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Motivating example

Consider a new treatment developed to disrupt a disease’s biological pathway.

Patients with high levels of a biomarker associated with this pathway should gain

particular benefit, but the treatment’s wider action may also help the general patient

population.

In a clinical trial with enrichment we

Start by comparing the new treatment against control in the full population.

Examine responses at an interim stage.

If there is no evidence of treatment effect, stop for futility.

If the new treatment appears effective in the full population, continue as before.

If the new treatment appears to benefit just the subgroup, recruit only from the

subgroup and increase the numbers in this subgroup.

Results may support a licence for the full population or just the sub-population.
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Overview of this talk

1. Adaptation to focus on a sub-population: enrichment designs

Decision rules

Closed testing procedures

Power of adaptive designs

2. Estimation following an enrichment design

Bias of MLEs

Adjusted estimates

3. Confidence intervals following an enrichment design

Problems of consistency between CIs and overall hypothesis tests

Consistent CIs
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1. Enrichment: Switching to a patient sub-population

&%
'$
θ1 θ2Sub-population

(proportion λ1)

Rest of the population

(proportion λ2)

Overall treatment effect is θ3 = λ1θ1 + λ2θ2.

We may wish to test:

The null hypothesis for the full population, H3: θ3 ≤ 0 vs θ3 > 0,

The null hypothesis for the sub-population, H1: θ1 ≤ 0 vs θ1 > 0.
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Enrichment: Example

&%
'$
θ1 θ2Sub-population

(proportion λ1)

Rest of the population

(proportion λ2)

First, consider a design testing for a whole population effect, θ3 = λ1θ1 + λ2θ2.

The design has two analyses and one-sided type I error probability 0.025.

Sample size is set to achieve power 0.9 at θ3 = 20.

Data in each stage are summarised by a Z-value:

Stage 1 Stage 2 Overall

H3: θ3 ≤ 0 Z1,3 Z2,3 Z3 = 1√
2
Z1,3 + 1√

2
Z2,3
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Enrichment: Example

Two stage design testing for a whole population effect, θ3.

Stage 1 Stage 2 Overall

H3: θ3 ≤ 0 Z1,3 Z2,3 Z3 = 1√
2
Z1,3 + 1√

2
Z2,3

Decision rules:

If Z1,3 < 0 Stop at Stage 1, AcceptH3

If Z1,3 ≥ 0 Continue to Stage 2, then

If Z3 < 1.95 AcceptH3

If Z3 ≥ 1.95 RejectH3
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Enrichment: Example

Assume the sub-population comprises half the total population, so λ1 = λ2 = 0.5.

Properties of design for the whole population effect, θ3:

θ1 θ2 θ3 Power for

H3: θ3 ≤ 0

20 20 20 0.90

10 10 10 0.37

20 0 10 0.37

Is it feasible to identify at Stage 1 that θ3 is low but θ1 may be higher, so one might

switch resources to test a sub-population?
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Enrichment: A closed testing procedure

We wish to be able to consider two null hypotheses:

H3: θ3 ≤ 0 Treatment is not effective in the whole population,

H1: θ1 ≤ 0 Treatment is not effective in the sub-population.

Since θ3 = 0.5 θ1 + 0.5 θ2, either of H1 and H3 may be true on its own.

To apply a closed testing procedure (Marcus et al, Biometrika, 1976) we also

need a test of the intersection hypothesis:

H13: θ1 ≤ 0 and θ3 ≤ 0.

Then to rejectH1 overall, while protecting the family-wise type I error rate, we need

to reject both H1 and H13 in individual tests at significance level α.

Similarly, we can rejectH3 overall if both H3 andH13 are rejected in level α tests.
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Enrichment: An adaptive design

At Stage 1, if θ̂3 < 0, stop to acceptH3: θ3 ≤ 0.

If θ̂3 > 0 and the trial continues:

If θ̂2 < 0 and θ̂1 > θ̂2 + 8 Restrict to sub-population 1 and testH1 only,

needing to rejectH1 and H13.

Else, Continue with full population and testH3,

needing to rejectH3 and H13.

The same total sample size for Stage 2 is retained in both cases, increasing the

numbers for the sub-population when enrichment occurs.
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Enrichment: An adaptive design

Each null hypothesis,Hi say, is tested in a 2-stage group sequential test.

With Z-statistics Z1 and Z2 from Stages 1 and 2, Hi is rejected if

Z1 ≥ 0 and 1√
2
Z1 + 1√

2
Z2 ≥ 1.95.

When continuing with the full population, we use Z-statistics:

Stage 1 Stage 2

H3 Z1,3 Z2,3

H13 Z1,3 Z2,3

where Zi,3 is based on θ̂3 from responses in Stage i.

