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1. Phase II and III clinical trials

Phase IIa

A “proof of concept” study intended to show evidence of drug activity at some dose.

Phase IIb

A trial to compare several doses or other variants of a treatment against control,

with the aim of selecting a treatment for testing in a “confirmatory” Phase III trial.

Phase III

A trial intended to demonstrate the treatment selected in Phase II is superior to the

control.

Seamless Phase II/III trial

A “seamless” design combines Phase IIb and Phase III, selecting a treatment and

continuing to test this against control in a single study.
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Seamless Phase II/III trials

Joint planning

Combining Phases II and III promises a more rapid final decision since the “white

space” between phases is eliminated.

This requires substantial preparation to anticipate all the eventualities at the end of

Phase II and, in each case, document how the study should continue.

Combining data

We shall discuss the issue of combining information in Phase II and Phase III data.

This option is of interest when the patient population and primary endpoint remain

the same over both phases.

But, the final hypothesis test will need proper consideration of the selection process

in Phase II, which generated the hypothesis now being tested.
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2. Example

Jennison & Turnbull (J. Biopharm. Statistics, 2007, Sec. 5) consider:

Phase II

Four treatments and a control are compared, with m1 = 100 observations on

each.

Estimated treatment effects are θ̂1,i, i = 1, . . . , 4.

The treatment i∗ with highest θ̂1,i is selected for Phase III.

Phase III

Treatment i∗ is compared against control, with m2 = 500 observations on each.

Estimated treatment effect is θ̂2,i∗ .

Conclusion

A final decision is made, based on θ̂1,1, . . . , θ̂1,4 and θ̂2,i∗ .
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Example: Requirements

There are four null hypotheses, Hi: θi ≤ 0 , i = 1, . . . , 4.

If dose i∗ is selected for Phase III, we focus on testing Hi∗ : θi∗ ≤ 0.

Family-wise error

We wish to control family-wise error, so, for all vectors θ = (θ1, . . . , θ4),

Pr{Reject any true Hi} ≤ α.

Then, the probability of falsely claiming significance for the selected i∗ is at most α.

Power

When some of the θi are greater than zero, we wish to have a high probability

of selecting an effective treatment and rejecting the associated null hypothesis.

Formally, define power as

Pr{Select the treatment j with maximum θi and reject Hj : θj ≤ 0}.
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Example: Further details

Phase II

Responses follow distributions

N(µi, σ2), on treatments 1 to 4,

N(µc, σ2), on control,

where σ2 = 25.

Treatment effects are θi = µi − µc.

The estimated effects are

θ̂1,i = µ̂1,i − µ̂1,c ∼ N(θi,
2 σ2

m1
),

with correlation 0.5 between each pair.

Early stopping

If θ̂1,i∗ = maxi(θ̂1,i) < 0, stop for futility, otherwise proceed to Phase III.
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Example: Further details

Phase III

The estimated effect of treatment i∗ in Phase III is

θ̂2,i∗ = µ̂2,i∗ − µ̂2,c ∼ N(θi∗ ,
2 σ2

m2
).

Question: How should one make the final decision based on

θ̂1,1, . . . , θ̂1,4 and θ̂2,i∗ ?

— How to adjust for multiplicity? How to weight data from the two phases?

Jennison & Turnbull (J. Biopharm. Statistics, 2007) consider several methods:

Conventional: Final decision is based on θ̂2,i∗ alone.

Bauer and Köhne: Applying combination tests to data from the two phases.

TSE: A design of Thall, Simon & Ellenberg (Biometrika, 1988).
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3.1. Conventional: Final test based on Phase III data alone

It is not necessary to adjust for data-driven selection of hypothesis Hi∗ since this

is to be tested using only the new data from Phase III.

So, we can define

Z =
θ̂2,i∗√

(2σ2/m2)

and reject Hi∗ : θi∗ ≤ 0 in favour of θ̂i∗ > 0 if

Z > Φ−1(1− 0.025) = 1.96.

With stopping for futility if θ̂1,i∗ < 0, the overall type I error rate is only 0.020.

