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Outline of talk

1. Elements of the Phase IIb / Phase III decision process

Dose response model and prior for Bayesian analysis

Phase IIb responses, Phase III responses and the final decision

Gain function and sampling costs

Risk of losing a drug due to poor safety results

2. Optimising Phase IIb / Phase III

Formulation of the problem

An optimisation algorithm

Some preliminary results

3. Extensions and methods for improving computational speed
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Dose response model and prior for Bayesian analysis

Doses d0 = 0 (control) and dj , j = 1, . . . , J , (active) are to be tested.

We assume a 4 parameter logistic model with mean response at dose dj

µ(dj) = β +
δ

1 + exp{(θ − dj)/τ}
.

In the prior, we suppose the four parameters are independent and

β ∼ N(5, 102),

δ ∼ N(15, 102),

θ ∼ N((dJ − d0)/2, (dJ − d0)
2),

τ ∼ N+((dJ − d0)/J, 1).

For τ , we write N+ to denote a normal distribution restricted to positive values.

We shall have J = 7 active doses in our example.
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Phase IIb responses

We assume a fixed Phase IIb design with n2j subjects on dose j, j = 0, . . . , J .

In our example, we suppose patients are allocated equally to each active dose and

at 3 times this rate to dose zero. Thus, with a total of n2 subjects in Phase IIb,

n20 = 0.3 n2 on dose zero,

n2j = (0.7/J) n2 on each active dose j = 1, . . . , J .

Given (β, δ, θ, τ), subjects on dose j have independently distributed responses

Xij ∼ N(µ(dj), σ
2).

We shall assume σ = 9.

Combining the likelihood of these responses with the prior for (β, δ, θ, τ) gives the

posterior distribution for the dose response curve to be used in designing Phase III.
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Phase III responses

Suppose it is decided to test dose dj against control in a Phase III trial.

2n3 subjects are randomised equally between dose zero and dose dj .

Responses are distributed as

Yi0 ∼ N(µ(d0), σ
2) on dose zero,

Yij ∼ N(µ(dj), σ
2) on dose j.

We test H0j : µ(dj) − µ(d0) ≤ 0 against µ(dj) − µ(d0) > 0.

If H0j is rejected at a significance level below α, efficacy of dose j is established.

We shall use α = 0.0005 in our example, rather than consider two separate

Phase III trials each with a target significance level of 0.025.
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Gain function and sampling costs

We suppose a positive outcome in Phase III leads to approval of the new drug and

a financial gain g.

Running the Phase IIb trial incurs a sampling cost of c2 per subject.

Running Phase III incurs a cost of c3 per subject.

In our example, we shall take

c2 = 1,

c3 = 1,

g = 12,000.
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Risk of failure for safety

We suppose there is a probability γ(dj) that dose j will eventually fail on safety

grounds.

This could occur in Phase III or later on in post-marketing surveillance.

We assume γ(d) is a known, increasing function of d.

The function γ(d) is specified before Phase IIb and patient follow-up in Phase IIb is

not long enough to learn more about the safety profile.

In our example, we shall take γ(d) to be quadratic with γ(dJ) = 0.2.

Thus, when Phase III has a positive outcome, we calculate the expected gain by

discounting the gain function by a factor 1 − γ(dj).
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Optimising the Phase IIb / Phase III design

Before Phase IIb

We choose the Phase IIb sample size, n2.

At the end of Phase IIb

We decide whether to proceed to run Phase III and, if so, select

The dose to test in Phase III dj ,

The Phase III sample size n3.

We wish to optimise:

The choice of n2,

The rule for deciding whether to proceed to Phase III,

The rule for choosing dj and n3.
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Optimisation algorithm

Overview

For a particular n2,

Simulate θ, the vector of dose response curve parameters, from the prior.

Simulate Phase IIb data, given θ.

Evaluate Phase III options given the posterior for θ and choose the best option.