So, there is no change from the original test of H3.
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Enrichment: An adaptive design

With Z-statistics Z1 and Z2 from Stages 1 and 2, Hi is rejected if

Z1 ≥ 0 and 1√
2
Z1 + 1√

2
Z2 ≥ 1.95.

When switching to the sub-population, we use:

Stage 1 Stage 2

H1 Z1,1 Z2,1

H13 Z1,3 Z2,1

where Zi,j is based on θ̂j from responses in Stage i.

The need to reject the intersection hypothesisH13 adds an extra requirement to

the simple test of H1.
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Simulation results: Power of non-adaptive and adaptive des igns

Non-adaptive Adaptive

θ1 θ2 θ3 Full popn Sub-popn Full Total

only popn

1. 30 0 15 0.68 0.43 0.42 0.85

2. 20 0 10 0.37 0.24 0.26 0.51

3. 20 20 20 0.90 0.03 0.87 0.90

4. 20 10 15 0.68 0.11 0.60 0.71

Cases 1 & 2: Testing focuses (correctly) on H1, but it is still possible to find

an effect (wrongly) for the full population. Overall power is increased.

Case 3: Restricting to the sub-population reduces power for finding an effect in

the full population.

Case 4: Adaptation improves overall power a little.
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Increasing power for finding a sub-population effect

Greater power for the sub-population can be achieved by using Z1,1 rather than

Z1,3 as the Stage 1 statistic in the test of H13.

This gives the following results:

Non-adaptive Adaptive

θ1 θ2 θ3 Full popn Sub-popn Full Total

only popn

1. 30 0 15 0.68 0.47 0.40 0.87

2. 20 0 10 0.37 0.35 0.23 0.58

3. 20 20 20 0.90 0.04 0.74 0.78

4. 20 10 15 0.68 0.16 0.51 0.56

Benefits in Case 2 are balanced by loss of overall power in Cases 3 and 4.
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Increasing power for finding a sub-population effect

As a compromise between the two previous methods, a combination∗ of Z1,3 and

Z1,1 may be used as the Stage 1 statistic for the test of H13.

This leads to the following results:

Non-adaptive Adaptive

θ1 θ2 θ3 Full popn Sub-popn Full Total

only popn

1. 30 0 15 0.68 0.47 0.41 0.88

2. 20 0 10 0.37 0.33 0.25 0.58

3. 20 20 20 0.90 0.04 0.83 0.87

4. 20 10 15 0.68 0.15 0.57 0.72

∗Specifically, (Z1,3 + Z1,1)/
√

(2 +
√

2), which is N(0, 1) underH13.
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Enrichment: Example

The rules for staying with the full population or switching to the sub-population can

be adjusted, but we cannot eliminate the probability of making an error in these

decisions.

This is to be expected. The standard error of interim estimates θ̂1 and θ̂2 is 12.3

— much higher than the differences between θ1 and θ2 that interest us.

We conclude that

Restricting attention to a sub-population can be

effective in improving power.

However, higher overall sample size is needed for

accurate sub-population inference.
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Increasing power for finding a sub-population effect

To match the non-adaptive test in cases 2 and 3, and obtain the benefits of

adaptation elsewhere, increase the overall sample size by 30%.

With a combination∗ of Z1,3 and Z1,1 as the Stage 1 statistic for testing H13, we

obtain the following results:

Non-adaptive Adaptive, 1.3 x sample size

θ1 θ2 θ3 Full popn Sub-popn Full Total

only popn

1. 30 0 15 0.68 0.49 0.45 0.94

2. 20 0 10 0.37 0.38 0.30 0.69

3. 20 20 20 0.90 0.03 0.92 0.94

4. 20 10 15 0.68 0.15 0.68 0.82

∗Using (Z1,3 + Z1,1)/
√

(2 +
√

2).
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2. Estimation following an enrichment design

Consider estimating θ1, θ2 and θ3, after a trial conducted according to the

enrichment design we have just seen.

Maximum likelihood estimates are obtained as follows:

If the trial stops at Stage 1

Base θ̂1,M , θ̂2,M and θ̂3,M on Stage 1 data.

If the trial continues to Stage 2 with the full population

Base θ̂1,M , θ̂2,M and θ̂3,M on combined Stage 1 and Stage 2 data.