For type I error rate 0.025 when m1 = 100 and m2 = 500, reject Hi∗ if

Z > 1.86.
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3.2 Bauer & Köhne (Biometrics, 1994): Combination tests

Testing a null hypothesis H0 against a one-sided alternative, we have p-values:

P1 from stage 1 (Phase II), P2 from stage 2 (Phase III).

Under H0, P1 and P2 have independent U(0, 1) distributions.

a) Inverse χ2 test

− ln(P1 P2) ∼ 1
2

χ2
4.

Hence, a size α test is obtained by rejecting H0 if

− ln(P1 P2) >
1
2

χ2
4, 1−α.

This χ2 test was originally proposed for combining results of several studies by

R. A. Fisher (1932) Statistical Methods for Research Workers.
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Bauer & Köhne: Combination tests

b) Inverse normal test

Let Z1 = Φ−1(1− P1) and Z2 = Φ−1(1− P2).

Pre-specify weights w1 and w2, where w2
1 + w2

2 = 1.

Then under H0, w1 Z1 + w2 Z2 ∼ N(0, 1).

Hence, a size α test is obtained by rejecting H0 if

w1 Z1 + w2 Z2 > Φ−1(1− α).

Multiple comparisons

Since the choice of the null hypothesis Hi∗ is based on the data that generated

P1 and Z1, we need to allow for multiple comparisons if we are to control the

family-wise type I error rate.
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Closed testing procedures (Marcus et al, Biometrika, 1976)

We have 4 null hypotheses, Hi: θi ≤ 0, for i = 1, . . . , 4. For each subset I of

{1, . . . , 4}, we define the intersection hypothesis

HI = ∩i∈I Hi.

We construct a level α test of each intersection hypothesis HI : this test rejects HI

with probability at most α whenever all hypotheses specified in HI are true.

Closed testing procedure

The simple hypothesis Hj : θj ≤ 0 is rejected overall if, and only if, HI is rejected

for every set I containing index j.

Proof of strong control of family-wise error rate

Let Ĩ be the set of indices of all true hypotheses Hi. For a family-wise error to be

committed, HĨ must be rejected. Since HĨ is true, Pr{Reject HĨ} = α and,

thus, the probability of a family-wise error is no greater than α.
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Closed testing procedures using combination tests

(Bretz et al. and Schmidli et al, Biometrical Journal, 2006)

To test HI = ∩i∈IHi, combine p-values P1,I from stage 1 and P2,I from stage 2.

Stage 1 (Phase II)

We have p-values P1,i for the individual null hypotheses Hi.

If HI is the intersection of m simple hypotheses, let P1,(k), k = 1, . . . , m,

denote the m p-values for these hypotheses in increasing order.

Using the method of Simes (Biometrika, 1986), the p-value for testing HI is

P1,I = min
k=1,...,m

(m P1,(k)/k).

(Or Dunnett’s test for multiple comparisons with a control could be used instead.)

Stage 2 (Phase III)

We are only interested in hypotheses HI where I contains i∗ and we set the

p-value for each of these to be P2,I = P2,i∗ .
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Closed testing procedures using combination tests

At the end of Phase III, we reject Hi∗ if the specified combination test rejects

every HI where I contains i∗.

a) Inverse χ2 test

The inverse χ2 test rejects HI if

− ln(P1,I P2,I) >
1
2

χ2
4, 1−0.025 = 5.572.

The overall type I error rate under θ = (0, 0, 0, 0) is 0.021, less than 0.025
because of stopping for futility at Phase II and the conservatism of Simes’ test.

For m1 = 100 and m2 = 500, rejecting each HI if

− ln(P1,I P2,I) > 5.376

gives an overall type I error rate under θ = (0, 0, 0, 0) of 0.025.
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Closed testing procedures using combination tests

b) Inverse normal test

We take w1 =
√

(m1/(m1 + m2) and w2 =
√

(m2/(m1 + m2), where

m1 and m2 are the Phase II and Phase III sample sizes per treatment.

The inverse normal test rejects HI if

w1 Z1,I + w2 Z2,I > Φ−1(1− 0.025) = 1.96.

The overall type I error rate for this procedure under θ = (0, 0, 0, 0) is 0.020,

due to stopping for futility at Phase II and the conservatism of Simes’ test.