Average over replicates to compute the expected net gain for this n2.

Compare E(Net gain) over possible choices of n2 and choose the best n2.
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Evaluating Phase III options

Given Phase II data X = x, denote the posterior distribution of the dose response

curve parameters θ by

π(θ|x).

Consider a Phase III trial with dose dj and sample size n3.

The conditional expectation of the net gain is

∫

π(θ|x)
[

Pθ{Positive Phase III; dj , n3} (1 − γ(dj)) g − 2 n3 c3 − n2 c2

]

dθ.

With a MCMC sample θ
1, . . . , θS from π(θ|x), estimate this E(Net gain) by

1

S

S
∑

s=1

Pθ
s{Positive Phase III; dj , n3} (1 − γ(dj)) g − 2 n3 c3 − n2 c2.
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Results for a simple example

Consider a problem with 7 active dose levels dj = j, j = 1, . . . , 7.

Following the earlier definition, the prior distribution for θ = (β, δ, θ, τ) has

β ∼ N(5, 102), δ ∼ N(15, 102),

θ ∼ N(7/2, 72), τ ∼ N+(1, 1).

Phase IIb has 0.3 n2 subjects on dose zero and 0.1 n2 on each active dose.

The sampling cost is 1 for each Phase IIb and Phase III subject.

The financial gain for a positive Phase III trial is g = 12,000.

But dose dj may fail on safety grounds with probability

γ(d1) = 0.004, γ(d2) = 0.016, γ(d3) = 0.037, γ(d4) = 0.065,

γ(d5) = 0.10, γ(d6) = 0.15, γ(d7) = 0.2.
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Results for a simple example

We have optimised over Phase III sample sizes

n3 ∈ {100, 150, 200, 250, 300, 400, 500, 600, 800, 1000}.

Comparing Phase IIb designs, we found:

n2 E(Net gain)

50 8,590

100 8,760

150 8,820

200 8,840

250 8,840

300 8,820
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Results for a simple example

Within replicates of Phase IIb data for n2 = 200, the optimal choice of dj and n3

varies considerably:
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The risk of safety problems guides the decision toward lower doses.

The sampling cost in Phase III argues for lower values of n3.
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Extending the methodology

Phase III options

Group sequential Phase III designs.

Allowing two or more active doses to be tested in Phase III.

Gain function and costs

Use net present value based on patent life remaining after Phase III.

Elicit a problem-specific gain function for two successful doses in Phase III.

Phase IIb options

Different fixed patterns of dose allocation.

Adaptive dose-allocation.

Early stopping in Phase IIb.
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Computational problems and possible solutions

Coupling

We have already used coupling of replicate data sets under different Phase IIb

designs to increases the accuracy of comparisons between these designs.

Multiple use of MCMC samples

Rather than repeat MCMC simulations to sample the posterior distribution of θ for

Phase IIb data sets which are similar due to coupling, values for a “central” case

can be re-used with importance sampling weights to provide results for other cases.

Pre-computing for a reference set of cases

Evaluation of more complex Phase III designs (group sequential of multi-armed) is

computationally demanding. These can be evaluated up-front on a grid of

parameter values, to provide a look-up table for cases arising in simulations.
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Conclusions

A full treatment of the Phase IIb/ Phase III design process is possible, with joint

optimisation of both stages under a Bayesian model.

The Bayesian approach allows propagation of uncertainty and provides a natural

framework for decision making under uncertainty.

MCMC simulations nested within replicates of Phase IIb data constitute a

substantial computation task: but there are several routes to recovering

computational efficiency and making this task feasible.

Rules for dose selection and Phase II design are often based on point estimates of

the treatment effects at individual doses. Comparison with optimised decision rules

will provide a check on such rules and insight into their strengths and weaknesses.

Rules can be assessed under a random distribution of θ values from the prior or

under a specific θ (but optimisation is still based on the assumed prior for θ).
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