If the trial continues to Stage 2 with only the sub-population

Base θ̂1,M on combined Stage 1 and Stage 2 data,

Base θ̂2,M on Stage 1 data

Set θ̂3,M = λ1 θ̂1,M + λ2 θ̂2,M .
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Estimation after an enrichment design

We obtain θ̂1,M , θ̂2,M and θ̂3,M for all trials, irrespective of the interim decision

to stop, continue, or focus on the sub-population.

Thus, we are considering unconditional estimation.

We shall look, in particular, at estimates of θ1 and θ3.

We should expect bias in the MLEs:

If θ̂1 from Stage 1 is high, there is a greater chance of focusing on

the sub-population and increasing its sample size.

If θ̂1 from Stage 1 is low, there is less chance of focusing on the

sub-population, so this θ̂1 keeps a high weight in the MLE.

This will produce a negative bias in θ̂1,M .

Similar reasoning indicates negative bias in θ̂2,M and, hence, in θ̂3,M .
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Estimation after an enrichment design
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Bias of θ̂1,M , MLE for the sub-population treatment effect

Biases of −2 represent 10% of the effect size under investigation.
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Estimation after an enrichment design

theta(1)

−20

−10

0

10

20

th
et

a(
2)

−20

−10

0

10

20

B
ias of M

LE

−3

−2

−1

0

1

Bias of θ̂3,M , MLE for the full population treatment effect

Biases of −2 represent 10% of the effect size under investigation.
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Correcting the bias of the MLE

Whitehead’s method (Biometrika, 1986) for estimating a single treatment effect after

a sequential trial can be applied in more than one dimension.

Write θ = (θ1, θ2, θ3), where θ3 = λ1 θ1 + λ2 θ2.

Let θ̂M = (θ̂1,M , θ̂2,M , θ̂3,M ).

Denote the bias functions of the MLEs of θ1 and θ3 by

b1(θ) = Eθ(θ̂1,M ) − θ1 and b3(θ) = Eθ(θ̂3,M ) − θ3.

(Note that the bias depends on both θ1 and θ2.)

We can estimate the functions b1(θ) and b3(θ) by simulation.

Hence, we obtain adjusted estimators:

θ̂1,adj = θ̂1,M − b1(θ̂M ) and θ̂3,adj = θ̂3,M − b3(θ̂M ).
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Estimation after an enrichment design

The adjusted estimator θ̂1,adj has much smaller bias than the MLE, θ̂1,M .
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Estimation after an enrichment design

The adjusted estimator θ̂3,adj has much smaller bias than the MLE, θ̂3,M .
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3. Confidence intervals following an enrichment design

Recall that interest lies in showing a treatment effect in the full population or, failing

that, in the sub-population.

Thus, we test:

For the full population, H3: θ3 ≤ 0 vs θ3 > 0,

For the sub-population, H1: θ1 ≤ 0 vs θ1 > 0.

The responses observed in Stage 1 will determine which hypotheses are of interest

at the end of the trial and the sample sizes available for testing these.

An appropriate multiple testing procedure is needed to provide proper control of the

false positive rate. A “closed testing procedure” achieves this.
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Enrichment design: Confidence intervals on termination

Suppose we desire a (1 − α) level joint upper confidence interval for θ1 and θ3 on

conclusion of the enrichment design.

A rectangular interval has the form

θ1 ∈ (ψ1,∞), θ3 ∈ (ψ3,∞).

For consistency with the outcomes of hypothesis tests, we require:

If H1: θ1 ≤ 0 is rejected, then ψ1 ≥ 0

If H3: θ3 ≤ 0 is rejected, then ψ3 ≥ 0

— but preferably ψ1 > 0 and ψ3 > 0.

As in the univariate case, a CI can be formed from a family of hypothesis tests by

taking the set of parameter values accepted by their hypothesis tests.
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Enrichment design: Confidence intervals on termination

Posch et al. (Statistics in Medicine, 2005) discuss the construction of a joint CI for

multiple parameters after an adaptively designed trial.

They note that it is difficult to achieve the desired consistency property between

joint CIs and hypothesis test outcomes.

A route to a solution:

One reason that creating satisfactory CIs can be problematic is that elements of the

closed testing procedure are defined without thinking ahead to construction of CIs.

An alternative approach is to start with a good method for producing a joint CI on

termination, then define a closed testing procedure to fit with this.

We shall start from a proposal of Hayter & Hsu (JASA, 1994) for constructing a joint

CI consistent with a stepwise decision procedure in a fixed sample size design.

26



'

&

$

%

Enrichment design: Confidence intervals on termination

Consider a closed testing procedure based on final P-values

P1 for testing H1: θ1 ≤ 0,

P3 for testing H3: θ3 ≤ 0,

and, with the Bonferroni adjustment,

P13 = 2 min(P1, P3) for testing H13: θ1 ≤ 0 and θ3 ≤ 0.