For m1 = 100 and m2 = 500, rejecting each HI if

w1 Z1,I + w2 Z2,I > 1.86

gives an overall type I error rate under θ = (0, 0, 0, 0) of 0.025.
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3.3 Thall, Simon & Ellenberg (Biometrika, 1988)

Define

Z1,i∗ =
θ̂1,i∗√

(2 σ2/m1)
and Z2,i∗ =

θ̂2,i∗√
(2 σ2/m2)

.

The hypothesis Hi∗ is rejected if

w1 Z1,i∗ + w2 Z2,i∗ > 2.20.

where wi =
√

(mi/(m1 + m2), i = 1, 2, as before.

The critical value 2.20 is chosen to give overall type I error probability 0.025 if

θ = (0, 0, 0, 0) and this guarantees a maximum family-wise error rate of 0.025.

It is easy to check the final decision is based on the difference in mean responses

on treatment i∗ and the control, pooled across Phases II and III — a very natural

way in which to combine the relevant data.
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4. Properties of the four tests

Power of four 2-stage selection/testing procedures when θ = (0, 0, 0, δ),

i.e., three are ineffective and the other has effect size δ:
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NB: The sample size distribution is the same for all four methods.
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Properties of the four tests
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The conventional procedure — with no data combination — is surprisingly efficient:

only slightly worse than the Thall, Simon & Ellenberg design, and superior to

inverse χ2 and inverse normal combination tests.

Differences in power equate to differences in sample size of around 4% to 8%.
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5. Understanding the power curves

We shall seek an “optimal” procedure for this situation, examine its form, and

compare with the four tests.

Requirements:

Pr{Type I error} = 0.025 when θ = (0, 0, 0, 0),

Maximum possible power when θ = (0, 0, 0, δ) or a permutation of this.

To find the optimal procedure:

Consider a Bayes decision problem with:

Prior:
0.2 on θ = (0, 0, 0, 0),

0.2 on each permutation of θ = (0, 0, 0, δ)

Costs:
c1 for rejecting any Hi when θ = (0, 0, 0, 0),

−c2 for rejecting Hj when θj = δ.
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An “optimal” procedure

The Bayes rule minimises

0.2 × c1 × {Type I error probability under θ = (0, 0, 0, 0)}

−4 × 0.2 × c2 × {Power at θ = (0, 0, 0, δ)}.

Hence, it maximises power at θ = (0, 0, 0, δ) among all procedures with the

same type I error probability under θ = (0, 0, 0, 0).

Choosing c1 and c2 so that the procedure has total type I error rate 0.025 under

θ = (0, 0, 0, 0) will give the solution to our stated problem.

It may seem strange not to penalise, say, selecting treatment 2 and rejecting H2

when θ = (0, 0, 0, δ). However, family-wise error is protected under this θ.

Most importantly, this formulation is what we need to solve the problem as posed.
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An “optimal” procedure

Consider the final analysis after selecting treatment i∗ and observing Phase III data.

Without loss of generality, suppose i∗ = 4.

Possible costs are:

If θ = (0, 0, 0, 0) Reject Hi∗ ⇒ cost c1

If θ = (0, 0, 0, δ) Reject Hi∗ ⇒ cost −c2

Other values of θ No cost, whether Hi∗ is rejected or accepted.

It follows that the Bayes optimal decision rule depends on the likelihood ratio of the

Phase II and Phase III data under θ = (0, 0, 0, δ) and θ = (0, 0, 0, 0).

To evaluate this likelihood ratio, recall

θ̂1,i ∼ N(θi,
2 σ2

m1
), i = 1, . . . , 4, θ̂2,i∗ ∼ N(θi∗ ,

2 σ2

m2
)

and each pair (θ̂1,i, θ̂1,j) has correlation 0.5.
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An “optimal” procedure

Some algebra shows the optimal procedure rejects Hi∗ if

8 m1

m1 + m2
{θ̂1,i∗ −

∑

j 6=i∗

1
4

θ̂1,j} +
5 m2

m1 + m2
θ̂2,i∗ > k

for some constant k.

The terms θ̂1,j have negative weights due to their positive correlations with θ̂1,i∗ .

