂3,adj = θ̂3,M − b3(θ̂M ).
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Estimation after an enrichment design

The adjusted estimator θ̂1,adj has much smaller bias than the MLE, θ̂1,M .
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Estimation after an enrichment design

The adjusted estimator θ̂3,adj has much smaller bias than the MLE, θ̂3,M .
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Enrichment: Multiple hypothesis testing

Recall that interest lies in showing a treatment effect in the full population or, failing

that, in the sub-population.

Thus, we may wish to test:

For the full population, H0,3: θ3 ≤ 0 vs θ3 > 0,

For the sub-population, H0,1: θ1 ≤ 0 vs θ1 > 0.

The responses observed in Stage 1 will determine which hypotheses are of interest

at the end of the trial and the sample sizes available for testing these.

An appropriate multiple testing procedure is needed to provide proper control of the

false positive rate. A “closed testing procedure” can achieve this.
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Closed testing procedures (Marcus et al, Biometrika, 1976)

With hypothesesHi: θi ≤ 0, i = 1, . . . , k, define the intersection hypothesis

HI = ∩i∈I Hi for each subset I of {1, . . . , k}.

Construct a level α test of each intersection hypothesisHI : this test rejects HI

with probability at most α whenever all hypotheses specified in HI are true.

Closed testing procedure

The hypothesisHi: θi ≤ 0 is rejected overall if, and only if, HI is rejected for

every set I containing index i.

This procedure controls the family-wise error rate strongly at level α, i.e.,

Pr{Reject any true Hi} ≤ α for all (θ1, . . . , θk).

With such strong control, the probability of choosing to focus on the parameter θi∗

and then falsely claiming significance for null hypothesisHi∗ is at most α.

40



'

&

$

%

Enrichment: Multiple hypothesis testing

A closed testing procedure will require tests for 3 hypotheses:

H0,3: θ3 ≤ 0

H0,1: θ1 ≤ 0

H0,13: θ1 ≤ 0 and θ3 ≤ 0.

Given the definition θ3 = λ1 θ1 + λ2 θ2, any subset of these three hypotheses

may be true.

We test all three hypotheses in two-stage tests, stopping to accept a hypothesis at

Stage 1 if the Z-statistic is negative.

With Z-statistics Z1 and Z2 from Stages 1 and 2, Hi is rejected if

Z1 ≥ 0 and 1√
2
Z1 + 1√

2
Z2 ≥ 1.95.
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Enrichment: Multiple hypothesis testing

For Stage i = 1 and 2, let:

θ̂i,1 and θ̂i,3 be estimates of θ1 and θ3 obtained from responses in Stage i,

Zi,1 and Zi,3 denote Z-statistics for H0,1 and H0,3 based on θ̂i,1 and θ̂i,3.

When continuing with the full population, we use Z-statistics:

Stage 1 Stage 2

H0,3 Z1,3 Z2,3

H0,13 Z1,13 Z2,3

Here, we define Z1,13 as a weighted combination ofZ1,1 and Z1,3,

Z1,13 = (Z1,1 + Z1,3)/
√

(2 +
√

2),

and this has a N(0, 1) distribution underH0,13.
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Enrichment: Multiple hypothesis testing

When switching to sub-population 1, we use:

Stage 1 Stage 2

H0,1 Z1,1 Z2,1

H0,13 Z1,13 Z2,1

Even though the goal of demonstrating a treatment effect in the full population has

been abandoned, it is still necessary to reject the intersection hypothesisH0,13

in order for the overall procedure to reject H0,1.

This procedure does improve power when the new treatment is effective in the

sub-population only.
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Enrichment: Power of non-adaptive and adaptive designs

Non-adaptive Adaptive

θ1 θ2 θ3 Full popn Sub-pop Full Total

1 only popn

1. 30 0 15 0.68 0.47 0.41 0.88

2. 20 0 10 0.37 0.33 0.25 0.58

3. 20 20 20 0.90 0.04 0.83 0.87

4. 20 10 15 0.68 0.15 0.57 0.72

Cases 1 & 2: Overall power is increased. Testing focuses (correctly) on H0,1,

but it is still possible to find an effect (wrongly) for the full population.

Case 3: Restricting to the sub-population slightly reduces power for finding

an effect in the full population.

Case 4: Adaptation improves overall power a little.
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Enrichment design: Confidence intervals on termination

We desire a (1 − α) level joint upper confidence interval for θ1 and θ3 on

conclusion of the enrichment design.

A rectangular interval has the form

θ1 ∈ (ψ1,∞), θ3 ∈ (ψ3,∞).

For consistency with the outcomes of hypothesis tests, we require:

If H0,1: θ1 ≤ 0 is rejected, then ψ1 > 0,

If H0,3: θ3 ≤ 0 is rejected, then ψ3 > 0.

As in the univariate case, a CI can be formed from a family of hypothesis tests by

taking the set of parameter values accepted by their hypothesis tests.
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Enrichment design: Confidence intervals on termination

Posch et al. (Statistics in Medicine, 2005) discuss the construction of a joint CI for

multiple parameters after an adaptively designed trial.

They note that it is difficult to achieve the desired consistency property between

joint CIs and hypothesis test outcomes.

A route to a solution:

One reason that creating satisfactory CIs can be problematic is that elements of the

closed testing procedure are defined without thinking ahead to construction of CIs.

An alternative approach is to start with a good method for producing a joint CI on

termination, then define a closed testing procedure to fit with this.

Hayter & Hsu (JASA, 1994) present such a method for fixed sample size designs,

constructing joint CIs which are consistent with stepwise decision procedures.
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Enrichment design: Confidence intervals on termination

A route to a solution:

A key feature of Hayter & Hsu’s method is that, in tests of H0(θ
∗): θ = θ∗, they

use different forms of test in different regions of the parameter space.

For our example, I propose:

To test H0(θ
∗): θ = θ∗ with (θ∗

1
≤ 0, θ∗

2
≤ 0) or (θ∗

1
> 0, θ∗

2
> 0)

Test H0: θ1 = θ∗
1

and H0: θ2 = θ∗
2

separately, then apply Bonferroni’s rule

and reject H0(θ
∗) if at least one significance level is less than α/2.

To test H0(θ
∗): θ = θ∗ with (θ∗

1
≤ 0, θ∗

2
> 0)

Test H0: θ1 = θ∗
1

and reject H0(θ
∗) if the significance level is less than α.
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Enrichment design: Confidence intervals on termination

A route to a solution:

and finally,

To test H0(θ
∗): θ = θ∗ with (θ∗

1
> 0, θ∗

2
≤ 0)

Test H0: θ2 = θ∗
2

and reject H0(θ
∗) if the significance level is less than α.

These types of test can be incorporated in the definitions of tests of H0,1, H0,3

and H0,13 in our example of an enrichment design.

It will then follow that the joint CI for θ1 and θ3 on termination has the desired

properties of excluding θ1 = 0 when H0,1 is rejected and excluding θ3 = 0

when H0,3 is rejected.
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Conclusions

There are methods for obtaining approximately unbiased point estimates, P-values

and confidence intervals after a group sequential test.

P-values and confidence intervals for a single treatment effect can also be obtained

after an adaptive group sequential design.

Methods for point estimation extend simply to multiple parameters.

Construction of joint confidence intervals for two or more parameters after an

adaptive design poses problems but these can be overcome.
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