In an enrichment design these P-values can be formed by applying a combination

test to data from the two stages, before and after adaptation.

If enrichment occurs, there is no final P3 but we can simply set this equal to 1 in the

definition of P13.
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Enrichment design: Confidence intervals on termination

Rejection regions for the closed testing procedure defined using P1, P3 and P13 as

defined above are:

6

-
P1

P3

α

α

α/2

α/2

Reject H1

and H3

Reject H3

Reject

H1
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Enrichment design: Confidence intervals on termination

Writing θ = (θ1, θ3), a CI for θ can be formed from a family of tests of

H(θ∗): θ = θ∗ vs θ1 ≥ θ∗
1

or θ3 ≥ θ∗
3

.

A key feature of Hayter & Hsu’s method is that, in tests of H0(θ
∗) they use different

forms of test for values θ∗ in different regions of the parameter space.

In our example, define

P1(θ
∗
1
) = the final P-value for testing H : θ1 = θ∗

1
vs θ1 ≥ θ∗

1
,

P3(θ
∗
3
) = the final P-value for testing H : θ3 = θ∗

3
vs θ3 ≥ θ∗

3
.

These P-values can be formed using a combination test, e.g., a weighted inverse

normal test for data from the two stages.

The test of H(θ∗): θ = θ∗ will be based on P1(θ
∗
1
) and P3(θ

∗
3
).
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Testing H0(θ
∗): θ = θ

∗

Case 1: θ∗
1
≤ 0 and θ∗

3
≤ 0

Case 2: θ∗
1
> 0 and θ∗

3
> 0

Reject H0(θ
∗) if at least one of P1(θ

∗
1
) and P3(θ

∗
3
) is less than α/2.

6

-
P1(θ

∗
1
)

P3(θ
∗
3
)

α

α

α/2

α/2

Reject

H0(θ
∗)
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Testing H0(θ
∗): θ = θ

∗

Case 3: θ∗
1
≤ 0 and θ∗

3
> 0

Reject H0(θ
∗) if P1(θ

∗
1
) < α.

6

-
P1(θ

∗
1
)

P3(θ
∗
3
)

α

α

α/2

α/2

Reject

H0(θ
∗)
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Testing H0(θ
∗): θ = θ

∗

Case 4: θ∗
1
> 0 and θ∗

3
≤ 0

Reject H0(θ
∗) if P3(θ

∗
3
) < α.

6

-
P1(θ

∗
1
)

P3(θ
∗
3
)

α

α

α/2

α/2

Reject

H0(θ
∗)
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Enrichment design: Confidence intervals on termination

It is straightforward to check consistency of these CIs with the original closed

testing procedure.

Suppose, for example, that H1 is rejected by the overall test.

Then,H(θ∗) is rejected for all values θ∗ with θ∗
1
≤ 0,

hence, the upper CI (ψ1, ∞) for θ1 has ψ1 ≥ 0.

Thus,

the CI for θ1 excludes θ1 = 0 when H1 is rejected and

the CI for θ3 excludes θ3 = 0 when H3 is rejected.

However, we cannot rule out the possibility that, say,H1 is rejected but the CI for θ1
is the open interval (0, ∞).

For refinements to avoid this problem, see Strassberger & Bretz (Statistics in

Medicine, 2008) and Guilbaud (Biometrical Journal, 2008).
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Enrichment design: Confidence intervals on termination

Note that the closed testing procedure assumed here uses a different form of P13

from that introduced in our first form of enrichment design.

Thus, it is important to think ahead to questions of inference on termination when

setting up an adaptive design.

One should also check the chosen form of adaptive design has satisfactory power.

Apart from the definition of P13, there are no particular problems in taking the CI

construction from a fixed sample problem to a sequential, adaptive trial design.

There is freedom in the definition of P13

(i) to allow for the correlation between θ̂1 and θ̂3 and avoid conservatism in

the type I error rate

(ii) to focus on higher power for rejecting H1 or for rejecting H3, as preferred.
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Conclusions

Enrichment designs can deliver on the promise of adapting to a sub-population,

when this is appropriate, based on observed data.

Since interim data are noisy, benefits arise from taking the right decision some of

the time. For a reliable choice between full population and sub-population, sample

sizes must be high.

Methods to adjust MLEs to obtain approximately unbiased point estimates extend to

adaptive designs with multiple parameters.

Construction of joint confidence intervals for two or more parameters after an

adaptive design is problematic but solutions are available.
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