Remember that for all the values of θ in our stated problem, three of the θj are

equal to zero. Positive values of θ̂1,j for j 6= i∗ could be attributable to unusually

negative responses on the common control arm, and this detracts from the

significance of a high positive θi∗ .
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An “optimal” procedure

We have seen that the “optimal” procedure gives a negative weight to the Phase II

estimates θ̂1,j j 6= i∗.

The Bauer & Köhne methods use closed testing procedures and these combine

p-values by Simes rule to test intersection hypotheses. Higher values of θ̂1,j

j 6= i∗ contribute positively to rejection of Hi∗ .

This is a natural way to “borrow strength” when one expects related treatments to

have similar effects, but it is counter-productive when the other treatment effects

are, in fact, all zero.

The TSE procedure gives zero weight to the other θ̂1,js, and so is closer to the

“optimal” decision rule.

The conventional rule ignores all phase II estimates and at least it does not suffer

from including terms θ̂1,j with the wrong sign.
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Properties of four tests plus the “optimal”

Power of four 2-stage selection/testing procedures when θ = (0, 0, 0, δ),

plus the “optimal” procedure as a benchmark.
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Properties of four tests plus the “optimal”
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Differences in power equate to differences in sample size of around 5% to 10%.

But, there is a problem with the “optimal” procedure . . . .
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The problem with the “optimal” procedure

This procedure rejects Hi∗ if

8 m1

m1 + m2
{θ̂1,i∗ −

∑

j 6=i∗

1
4

θ̂1,j} +
5 m2

m1 + m2
θ̂2,i∗ > k.

Here, k is chosen so type I error probability is 0.025 when θ = (0, 0, 0, 0).

Negative weights for θ̂1,j , j 6= i∗, imply high type I error probability for, say,

θ = (−λ, −λ, −λ, 0) where −λ is large and negative. So, the “optimal” test

does not satisfy the family-wise error condition.

Question: What procedure is truly optimal, maximising power at θ = (0, 0, 0, δ)
and permutations of this while protecting the family-wise error rate?

Conjecture: Increasing the weights of θ̂1,j , j 6= i∗, so they are non-negative

(zero, in fact) and weighting θ̂1,i∗ and θ̂2,i∗ by the inverse of their variances

gives the TSE rule — suggesting this should be close to optimal for this problem.
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6. Performance of tests under other configurations of θ

Example 2:

Suppose θ is a permutation of (γ δ, γ δ, γ δ, δ), where 0 ≤ γ < 1.

Aim:

High power to select the treatment i∗ for which θi∗ = δ and then reject Hi∗ .

Optimal rules

We can follow the same approach of solving a suitably formulated Bayes decision

problem to derive an “optimal” rule.

This rule gives non-negative weights to all the θ̂1,js when γ ≥ 0.5.

The optimal rule for γ = 0.5 is the TSE decision rule.
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Example 2 with γ = 0.5

Power of four procedures when θ = (γ, γ, γ, 1) δ with γ = 0.5.
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Example 2 with γ = 0.5

Power of four procedures when θ = (γ, γ, γ, 1) δ with γ = 0.5.
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Example 2 with γ = 0.75

Power of four procedures when θ = (γ, γ, γ, 1) δ with γ = 0.75, plus the

“optimal” procedure for this case as a benchmark.
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Example 2 with γ = 0.75

Power of four procedures when θ = (γ, γ, γ, 1) δ with γ = 0.75, plus the

“optimal” procedure for this case as a benchmark.
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Performance of tests under other configurations of θ

Example 3:

Suppose θ is a permutation of (γ1, γ2, γ3, 1) δ, for 0 ≤ γ1 ≤ γ2 ≤ γ3 < 1.

Aim:

High power to select the treatment i∗ for which θi∗ = δ and then reject Hi∗ .

Optimal rules

Again, we can follow a suitably formulated Bayes decision problem to derive an

“optimal” rule, which now involves a combination of likelihood ratios.

For sufficiently high values of γ1, . . . , γ3, the optimal rule gives non-negative

weights to all the θ̂1,js and family-wise type I error is properly protected.

We find the TSE rule remains highly efficient relative to the optimal rule.
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Performance of tests under other configurations of θ

Example 4:

Suppose θ is a permutation of (γ1, γ2, γ3, 1) δ, for 0 ≤ γ1 ≤ γ2 ≤ γ3 < 1.

Suppose also it is thought likely that the θi increase monotonically with i — this

could be a reasonable view when treatments represent increasing dose levels.

Aim:

High power to select the treatment i∗ for which θi∗ = δ and then reject Hi∗ .

Optimal rules

Here, it is of interest to find the “optimal” rule based on the assumption that the θi

increase monotonically with i.

Once again, a suitably formulated Bayes decision problem leads to an “optimal” rule.
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Performance of tests under other configurations of θ

Example 4:

Treatment effects are a permutation of θ = (γ1, γ2, γ3, 1) δ and the θi are

expected to increase monotonically with i.

Calculations show that the additional knowledge about the monotonicity of the θis

provides only a very slight efficiency gain.

Thus, the TSE rule remains highly efficient relative to this specialised optimal rule.

This leads us to the conclusion that using a good dose-response model does not

greatly improve the final decision to accept or reject Hi∗ .

Bretz, Pinheiro & Branson (Biometrics, 2005) proposed adaptive choice of a

dose-response model to define the best contrast of estimated effects. Our results

suggest this may not be necessary!

However, modelling may well be useful in adaptive allocation of treatments (doses)

during the Phase II stage.
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Relative efficiencies of four decision rules

Decision rule Configuration of θ

A B C D E

TSE 100 100 99 99 98

BK inverse normal 96 99 99 99 99

BK inverse χ2 92 94 95 93 93

Phase III data only 97 95 93 90 89

m1 = 100, m2 = 500

A: θ = (0, 0, 0, δ)

B: θ = (γ, γ, γ, 1) δ, γ = 0.5

C: θ = (γ, γ, γ, 1) δ, γ = 0.75

D: θ = (γ1, γ2, γ3, 1) δ, γ1 = 0.75

E: θ = (γ1, γ2, γ3, 1) δ, γ1 = 0.75, θ assumed monotone.

BK inverse normal with Dunnett’s test in place of Simes’ test fares similarly to TSE.
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Relative efficiencies of four decision rules

Decision rule Configuration of θ

A B C D E

TSE 100 100 98 98 97

BK inverse normal 92 99 99 99 98

BK inverse χ2 93 96 96 96 95

Phase III data only 88 87 82 81 81

m1 = 200, m2 = 400

A: θ = (0, 0, 0, δ)

B: θ = (γ, γ, γ, 1) δ, γ = 0.5

C: θ = (γ, γ, γ, 1) δ, γ = 0.75

D: θ = (γ1, γ2, γ3, 1) δ, γ1 = 0.75

E: θ = (γ1, γ2, γ3, 1) δ, γ1 = 0.75, θ assumed monotone.

BK inverse normal with Dunnett’s test in place of Simes’ test fares similarly to TSE.
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7. Conclusions

Modest efficiency gains can be made by combining Phase II and Phase III data

(more so for larger Phase II sample sizes).

Rules (i) TSE and (ii) BK inverse normal combination rule with Dunnett’s test

have robust efficiency over a variety of θ configurations, numbers of treatments,

and sample sizes.

Jennison & Turnbull (Biometrical Journal, 2006) showed the TSE rule protects the

family-wise error rate.

They also showed TSE is a closed testing procedure. So, like other procedures, it

can allow a treatment other than that with highest θ̂1,i being selected for Phase III

(e.g., for safety considerations).

We adjusted critical values for Bauer & Köhne procedures to eliminate conservatism

under θ = (0, 0, 0, 0). This could conceivably increase the family-wise error rate

elsewhere — but this only strengthens our recommendation of the TSE rule.
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Conclusions

Multiple comparison procedures

The notion of “borrowing strength” implicit in Simes’ rule may not always be

desirable for multiple comparisons with a control.

In contrast, the Dunnett procedure, which is designed for multiple comparisons with

a control, performs well in this problem.

Combining data from Phases II and III

The TSE procedure protects family-wise type I error and can be employed flexibly.

TSE is robustly efficient and even has good efficiency when compared to model

based methods which assume the correct model.

TSE only uses observations on the selected treatment and control in the final

decision — with appropriate adjustment for data-dependent treatment selection.

Now we have a simple decision rule to apply, we can turn attention to optimal choice

of Phase II and Phase III sample sizes — as TSE already did in their 1988 paper.
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Conclusions

The “value” of the Phase II data making in the final decision can be assessed by

comparing efficiency against that of the decision rule based on Phase III data only.

Our results show the Phase II data on treatment i∗ and the control are worth

around 50% of their face value: for example, if Phase II has 100 observations per

treatment and control, these improve power by the same amount as an extra 50

observations on treatment i∗ and control in Phase III.

The requirement by regulators to treat the combined study as a single trial means

that issues usually addressed in the gap between Phases II and III must be

anticipated and rules for how to proceed set up in the overall protocol.

Although Phase II data are of reduced value and their use in the Phase III analysis

has an administrative cost, this practice may still be desirable when observations

are at a premium, e.g., in a rare illness with slow patient recruitment.
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Appendix 1: Likelihood ratios for a linear model

In comparing k treatments with a control, suppose θ1 = γ1 δ, . . . , θk = γk δ,

so

θ =




θ1

...

θk


 =




γ1

...

γk


 δ = Xδ

for a scalar parameter δ.

In Phase II, we have θ̂ ∼ N(θ, Σ) = N(Xδ, Σ), where

Σ =




2 1 . . . 1

1 2 . . . 1
...

...
...

1 1 . . . 2




σ2

m1
.
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Likelihood ratios for a linear model

The probability density of θ̂ is

fδ(θ̂) = (2π)−k/2 (det Σ)−1/2 exp{−1
2
(θ̂ −Xδ)T Σ−1(θ̂ −Xδ)}.

The likelihood ratio for δ = δ∗ vs δ = 0 is

fδ∗

f0
= exp(δ∗XT Σ−1θ̂ + constant )

and the log likelihood ratio is

δ∗XT Σ−1θ̂ + constant. (1)

Now, the maximum likelihood estimate of δ for this normal linear model is

δ̂ = (XT Σ−1X)−1XT Σ−1θ̂ ∼ N(δ, (XT Σ−1X)−1).
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Likelihood ratios for a linear model

So, the log likelihood ratio (1) is a constant plus

δ∗(XT Σ−1X)δ̂ = δ∗
δ̂

Var(δ̂)
.

Denote the Phase II estimate of δ by δ̂1 so the log likelihood ratio from Phase II

data is

δ∗
δ̂1

Var(δ̂1)
+ constant.

Similarly (with a simpler model as only θ̂i∗ is observed), the log likelihood ratio

from Phase III data is

δ∗
δ̂2

Var(δ̂2)
+ constant.
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Likelihood ratios for a linear model

Combining across Phase II and Phase III, the log likelihood ratio for δ = δ∗ vs

δ = 0 is a constant plus

δ∗{ δ̂1

Var(δ̂1)
+

δ̂2

Var(δ̂2)
}.

Thus, we reject δ = 0 in favour of δ > 0 for high values of

δ̂1

Var(δ̂1)
+

δ̂2

Var(δ̂2)
,

the overall MLE of δ from the pooled Phase II and Phase III data.
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Appendix 2: Formula for the likelihood ratio from Phase II

The log likelihood ratio is an increasing function of XT Σ−1θ̂, i.e., of

(γ1, . . . , γk)
m1

σ2(k + 1)




k −1 . . . −1

−1 k . . . −1
...

...
...

−1 −1 . . . k







θ̂1,1

θ̂1,2

...

θ̂1,k




=
m1

σ2
(γ1, . . . , γk) (In − 1

k + 1
1n×n)




θ̂1,1

...

θ̂1,k




=
m1

σ2
{

k∑

j=1

γj θ̂1,j − 1
k + 1

k∑

j=1

γj

k∑

j+1

θ̂1,j }. (2)
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Special cases of the likelihood ratio from Phase II

Case 1.

With i∗ = k, consider testing θ = (0, . . . , 0) vs θ = (0, . . . , 0, δ).

We take (γ1, . . . , γk) = (0, . . . , 0, 1), then (2) becomes

m1

σ2


θ̂1,i∗ −

1
k + 1

k∑

j=1

θ̂1,j




=
m1

σ2

k

k + 1


θ̂1,i∗ −

1
k

∑

j 6=i∗
θ̂1,j


 .

This lies behind the term

θ̂1,i∗ −
1
4

∑

j 6=i∗
θ̂1,j

in the formula on Slide 22 for the “optimal” test with k = 4.
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Special cases of the likelihood ratio from Phase II

Case 2.

With i∗ = k, consider testing θ = (0, . . . , 0) vs θ = (γδ, . . . , γδ, δ).

We take (γ1, . . . , γk) = (γ, . . . , γ, 1), then (2) becomes

m1

σ2
{ θ̂1,i∗ +

∑

j 6=i∗
γ θ̂1,j − (k − 1)γ + 1

k + 1
(θ̂1,i∗ +

∑

j 6=i∗
θ̂1,j) }

=
m1

σ2(k + 1)
{ [k − (k − 1)γ] θ̂1,i∗ +

∑

j 6=i∗
(2γ − 1) θ̂1,j }.

The coefficient (2γ − 1) of terms θ̂1,j for j 6= i∗ is negative when γ < 0.5
and positive when γ > 0.5.

The case γ = 0.5 gives a coefficient of zero — and the TSE decision rule.
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Appendix 3: Alternative derivation of MLEs in Phase II

Our original model assumed independent treatment estimates

µ̂1,i ∼ N(µi,
σ2

m1
), i = 1, . . . , k,

µ̂1,c ∼ N(µc,
σ2

m1
).

We defined θi = µi − µc, i = 1, . . . , k, and worked with the estimates θ̂1,i.

However, we can also work with the µ̂1,is and µ̂c directly.

Example 1

We can write the case θ = (0, . . . , 0, δ) as

µ1 = . . . = µk−1 = µc = a,

µk = a + δ.
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Alternative derivation of MLEs in Phase II

So, estimates follow a regression model E(µ̂1,i) = a + δ x where

µ̂1,1, . . . , µ̂1,k−1 and µ̂c have x = 0,

µ̂1,k has x = 1,

and we are interested in the slope δ.

-
x0 1

6
E(µ̂1,i)

a+δ

a ©©©©©©©

×
×
×

×

Clearly,

δ̂ = µ̂1,k −
1
k

(µ̂1,1 + . . . + µ̂1,k−1 + µ̂1,c).
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Alternative derivation of MLEs in Phase II

But, we can write

δ̂ = µ̂1,k −
1
k

(µ̂1,1 + . . . + µ̂1,k−1 + µ̂1,c)

= (µ̂1,k − µ̂1,c)−
1
k

k−1∑

j=1

(µ̂1,j − µ̂1,c)

= θ̂1,k − 1
k

k−1∑

j=1

θ̂1,j ,

in agreement with previous results.

Note: In the estimate of a slope, the sum of the weights of the µ̂1,is and µ̂c is

zero (it is a contrast).

So, it is automatically the case that δ̂ can be expressed in terms of the θ̂1,is.
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Alternative derivation of MLEs in Phase II

Example 2

We can write the case θ = (γ, . . . , γ, 1) δ as

µc = a,

µ1 = . . . = µk−1 = a + γ δ,

µk = a + δ.

Now, the estimates follow a regression model E(µ̂1,i) = a + δ x where

µ̂1,c has x = 0,

µ̂1,1, . . . , µ̂1,k−1 have x = γ,

µ̂1,k has x = 1,

and we are interested in the slope δ.
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Alternative derivation of MLEs in Phase II

-

x0 γ 1

6
E(µ̂1,i)

a+δ

a ©©©©©©©©©

×

×
×
×

×

It is easy to see that

for γ = 0.5, δ̂ = µ̂1,k − µ̂1,c = θ̂1,k,

for γ < 0.5, µ̂1,1, . . . , µ̂1,k contribute to δ̂ with negative weights,

for γ > 0.5, µ̂1,1, . . . , µ̂1,k contribute to δ̂ with positive weights.
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